
ORIGINAL ARTICLE

Analysis of the environmental liabilities generated by past
activities in uranium mining exploitation in the Province
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Abstract Worldwide, old disposal sites of uranium mine

and mill wastes are the objects of environmental restoration

programs or have already been remediated. This is the case

of Los Gigantes in Córdoba, Argentina, where uranium was

extracted and processed in the 1980s; a local source of

pollution to watercourses was generated as a consequence

of disposal of solid and liquid wastes. The present study

aims at describing the physicochemical characteristics of

the surface watercourses that run across the complex,

finding a grouping structure of the sampling sites according

to their degree of pollution, and defining the variables that

are significant to that grouping. The problem is addressed

with both traditional and robust statistics techniques;

additional chemometrical tools are also applied. It was

found that streams close to the tailings and the pond exhibit

lower pH and higher concentration of anions and metals

compared to upstream watercourses. As the distance

downstream to these pollution sources increases, all

physicochemical parameters recover gradually, reaching

levels close to background and complying with provincial

and national regulations, proving that pollution is locally

constrained.
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Introduction

Uranium mining remains controversial, principally because

of environmental and health impacts associated with the

early years of development of this industry. During the

largely unregulated early phase several environmental

impacts took place worldwide. Consequently many old

disposal sites of uranium mine and mill tailings are now the

objects of environmental restoration programs or have

already been remediated. With over 430 nuclear reactors

operational worldwide at the end of 2013, more than 70

under construction and many more under consideration, the

provision of fuel for these long-lived facilities will be

essential for the uninterrupted generation of significant

amounts of base load electricity for decades to come. As a

result, enhancing awareness of leading practices in uranium

mining is increasingly important (International Atomic

Energy Agency (IAEA) 2008; Nuclear Energy Agency

(NEA) 2014).

Uranium mining and milling operations have been per-

formed in Argentina since the 1950s. These activities took

place in the past under a much less restrictive framework

than current legislation. As a result different volumes of

tailings and waste ponds exist that have been proved to be a

source of pollution (Uranium Mining Environmental

Restoration Project (PRAMU) 2005) and thus require to be

adequately addressed. The country is currently running a

‘‘Uranium Mining Environmental Restoration Project’’

(PRAMU) to remediate legacies from former uranium

mining and processing activities at eight different sites.

This project, the first of its kind in the region, has so far

enabled progress in civil works in the first site addressed,

Malargüe, and financed baseline studies and radiological

studies in two other sites: El Chichón and Los Gigantes

(The World Bank 2014). This paper evaluates the situation
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Constituyentes, Buenos Aires, Argentina

2 Instituto de Investigación e Ingenierı́a Ambiental (3iA),

Universidad Nacional de San Martı́n, Buenos Aires,

Argentina

123

Environ Earth Sci (2016) 75:407

DOI 10.1007/s12665-015-5178-9

http://orcid.org/0000-0002-6694-4958
http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-015-5178-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-015-5178-9&amp;domain=pdf


of the former uranium production site Los Gigantes, Cór-

doba, Argentina.

Los Gigantes uranium mining site is located in the lar-

gely unpopulated mountainous granite Sierra Grande area,

about 30 km southwest from the city of Villa Carlos Paz,

Córdoba Province, Argentina (Fig. 1). In the area there

have been recognized Paleozoic granitic rocks and detrital

Quaternary sediments. In general, granites contain potas-

sium feldspar, quartz, sodium plagioclase, biotite and

muscovite and have a porphyritic texture which makes

them easily strippable by weathering agents as well as

structural factors, facilitating the entry and circulation of

water. The presence of pegmatitic tabular intrusions with

varying thicknesses and positions along rifts is frequent,

especially the sub-horizontal or low angle rifts. This granite

is the host rock for uranium mineralization (autunite and

metaautunite). Rifts affecting these materials are the main

ways for the circulation of water in them. There are many

springs of meager flow that originate from these structures;

most of these springs water emerges from horizontal to

subhorizontal position fractures. The Quaternary in the area

is mainly represented by a layer of loose granular material

(regolith), which covers the granite bedrock. It has an

important horizontal extension but is of little vertical

development, with variable thickness from a few cen-

timeters to 1.5–2.0 m. The sediment is predominantly

sandy loam. Finally, fluvial deposits partially fill the main

watercourses of the area, with thicknesses below the meter.

It is generally sandy sediment. The ore is of very low

grade, yielding only 300 g of uranium per ton. The open pit

mine had an extension of 300 9 500 m. The exploitation

was operated by a private company, under a contract with

the Argentinean Comisión Nacional de Energı́a Atómica

(CNEA), from 1982 to 1989.

Mined ore was heap leached on-site; this process

implied that the ore that was removed from the open-pit

was crushed in a large mill, ground to sand consistency and

mounded above grade on a prepared pad with an imper-

meable asphaltic membrane in its bottom. The ore was then

leached with sulfuric acid so the uranium was mobilized:

UO3 ? 2H? ====[UO2
2? ? H2O. The uranyl ion in

solution forms stable complexes with the sulphate ion. The

uranium in this pregnant leach liquor was recovered by ion

exchange technique and then recovered from the eluate by

precipitation with ammonium hydroxide: 2UO2SO4 ? 6-

NH4OH ====[ (NH4)2U2O7 ? 2 (NH4)2SO4 ? 3H2O.

The diuranate was finally dewatered and dried to yield

U3O8 (yellowcake). The effluent and leached residue were

neutralized by the addition of Ca(OH)2 and discharged as a

slurry into the waste retention pond.

