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Abstract This paper presents a method of mapping and

monitoring ecological quality and environmental change

using an ecological evaluation model (EEM), which is

based on remote sensing data of the Pearl River Delta

region in Guangdong, China. Five geographical indices

were selected: Impervious Surface, Normalized Difference

Vegetation Index, Land Surface Temperature, and Green-

ness and Brightness generated from the Tasseled Cap

Transformation. These geographical indices are of eco-

logical significance and they were used as variables to

build the EEM through factor analysis. In addition, land

use maps derived from remote sensing data were overlaid

on these five index maps to analyze the effects of land use

change on ecological status. Based on the EEM values, five

levels of ecological zones were identified using a standard-

deviation segmenting method. The results showed that the

areas of the first and second levels decreased significantly,

those of the third and fourth levels increased, and the area

of the fifth level remained unchanged. It was established

that the remote sensing method is practical for the analysis

of ecological change, thus this work could be considered a

case study for other ecological monitoring research.

Keywords Landscape ecology � Remote sensing �
Indices � Model � Change

Introduction

Studies of landscape ecology permit investigation of the

reciprocal interactions between ecological patterns and

processes across a range of scales (Arvid and Andreas

2013). Population growth and human activities have

increasingly affected much of the terrestrial biosphere and

atmosphere in both intensity and extent, causing loss of

habitat, degradation of ecosystem functions, and a reduction

in value of ecosystem services for humans (Alcamo et al.

2005; Foley et al. 2005; Worley et al. 2008). Ecologists

have improved their understanding of ecosystem processes,

including those factors that influence the distribution of

species and control extinction rates; however, the need for

timely and accurate detection and prediction of changes in

the natural environment has never been greater. Unfortu-

nately, ecological data based on field surveys are unsuit-

able for direct application in a regional or global context,

and models derived purely from local data are unlikely to be

useful for predicting the global consequences of human

activities. Therefore, ecologists and conservation biologists

have turned to remote sensing, which can provide abundant

data on the atmosphere and land surface at various spatial

and temporal scales. Advances in remote sensing and geo-

graphical information system (GIS) technology have

equipped ecologists with the tools to rapidly identify envi-

ronmental change and to predict the consequences of such

changes over time (Kerr and Ostrovsky 2003; Aldwaik and
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Pontius 2012; Huang et al. 2012). In comparison with other

surveying techniques, remote sensing is unique in its

capability to record large-scale land surface information

with complete coverage, which can be compared with data

from field samples (Groom et al. 2006; Inghe 2001).

Three types of remote sensing technique used in eco-

logical and conservation research were described by Kerr

and Ostrovsky (2003): the derivation of land cover data,

integration of remote-sensing-derived parameters for

ecosystem studies, and monitoring of changes in climate

and habitat. The development of remote sensing techniques

has meant that satellite remote sensing has become widely

used for the derivation of the ecological and biophysical

parameters used in ecological applications, such as moni-

toring vegetation cover change, urbanization, and deserti-

fication (Pontius et al. 2004, 2011; Fan et al. 2009).

Comprehensive reviews have been conducted regarding the

application of various types of satellite remote sensing data

and techniques in studies of ecological status (e.g., Wang

et al. 2010). Such applications have usually focused on one

aspect of ecological status, and they have extracted infor-

mation and analyzed the change of a single ecological

factor, such as monitoring land cover change, and change

analysis of wetlands and land surface temperature (LST)

(Zhang et al. 2007; Bradley et al. 2009; Singh et al. 2014).

Another aspect concerns relationships or impact analysis

between ecological factors, particularly land use with other

factors. Spatial patterns of land use have significant effects

on the ecological processes, environment, and sustainable

development within their boundaries and beyond (Luck

and Wu 2002; Weng 2002; Jonathan et al. 2005). There-

fore, it is necessary to investigate the relationships between

spatial patterns of land use and urbanization within the

same ecosystem to obtain a better understanding of the

ecological processes (Luck and Wu 2002; Turner 2005).

The correlation between land use and LST has also been

studied and discussed in recent years (Liu and Weng 2008;

Zhang et al. 2007). Li et al. (2011) investigated the effects

and relationships of different urban land use features and

their spatial patterns in relation to the urban heat island by

analyzing the spatial correlation of LST and the Normal-

ized Difference Vegetation Index (NDVI) in Shanghai.

Improvements in techniques for retrieving various eco-

logical data from remote sensing images mean that eco-

logical evaluations based on such data will become an

increasingly important research area. Carvalho-Santos

et al. (2013) described a method for the evaluation of

hydrological ecosystem services based on remote sensing.

De Keersmaecker (2014, 2015) provided a framework to

assess the reliability of ecosystem stability metrics in terms

of the function of data characteristics. Remote sensing has

become a method commonly used for ecological and

conservation research because of the richness of the data

and the variety of spatial and temporal coverage, especially

with regard to larger spatial scales.