When the mine had effectively ceased operation, 206

tons of uranium had been produced as ammonium diu-

ranate. As a result of mineral extraction and processing, 3.5

million tons of solid wastes were generated and disposed of

in separate piles: 2.5 million tons of tailings, 600,000 tons

of low-grade (marginal) ore and 1 million tons of sterile

overburden. Furthermore, 105 m3 of slurry along with

105 m3 of liquid effluents were collected and stored in a

still pond (PRAMU 2005) (Fig. 2).

The major concern in mill tailings from a geochemical

standpoint is the generation of acid pore waters. In low-pH

waters, desorption of radionuclides and hazardous elements

Fig. 1 Location of the ex-mining industrial complex Los Gigantes in Córdoba, Argentina. The gray surface on the right corresponds to

populated areas
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occurs, increasing their concentration. Seepage of such

acid waters, in particular from unlined mill tailings, may

affect the surrounding environment, including soils, surface

water, and groundwater. In acid water leaching from tail-

ings, dissolved uranium and daughter products can reach

levels that are a direct threat to nearby ecosystems (Ab-

delouas 2006).

The watercourses that run across the industrial complex

are headstreams of the San Antonio River Basin that flows

down into the San Roque Lake. This lake is the major

water source which provides drinking water to Villa Carlos

Paz and Córdoba cities, the former located 30 km northeast

from the industrial complex (Fig. 1). On the basis of pre-

vious hydrological research (Instituto Nacional del Agua

(INA) 2001; División Quı́mica del Agua y del Suelo

(DQAS) 2012) it is possible to determine that the streams

that run through the mining solid or liquid wastes con-

tribute with a flow rate of only 11.5 l s-1. Considering that

the principal collector of the basin, the San Antonio River,

has a mean discharge of 1057 l s-1 before it flows into the

lake, this input is less than 1 %.

At a regional scale, the zone coincides with the fracture

parallel to the mountain range, Los Gigantes, a ground-

water recharge and discharge area, where water outflows as

springs. The specific land where the industrial complex was

built is known as La Mesada; it is part of the Achala

batholith, a formation of fractured granitic rocks which

holds an aquifer that is defined as poor according to its low

permeability: 10-2 to 10-4 m3 day-1 (Instituto Nacional

del Agua (INA) 2001). The drainage system is related to

the structure of the underlying rock (Fig. 3). The region has

a high drainage density and an angular drainage pattern,

governed by fractured and diaclased granites and peg-

matites. Steep natural slopes occur along with a shallow

vegetation cover. The occurrence of severe convective

storms and orographic effect result in a marked tendency to

sudden rising and flooding. Rainfall makes up for the lar-

gest runoff volume during the summer time. During the dry

months, the drainage system is supplied from underground

flows. The River Cajón subbasin has a length of 0.13 km;

in addition the river’s frequency is 2.28 rivers km-2, which

altogether indicate short catchment response time.

Rainwater falls on the mining wastes before infiltrating

into the granitic rocks, thus altering, locally, its chemical

characteristics. As a result, acid mining drainage, charac-

terized by low pH and high concentration of cations and

anions is found in the most impacted sites. Ions come from

both natural occurring minerals that mobilize in contact

Fig. 2 Waste facilities in Los Gigantes mining area
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with the acidic water and chemical products used in the

industrial process such as sulphuric acid and calcium

hydroxide. Previous monitoring data showed that the con-

tamination sources are basically presently contained, with

background values of chemical constituents (uranium,

radon, heavy metals and other ions) downstream from the

confluence of the Cambuche and Cajón Rivers (Fig. 2).

The main concern is with its potential impact on spreading

contamination downstream by eroded waste rock or pol-

luted run-off from the site. The primary goal of the

restoration works will be to keep the long-term leaching

and off-site tailings transport to a minimum (Argentina

2003).

An environmental baseline and radiological study has

recently been completed as the first step of the corre-

sponding restoration plan. This study included periodic

sampling of sediments, surface waters and groundwater for

the physicochemical characterization and assessment of

water quality, along with the development of a bioindicator

based on benthonic diatoms communities. As a result, a

large data set that imposes computational treatment has

been generated. A first challenge arises from the fact that

measurements are multivariate in nature and variables

generally do not follow statistical normal distributions. In

fact, in environmental chemistry it is very frequent to find

lognormal distributions, which are particularly common for

trace elements in natural waters, and also no statistical

modeled distributions at all. Furthermore, when normal

distributions occur it is almost the rule that the assumed

normal distribution models (e.g. a linear regression model

with normal errors) describe fairly well most observations,

but fail to account for some observations that follow no

pattern at all. Such atypical data are called outliers, and

even a single outlier can have a large distorting influence

on a classical statistical method under the assumption of

normality or linearity, leading to results with unaccept-

able low statistical efficiency (Maronna et al. 2006). Before

using classical statistics methods, the data should be

transformed and tested for normality. If this cannot be

provided by data transformation algorithms, non-classic

statistics methods, e.g. robust statistics have to be applied

(Einax et al. 1997).

The robust approach to statistical modeling and data

analysis aims at deriving methods that produce reliable

parameter estimates and associated tests and confidence

intervals, not only when the data follow a given distribu-

tion exactly, but also when this happens only approxi-

mately, and even when there is no statistical distribution at

all. Robust methods fit the bulk of the data correctly: if the

data contain no outliers the robust method gives approxi-

mately the same results as the classical method, while if a

small proportion of outliers are present the robust method

gives approximately the same results as the classical

method applied only to the bulk data. As a consequence of

Fig. 3 El Cajón subbasin

runoff structure. At a regional

scale water flows due east
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better fitting the bulk of the data, robust methods provide a

very reliable method for detecting outliers, even in high-

dimensional multivariate situations (Maronna et al. 2006).

The existence of outliers in environmental databases is a

very important topic since they can have a considerable

influence on the results of the analysis. There exist rigid

definitions of outliers that consider them as ‘‘aberrant

values that might be obtained through a wrong operation,

going from a wrong setting of an instrument to transcrip-

tion errors’’ (Massart et al. 1997), for which they have to be

detected and removed. However, the presence of extreme

values (provided their correct measurement) can also rep-

resent phenomena of interest. In fact, in polluted-site

studies, it is common to find that the data contain some

extremely high values that should not be eliminated

(Berthold and Hand 2003; British Columbia Ministry of

Environment (BCME) 2001).

This work presents the results of five surface water

sampling campaigns developed for the Site Characteriza-

tion Project ‘‘Study of the technical feasibility for the

design and installation of a permeable reactive barrier’’

(Cicerone et al. 2009). The aim of the data analysis is to

study the degree of pollution of watercourses that run

across the mining complex. Sampling sites are classified

according to their degree of pollution, a grouping structure

of these sites according to their physicochemical charac-

teristics is found, variables that are significant to that

grouping are defined. The problem is addressed with both

traditional and robust statistics techniques; additional

chemometrical tools are also applied.

Methodology

Sampling and analytical methods

Samples were collected from 27 sites distributed through-

out Los Gigantes mining complex (Fig. 5 in ‘‘Results’’)

during five sampling campaigns: (1) April 2010, (2) August

2010, (3) November 2010, (4) March 2011, and (5)

November 2011. Sampling sites 3, 4, 5, 10, 13, 14 and 15

locate upstream from the exploitation; sites 16 and 29 are

springs flowing from the still pond area; sites 31, 32 and 34

locate on springs that emerge from the tailings area, sam-

ples taken approximately 200 m (sites 31 and 32) and

400 m (site 34) from the piles; sites 62 and 63 locate on a

creek, 600 and 1300 m downstream from the tailings,

respectively; sites 1 and 28 are situated along the Del Cajón

River within the complex; sites 8, 11, 33 and 73 are situ-

ated along the Cambuche River within the complex; sites

43, 46, 47, 75, 76, RIC and RSA locate along different

water courses 1 km and further from the exploitation.

Sample collection was performed according to EPA

Method 0012.1 and Method 0008.7. Temperature, pH,

electrical conductivity (EC), dissolved oxygen concentra-

tion (DO) and turbidity were measured in the field with a

multiparameter Sension 156 HACH�. ICP optical spec-

trometry was used for the determination of Mn, Be, Cu, Zn,

U, As, B, Pb (EPA Method 200.7); Ca, Mg and Fe were

determined by means of atomic absorption spectrometry

(EPA Method 242.1), chloride and sulfate were measured

with ionic chromatography (EPA Method 300.0).

Database pretreatment

The database that arises from surface waters characteriza-

tion consists of 138 objects (samples) and 17 physico-

chemical measured parameters. Initially, there were

concentration levels below the detection limits; these were

replaced by random numbers that ranged between zero and

the corresponding detection limit. On the other hand the

database contained a total of 45 missing data, distributed

among 13 variables of 29 samples. Incomplete data

matrices are a problem that is repeatedly encountered in

environmental research (Junninen et al. 2004; Mwale et al.

2012). Missing values were filled up by using an artificial

neural network of the class Self Organized Map (Folguera

et al. 2015; Garcı́a-Reiriz et al. 2011; Magallanes et al.

2011; Zupan et al. 1997).

Those variables with lognormal distribution were log10

transformed. Finally, every parameter distribution was

scaled from 0 to 1 using minimax transformation (Zupan

and Gasteiger 1999): e ¼ x�min

max�min
, where min and max

are the minimum and maximum values of the variable,

respectively, x is a value within the range of the variable

and e is the scaled value, which results non dimensional.

Data analysis

First of all, with the objective of summarizing the water

quality data in a single number that expresses the level of

pollution of the sampling sites, the Canadian Council of

Ministers Water Quality Index (WQI) (Canadian Council

of Ministers of the Environment (CCME) 2001) was cal-

culated for each sample. This index compares the measured

data with specified quality objectives, which in our case

were the guidelines for the protection of aquatic life

defined in the national legislation (Argentinean Legislation

1993). According to the index value obtained, water quality

is ranked from excellent to poor (index 100 to 0, respec-

tively). Additionally, the relationships among environ-

mental variables were assessed by means of their

correlation matrix.

On the other hand, the multivariate structure of the data

was studied by means of principal component analysis

Environ Earth Sci (2016) 75:407 Page 5 of 13 407
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(PCA). This is a widespread chemometrical method which

tries to explain the covariance structure of data by a small

number of weighed linear combinations of variables, called

components (Berthold and Hand 2003; Massart et al.

1997). Because PCA is concerned with data reduction, it is

widely used for the analysis of high-dimensional data

which are usually present in environmental analysis. The

first component corresponds to the direction in which the

projected observations have the largest variance. The sec-

ond component corresponds to an orthogonal direction to

the first one that again maximizes the variance of the data

points projected on it. Continuing in this way, the method

produces a number of principal components equal to the

number of variables, which tie in with the eigenvalues and

eigenvectors decomposition of the empirical covariance

matrix. The very first PC’s explain the largest possible

variation in the data and therefore those PC’s account for

most of the information. Unfortunately, the classical vari-

ance (which is being maximized) and the classical

covariance matrix (which is being decomposed) are very

sensitive to anomalous observations. The first components

are often attracted towards outlying points, and may not

capture the variation of the regular observations. Therefore,

data reduction based on classical PCA (CPCA) becomes

unreliable if outliers are present in the data (Hubert et al.

2003). The goal of robust PCA (RPCA) methods is to

obtain principal components that are not heavily influenced

by outliers. The method proposed by Verboven and Hubert

(2005) starts from an n 9 p data matrix X, where n stands

for the number of objects and p for the number of variables.

Robust estimates of the center l and the scatter matrix
P

of X are obtained by the minimum covariance determinant

(MCD) estimator. The MCD method looks for the h([n/2)

(out of n) observations whose classical covariance matrix

has the lowest possible determinant, that is the subset of

observations with the minimum spatial volume, which

implies to leave out the possible outliers. The raw MCD

estimate of location is then the average of these h points,

whereas the raw MCD estimate of scatter is their covari-

ance matrix.

The physicochemical database was analyzed using both

CPCA and RPCA, with a twofold goal: firstly, to find linear

combinations of the original variables that contain most of

the information, displaying the objects structure in the new

PC subspace (score graphic) and analyzing variables con-

tributions (loadings) to that structure; secondly, to flag

extreme values by use of a diagnostic plot. The latter dis-

plays on the horizontal axis the score distance within the

PC1–PC2 plane, SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tTi L

�1ti
p

, where L is the eigen-

values’ matrix and ti is the vector’ scores of the object i. On

the vertical axis, the orthogonal distance to the PC1–PC2

plane OD ¼ xi � l̂i � Pp;kti
�
�

�
� where xi is the vector of

object i, l̂i is the average vector of the data matrix and Pp;k

is the loading matrix (Fig. 4). The algorithm defines two

respective cut-off values beyond which objects are con-

sidered anomalous (Verboven and Hubert 2005).

To better visualize the structure of the data that emerges

from their physicochemical characteristics, samples were

clustered on the bases of their PCA scores, both classical

and robust. The methods used for this purpose where k-

means and silhouette plotting (Berthold and Hand 2003;

Massart et al. 1997). K-means is a non-hierarchical clus-

tering algorithm that treats each observation (sample) as an

object having a neighboring location in the multidimen-

sional space, in our case defined by the principal compo-

nents. Objects are classified into k-clusters obtained

iteratively by use of an optimization technique that mini-

mizes within-cluster Euclidean distance (the distance of

each point to the centroid of the cluster it was assigned to)

or maximizes between-cluster distance (Massart et al.

1997). The number of clusters, k, is defined by the operator.

Next, the silhouette plot can be used to visualize the

resulting clusters and to assess how well-separated they

are. This graphic displays a measure of how close each

point in one cluster is to points in the neighboring clusters,

which is called the silhouette value. This measures ranges

from 1, indicating points that are very distant from

neighboring clusters, through 0, indicating points that are

barely distinguishable from one cluster or another, to -1,

indicating points that are probably assigned to the wrong

Fig. 4 Projection of point ‘a’ from the space defined by the original

variables X1, X2 and X3 on a two-dimensional PC1–PC2 subspace. a–

a0 is the orthogonal distance (OD); o–a0 is the score distance (SD)
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cluster or that belong to more than one cluster (Kaufman

and Rousseeuw 1990).

Results

As it was expected, surface waters physicochemical char-

acteristics varied greatly depending on the sampling sites

positions relative to the pollution sources (Fig. 5; Table 1).

The unaffected surface waters (upstream from the mine)

were characterized by circumneutral pH and low conduc-

tivity (less than 60 lS cm-1), meaning that the cations and

anions background levels are globally low. Samples col-

lected at highly impacted sites, springs flowing from the

still pond area (sites 16 and 29) and the tailings area (sites

31, 32 and 34), showed low pH values, high conductivity,

high concentration of sulphate and significantly enrichment

in Ca, Mg, Fe, and trace elements. In some cases concen-

trations of Mn, Be, Cu, Zn and U appear above the

guidelines defined by the national legislation for the pro-

tection of aquatic life—Mn 100 lg l-1, Be 0.05 lg l-1, Cu

2 lg l-1, Zn 30 lg l-1, U 20 lg l-1 (Argentinean Legis-

lation 1993). As the distance to the pollution sources

increases downstream (sites 28, 1, 8, 33, 11, 73, situated on

the rivers downstream from the springs confluences) pH

rises, while EC as well as concentrations of sulphate,

chloride and metals decrease (probably due to dilution

effects, precipitation of metals as oxides and atmospheric

carbon dioxide equilibrium). Concentrations levels close to

the background values and within the national guidelines

are found in the sites sampled right out of the exploitation,

that is, site 43 in the case of the Del Cajón River (1000 m

from the exploitation), and site 46 in the case of the

Cambuche River (4000 m from the exploitation).

Table 2 shows the correlation matrix between physico-

chemical parameters. In general, cations are correlated

positively among themselves and negatively with pH, due

to the fact that acidic conditions solubilize minerals such as

potassium feldespate (pertitic microcline), sodium plagio-

clase, muscovite, oxides (quartz, zircon, rutile) and salts

(apatite) nonspecifically. Ca and Mg exhibit the highest

correlation (0.91), both cations have a large correlation

coefficient with sulphate as well (0.72 and 0.70, respec-

tively) which can be explained in terms of the high contents

of Ca and Mg sulphate in the dam and the piles. These

compounds arose from the neutralization of sulphuric acid

with calcium hydroxides (with significant contents of

magnesium).

In the case of CPCA the capture of variance for the first

three components is 59, 13 and 7 %, respectively (accu-

mulated variance 79 %). For RPCA the capture of variance

is slightly higher: 62, 16 and 6 % (accumulated variance

84 %).

The RPCA analysis reveals the existence of four groups

of samples (Fig. 6): group 1 consists of samples that cor-

respond to the most impacted sites, average WQI = 58.1;

group 2 comprises samples from sites with an intermediate

level of impact, average WQI = 80.5; group 3 corresponds

to samples from the least impacted sites, average

WQI = 98.4; group 4 includes most samples of the forth

campaign, except for those that were collected at the most

impacted sites thus assigned to group 1. Table 3 shows the

loadings of the first three PC’s: cations (except As) and

anions concentrations have positive loadings to PC1, while

pH and DO have negative loadings.

Since mining impact implies an increase in the con-

centrations of ions in water bodies as well as a decrease in

pH it can be concluded that sites separate along PC1

Fig. 5 Water sampling sites in

Los Gigantes. The grouping that

result from PCA analysis,

according to their level of

impact, is mapped here
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Table 1 Physicochemical parameters of the surface water samples

Site pH EC (lS cm-1) DO (%) Turbidity NTU Ca (ppm) Mg (ppm) Cl (ppm) Sulphate (ppm)

1 7.1 ± 0.2 76 ± 23 78 ± 6 0.6 ± 0.2 6.1 ± 3.3 1.0 ± 0.3 1.0 ± 0.7 15.9 ± 5.1

3 6.3 ± 0.3 60 ± 13 52 ± 13 2.1 ± 0.3 4.7 ± 2.1 0.8 ± 0.3 0.4 ± 0.2 2.7 ± 4.7

4 7.5 ± 0.6 34 ± 9 82 ± 10 0.3 ± 0.1 1.3 ± 0.8 0.2 ± 0.2 0.4 ± 0.4 2.7 ± 2.5

5 7.5 ± 0.4 37 ± 10 78 ± 14 0.5 ± 0.2 2.1 ± 1.1 0.4 ± 0.1 0.8 ± 0.8 2.7 ± 2.7

8 6.1 ± 0.3 296 ± 52 76 ± 5 1.3 ± 0.5 31.3 ± 7.5 3.7 ± 0.9 0.8 ± 0.5 111.0 ± 12.5

10 7.1 ± 0.8 48 ± 7 85 ± 4 0.4 ± 0.2 3.0 ± 1.3 0.8 ± 0.5 0.6 ± 0.6 2.7 ± 4.0

11 3.7 ± 0.5 433 ± 172 78 ± 5 0.7 ± 0.4 35.3 ± 14.1 5.9 ± 2.8 0.9 ± 0.7 295.8 ± 309.5

13 7.2 ± 0.3 55 ± 24 83 ± 5 0.4 ± 0.2 4.1 ± 4.3 0.7 ± 0.4 0.6 ± 0.5 6.1 ± 7.8

14 7.3 ± 0.6 37 ± 9 79 ± 7 0.4 ± 0.1 1.0 ± 1.6 0.3 ± 0.1 0.9 ± 0.7 1.1 ± 0.3

15 7.8 ± 0.0 40 ± 0 92 ± 0 0.7 ± 0.0 2.9 ± 0.0 0.4 ± 0.0 0.8 ± 0.0 6.0 ± 0.0

16 4.7 ± 1.0 932 ± 349 81 ± 6 0.4 ± 0.1 109.0 ± 86.3 15.2 ± 5.1 4.2 ± 3.0 454.5 ± 190.2

28 7.7 ± 0.5 58 ± 19 86 ± 9 0.4 ± 0.1 4.7 ± 2.6 0.7 ± 0.2 0.8 ± 0.6 5.5 ± 4.0

29 3.7 ± 0.2 1686 ± 448 70 ± 8 0.4 ± 0.1 250.0 ± 89.4 39.5 ± 11.5 11.4 ± 3.7 855.3 ± 200.5

31 3.3 ± 0.1 2527 ± 725 62 ± 18 1.0 ± 1.0 204.0 ± 60.9 48.3 ± 19.3 3.8 ± 2.8 1055.3 ± 527.7

32 4.3 ± 0.2 812 ± 125 76 ± 3 0.3 ± 0.2 114.8 ± 30.8 11.4 ± 3.2 1.5 ± 0.8 387.8 ± 97.7

33 3.6 ± 0.7 644 ± 254 75 ± 6 0.3 ± 0.1 42.8 ± 16.2 23.1 ± 38.1 1.0 ± 0.7 239.5 ± 83.0

34 4.9 ± 0.2 279 ± 75 69 ± 9 0.8 ± 0.6 17.0 ± 10.7 1.9 ± 1.0 0.5 ± 0.5 113.5 ± 34.1

43 7.2 ± 0.5 88 ± 21 83 ± 2 0.5 ± 0.1 6.9 ± 4.4 1.1 ± 0.4 1.2 ± 0.2 20.0 ± 5.4

46 6.7 ± 0.5 64 ± 16 78 ± 3 0.4 ± 0.2 4.9 ± 2.6 0.7 ± 0.2 0.7 ± 0.6 7.1 ± 5.1

47 6.9 ± 0.9 73 ± 29 84 ± 4 0.4 ± 0.1 6.5 ± 4.1 1.7 ± 1.1 0.9 ± 0.7 13.1 ± 6.7

62 6.2 ± 0.0 390 ± 107 71 ± 14 1.3 ± 0.7 51.2 ± 38.9 4.5 ± 3.1 1.5 ± 1.1 156.0 ± 46.5

63 7.5 ± 0.8 127 ± 27 94 ± 7 0.4 ± 0.1 13.1 ± 5.9 1.6 ± 0.5 0.5 ± 0.3 37.6 ± 12.7

73 6.3 ± 0.5 132 ± 22 81 ± 3 3.1 ± 0.3 10.2 ± 6.3 1.7 ± 1.0 0.7 ± 0.6 40.2 ± 8.3

75 6.8 ± 0.3 66 ± 32 78 ± 4 0.4 ± 0.1 5.7 ± 2.7 1.0 ± 0.1 1.1 ± 0.4 12.0 ± 9.1

76 6.6 ± 0.6 55 ± 14 86 ± 5 1.0 ± 0.5 5.1 ± 2.9 1.9 ± 2.1 0.9 ± 0.7 3.2 ± 4.5

RIC 7.4 ± 0.5 90 ± 44 87 ± 18 0.9 ± 0.2 6.2 ± 4.2 1.4 ± 1.1 2.4 ± 1.7 4.3 ± 2.7

RSA 7.5 ± 1.1 77 ± 66 93 ± 22 2.6 ± 3.0 8.7 ± 6.4 2.2 ± 1.6 2.7 ± 1.7 4.2 ± 2.8

11b 6.1 ± 0.5 29 ± 6 69 ± 7 0.5 ± 0.1 9.5 ± 17.5 1.4 ± 2.3 0.8 ± 1.2 1.5 ± 0.8

Fe (ppb) Mn (ppb) Be (ppb) Cu (ppb) Zn (ppb) U (ppb) As (ppb) B (ppb) Pb (ppb) WQI

33 ± 38 62 ± 10 0.8 ± 0.1 0.5 ± 0.2 2.4 ± 0.6 0.7 ± 0.0 0.7 ± 0.0 1.91 ± 0.32 0.02 ± 0.01 100

169 ± 116 142 ± 176 0.1 ± 0.1 0.6 ± 0.2 0.9 ± 0.1 3.8 ± 1.0 0.4 ± 0.0 8.99 ± 3.45 1.23 ± 1.73 94

19 ± 16 6 ± 1 0.1 ± 0.0 0.3 ± 0.1 0.4 ± 0.2 0.6 ± 0.2 0.5 ± 0.1 7.29 ± 4.39 0.23 ± 0.21 99

23 ± 17 7 ± 5 0.1 ± 0.0 0.2 ± 0.1 0.2 ± 0.1 0.8 ± 0.2 0.5 ± 0.3 5.13 ± 5.39 0.04 ± 0.01 98

81 ± 142 243 ± 220 3.3 ± 0.5 0.3 ± 0.1 19.3 ± 7.4 4.0 ± 2.8 0.3 ± 0.1 6.25 ± 4.27 0.33 ± 0.21 86

10 ± 12 6 ± 3 0.1 ± 0.0 0.2 ± 0.0 0.6 ± 0.2 0.8 ± 0.3 0.4 ± 0.1 7.50 ± 3.89 0.17 ± 0.14 100

23 ± 20 1110 ± 551 11.3 ± 3.6 1.8 ± 1.0 49.3 ± 19.1 21.5 ± 7.8 0.6 ± 0.2 2.24 ± 1.27 0.90 ± 0.10 65

47 ± 69 8 ± 5 0.2 ± 0.2 0.4 ± 0.0 0.4 ± 0.4 0.4 ± 0.2 0.4 ± 0.1 4.89 ± 3.13 0.11 ± 0.09 100

29.0 ± 21.5 10.0 ± 11.4 0.09 ± 0.01 0.40 ± 0.35 1.0 ± 1.4 0.8 ± 0.3 0.6 ± 0.2 8.3 ± 1.5 0.20 ± 0.32 98

42 ± 0 8 ± 0 0.0 ± 0.0 0.6 ± 0.0 1.0 ± 0.0 0.2 ± 0.0 0.6 ± 0.0 4.31 ± 0.00 0.12 ± 0.00 97

38 ± 14 1790 ± 764 12.8 ± 0.4 2.0 ± 1.4 53.0 ± 18.4 2.9 ± 3.0 0.5 ± 0.0 10.50 ± 0.71 0.05 ± 0.00 71

24 ± 27 14 ± 13 0.2 ± 0.1 0.2 ± 0.1 0.4 ± 0.4 0.7 ± 0.1 0.6 ± 0.2 1.88 ± 1.76 0.29 ± 0.22 92

67 ± 48 4387 ± 1461 36.0 ± 6.7 2.4 ± 0.5 61.0 ± 3.4 7.8 ± 1.7 3.2 ± 5.1 5.53 ± 4.19 0.95 ± 0.05 50

170 ± 160 11,549 ± 13,013 87.8 ± 11.1 13.5 ± 1.3 421.0 ± 29.2 128.5 ± 47.8 0.8 ± 0.2 6.12 ± 5.28 2.99 ± 0.01 38

34 ± 31 1621 ± 1204 16.5 ± 3.9 1.0 ± 0.8 83.3 ± 11.8 35.8 ± 12.5 0.4 ± 0.1 6.42 ± 6.13 0.41 ± 0.02 61

40 ± 43 1606 ± 1581 17.8 ± 5.3 2.8 ± 1.0 83.3 ± 22.2 33.3 ± 11.2 0.5 ± 0.1 7.38 ± 4.14 1.50 ± 0.50 64

22 ± 19 489 ± 381 5.4 ± 3.8 1.9 ± 2.1 23.5 ± 16.6 5.0 ± 6.0 0.3 ± 0.1 5.03 ± 3.37 0.10 ± 0.10 73

19.0 ± 10.4 41.8 ± 22.4 0.60 ± 0.37 0.40 ± 0.17 2.0 ± 1.8 0.6 ± 0.1 0.4 ± 0.2 4.3 ± 3.6 0.10 ± 0.08 90
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according to their degree of pollution. Thus, sites with a

minimum impact show low scores on PC1, while highly

positive scores along PC1 are indicative of mining pollu-

tion. Group 4 appears as a whole different group, separated

from group 3 along PC2. The former group comprises

samples taking during the fourth campaign, which was

conducted during a period of unusually high rainfall. The

exceptional weather conditions might account for the dif-

ferences among the variables that make the greatest con-

tributions to PC2, since these unusual rainfalls might have

occasioned a decrease in some compounds concentration

levels as a result of dilution as well as a more significant

increase in other ions due to mobilization from mining

wastes.

As regards CPCA, samples scores lead to the similar

clustering as RPCA. However, there exists a difference in

the parameters loadings on the PC’s (Table 3). PC1 and

PC2 are mostly characterized by the same variables in both

CPCA and RPCA, but their order is different. In CPCA the

loading for pH on PC1 is in fourth place, while as a result

of RPCA this parameter holds the seventh place. Arsenic

and turbidity make a similar contribution to PC2 in CPCA,

while in the robust version As loading is one order larger

compared to that of turbidity. Cations loadings order for

the first two principal components differs as well. In the

case of PC3 parameters make their contributions in the

same order for both PCA methods.

The partitioning technique applied to PCA scores

(Fig. 7) confirms PCA results: sites are grouped in four

clusters: silhouette 1 comprises samples from sites with an

intermediate level of impact (group 2 in Fig. 6), silhouette

2 includes most samples of the forth campaign, except for

those collected at the most impacted sites (group 4 in

Fig. 6), silhouette 3 corresponds to the most impacted sites

(group 1 in Fig. 6) and silhouette 4 comprises the least

impacted sites (group 3 in Fig. 6). Both CPCA and RPCA

throw identical results as regards sites assignment to each

silhouette although there exists a slight difference in the

sites silhouette values, these being higher in the robust

version.

The diagnostic plot obtained from RPCA (Fig. 8) spots

as outliers two types of samples: first, those taken at highly

impacted sites (mean WQI = 52); a second group of

samples consisting on samples with WQI = 100 and

samples with extreme values in one or two parameters but

below the guidelines in the rest. Table 4 shows the average

values of the physicochemical parameters measured in the

bulk of the data (data without outliers), and, separately, in

the two groups of outliers. The latter locate clearly far

away from the majority of the data, i.e. their physico-

chemical parameters means are different. If the corre-

sponding classical statistics were calculated including

them, the results would be inaccurate. This is the reason

why the classical method (Fig. 9) is less efficient in the

detection of extreme values: the number of sites labeled as

such is lower than those detected with the robust technique.

In Fig. 5 the groups of sites obtained with PCA are

mapped on the mining area. This image reveals the rela-

tionship between the location of the sites relative to the

waste facilities and their level of mining impact. The group

of the most impacted sites comprises the area close to the

piles of solid wastes and the still ponds; the group of sites

with an intermediate impact locate either further from the

contamination sources or enjoy the dilution effect of clean

incoming streams; the group of least impacted sites cor-

respond to two different zones: the area upstream from the

piles and ponds, and the area downstream of these where

the rivers recover naturally.

Table 1 continued

Fe (ppb) Mn (ppb) Be (ppb) Cu (ppb) Zn (ppb) U (ppb) As (ppb) B (ppb) Pb (ppb) WQI

32 ± 24 5 ± 5 0.2 ± 0.1 0.5 ± 0.2 1.1 ± 1.3 0.9 ± 0.8 0.3 ± 0.3 5.05 ± 1.47 0.12 ± 0.08 91

24 ± 18 7 ± 2 0.3 ± 0.1 0.4 ± 0.1 0.6 ± 0.3 1.0 ± 0.0 0.4 ± 0.1 5.13 ± 3.04 0.41 ± 0.51 92

124 ± 93 93 ± 136 0.5 ± 0.2 0.3 ± 0.1 2.4 ± 2.4 1.3 ± 0.6 0.5 ± 0.0 8.41 ± 3.40 0.09 ± 0.02 91

27 ± 25 6 ± 3 0.1 ± 0.1 0.5 ± 0.2 1.0 ± 0.7 1.0 ± 0.0 0.6 ± 0.2 0.96 ± 0.92 0.53 ± 0.46 93

14 ± 16 283 ± 198 1.1 ± 0.6 0.4 ± 0.1 9.8 ± 3.6 2.4 ± 0.5 0.3 ± 0.1 7.54 ± 3.98 0.46 ± 0.33 86

10.0 ± 11.6 10.0 ± 5.7 0.30 ± 0.15 0.30 ± 0.30 1.0 ± 0.7 0.4 ± 0.2 0.6 ± 0.2 11.0 ± 7.2 0.10 ± 0.19 90

21 ± 24 11 ± 6 0.1 ± 0.1 0.6 ± 0.3 0.8 ± 0.2 0.6 ± 0.3 0.8 ± 0.2 10.55 ± 1.22 0.30 ± 0.30 99

14 ± 22 20 ± 23 0.1 ± 0.0 0.7 ± 0.1 0.5 ± 0.3 0.8 ± 0.2 0.8 ± 0.1 10.53 ± 3.37 0.15 ± 0.14 98

17 ± 24 11 ± 7 0.1 ± 0.0 0.7 ± 0.1 0.5 ± 0.1 0.9 ± 0.2 0.9 ± 0.0 15.50 ± 2.38 0.43 ± 0.31 99

44.0 ± 10.4 6.8 ± 4.2 0.04 ± 0.03 0.30 ± 0.01 1.9 ± 1.5 0.2 ± 0.2 0.6 ± 0.2 3.4 ± 2.3 0.55 ± 0.59 89

For every site the median and MADN calculated on the basis of the five campaigns are shown
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Conclusions

Restoration of abandoned uranium mines in Argentina has

been taking place since 2005. Environmental monitoring

plans imply handling large multivariate, non-normal dis-

tributed, outliers carrying data sets. This poses a compu-

tational challenge that must be addressed by use of proper

chemometrical methods.

The analysis of surface water samples from the mining

and milling complex Los Gigantes shows that there still

exist pollution sources that need to be correctly addressed.

Surface streams close to the tailings and the pond exhibit

lower pH and higher concentration of anions and metals

compared to upstream watercourses. All physicochemical

parameters recover gradually downstream from the com-

plex, reaching levels close to background and complying

with provincial and national regulations at the sampling

sites located outside of the mining complex proving thus

that pollution is locally constrained.

CPCA grouped objects in four clusters according to their

level of mining pollution. The same result was obtained

with RPCA, and confirmed by k-means clustering and sil-

houette plotting. In both CPCA and RPCA the first PC,

separated samples according to their general level of

Fig. 6 Robust PCA scores of water samples

Table 3 Parameters loadings to

the first three PC’s in RPCA and

CPCA

RPCA loadings CPCA loadings

PC1 PC2 PC3 PC1 PC2 PC3

Be 0.381 0.053 -0.222 CE 0.375 -0.039 -0.209

CE 0.369 -0.043 -0.111 Be 0.374 0.036 -0.227

Mn 0.352 0.021 0.411 Mn 0.338 -0.056 0.436

Mg 0.339 -0.068 0.043 pH -0.330 -0.167 0.222

Ca 0.324 -0.156 0.116 Zn 0.328 0.079 -0.053

Zn 0.317 0.093 -0.123 Mg 0.325 -0.148 0.120

pH -0.289 -0.179 0.327 Ca 0.300 -0.218 0.135

Sulphate 0.264 -0.128 -0.099 Sulphate 0.252 -0.112 -0.200

U 0.238 0.108 -0.065 U 0.250 0.118 -0.058

Cu 0.166 0.065 0.036 Cu 0.174 0.066 0.064

Chloride 0.160 -0.363 0.214 Chloride 0.123 -0.374 0.113

Fe 0.093 0.271 0.725 Pb 0.102 0.693 0.012

As -0.037 0.404 0.054 Fe 0.098 0.221 0.687

Pb 0.035 0.722 -0.069 DO -0.018 0.003 -0.036

DO -0.023 -0.008 0.013 Turbidity -0.018 -0.061 0.221

Turbidity 0.005 -0.046 0.142 As -0.017 0.432 -0.009

B 0.000 -0.025 0.131 B 0.006 -0.032 0.220

Fig. 7 Silhouette plot. Each silhouette corresponds to a group of sites

with a specific impact level
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pollution. Along the second PC it was possible to identify a

complete sampling campaign performed under exceptional

weather conditions. The variables loadings order and

magnitudes differed if they were calculated with CPCA or

RPCA. Mapping the four groups allowed seeing the spatial

distribution of zones with a different degree of mining

impact. Samples with extreme values were detected by

means of a diagnostic plot in the classical and robust ver-

sions; in the robust plot a larger number of outliers were

spotted. These results show that the classical definition of

outliers, that considers them as aberrant values that have to

be removed, might not be applicable to environmental

problems because they can actually imply an important

piece of information.

So far it has been shown that in certain cases CPCA and

RPCA are likely to throw dissimilar results, which in the

case of environmental management might lead to different

decision making. Assessing which method is more efficient

for the purposes of the study becomes then necessary. In

our case, identification of parameters that are able to sep-

arate samples according to their levels of impact is of high

importance for the monitoring plan; so is the recognition of

pristine and extremely polluted sites. It has been pointed

out that the presence of extreme values in a population

attracts statistic parameters that are calculated upon nor-

mality assumption towards those outliers, thus leading to

unreliable results. Since ROBPCA does not include

extreme values in the variance and covariance estimation,

their distorting influence is averted, thus this method is

preferred over CPCA.

After an exploratory campaign, robust statistics proved

to be a reliable tool for the detection of sampling sites of

interest for the monitoring plan; highly polluted sites were

spotted as well as pristine sites. Identification of the former

is crucial to environmental management since it allows

planning the resources assignment where they are needed,

including the level or goals to be achieved by the restitu-

tion/remediation/restoration actions. Recognition of clean

sites might be useful for the definition of quality targets in a

restoration process. Finally, robust techniques are suit-

able for finding the most contributing physicochemical

parameters, which are also a key step for directing rea-

sonable efforts in the monitoring plan and for identification

of potential sources of contamination.

Fig. 8 Robust diagnostic plot. Objects beyond the horizontal and/or

vertical lines are considered outliers. Numbers before hyphens

indicate sampling sites, numbers after hyphens indicate sampling

campaign

Table 4 Means of physicochemical parameters of the bulk of the

data, all the outliers, outliers of most impacted sites (A) and outliers

of least impacted sites (B)

Bulk Outliers Outliers A Outliers B

pH 6.32 5.02 3.83 7.05

CE 219.84 1050.32 1612.21 87.09

DO 78.56 76.46 73.28 82.19

Turbidity 0.78 2.29 0.53 4.91

Ca 22.92 107.80 163.91 11.61

Mg 3.96 26.33 40.82 1.49

Chloride 1.55 4.46 6.31 1.29

Sulphate 89.04 532.08 833.67 15.09

Fe 35.65 151.76 178.75 97.78

Mn 524.58 7550.93 8937.39 149.62

Be 3.71 30.70 47.04 0.76

Cu 0.95 7.91 7.75 8.14

Zn 18.60 144.78 229.31 11.94

U 5.32 75.93 119.29 1.59

As 1.42 1.28 1.72 0.51

B 8.17 8.07 8.81 6.59

Pb 2.25 2.14 3.19 0.34

Fig. 9 Classic diagnostic plot. Objects beyond the horizontal and/or

vertical lines are considered outliers. Numbers before hyphens

indicate sampling sites, numbers after hyphens indicate sampling

campaign
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