The objective of this study was to associate geographical

indices, such as Impervious Surface (IS), NDVI, LST,

Greenness, and Brightness, with ecological change using

remote sensing imagery, and to understand how changes

reflected in the geographical indices affect the ecological

quality of a region. The intention was to explain the eco-

logical and environmental changes of the Pearl River Delta

(PRD) region based on five geographical indices, to design

an evaluation model to map ecological quality and its

temporal change.

Study area

The PRD (shaded area in Fig. 1; 22–23.6�N,
112.6–114.4�E) is located in southern China, adjacent to

Hong Kong and Macao. Overall, 12 cities/counties are

associated with this area: Shenzhen, Bao’an, Dongguan,

Guangzhou, Huadu, Zengcheng, Panyu, Chancheng, Nan-

hai, Shunde, Zhongshan, and Zhuhai. The delta, which

encompasses an area of 21,388 km2, has a subtropical cli-

mate. The average annual temperature is 21–23 �C, and the

average annual precipitation is 1600–2600 mm (Fan et al.

2008). Since the reform and opening up in the late 1970s,

the PRD has become one of the largest urbanized regions in

the world, and it is one of the leading economic regions and

the most important manufacturing center in China.

Data preparation

Four Landsat-5 thematic mapper (TM) images from

December 22, 1998 and December 1, 2008 were acquired

for two adjacent scenes in each year. The path and row

numbers of the scenes used in this research were 122/044

and 122/045. All the images were both rectified and unified

based on the Transverse Mercator projection. Systematic

geometric and radiometric corrections were performed prior

to delivery by the Earth Resources Observation Systems

Data Center, United States Geological Survey. The TM

images from 2008 were used as references and the TM

images from 1998 were then registered and rectified to the

reference images using ‘‘image-to-image’’ methods by an

image re-sampling algorithm based on the nearest neighbor

technique. Image registration accuracy was measured by

root mean square error with values\ 0.5 pixels.

Collection of land use data

A supervised maximum likelihood classification method

was used for classifying the land use of the images from

1998 and 2008. The maximum likelihood algorithm is one

of the most commonly used methods in the classification of
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remote sensing imagery, which has been used, developed,

and recommended by a number of authors (e.g., Srivastava

et al. 2012, 2014a). Detailed equations for the method can

be found in the work of Asmala and Shaun (2012). This

study adopted nine land use classifications: Forest, Urban,

Orchard, Development, Paddy, Farmland, Water, Dike-

Pond, and Grassland. The method calculates the probability

that a pixel belongs to each of the candidate land use

categories and each pixel is assigned to a class based on the

maximum probability. To obtain a better selection of

training samples, field surveys were conducted in the areas

covered by the remote sensing images, and photographs

reflecting the characteristics of the typical land use types

are presented in Fig. 2. According to the report based on

the Jeffries–Matusita distance, calculated using the Envi-

ronment for Visualizing Images software (Table 1), the

training samples had good separability between each other.

The Jeffries–Matusita distance, which has a value between

0 and 2, is commonly used to reflect the separability of two

class signatures: values close to 2 indicate a high degree of

separability, which are acceptable when the value is[1.8

(Thomas et al. 1987, 2002).

Figure 3 shows the classification results for the images

from 1998 and 2008. The accuracy assessment was

performed using about 200 randomly generated sample

points for verification via visual interpretation and statis-

tical analysis. The overall accuracies of the land use clas-

sifications from 1998 and 2008 approach 82.6 and 80.5 %

(with Kappa values of 0.88 and 0.82), respectively

(Table 2). The overall accuracy represents the percentage

of correctly classified samples, calculated as the ratio of the

total number of correctly classified pixels to the total

number of pixels for all classes. The Kappa coefficient is

another measure of classification accuracy, which has been

described in detail by Asmala and Shaun (2012).

Retrieval of land surface temperature (LST)

The following equation, called the mono-window algo-

rithm, can be used to retrieve LST from Band 6 of Landsat-

5 TM data (Qin et al. 2001):

Ts ¼
a6ð1�C6�D6Þþ ½b6ð1�C6�D6ÞþC6þD6�T6�D6Ta

C6

;

ð1Þ

where Ts, T6, and Ta are the retrieved LST, brightness

temperature computed from Band 6 of the TM, and

effective mean atmospheric temperature, respectively,

Fig. 1 Pearl River Delta study area
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a6 = –67.355351 and b6 = 0.458606 are constants of the

algorithm when the LST is between 0 and 70 �C, and C6

and D6 can be calculated using the equations below:

C6 ¼ e6s6; ð2Þ
D6 ¼ 1�s6ð Þ 1þ 1�e6ð Þ � s6½ �; ð3Þ

where e6 stands for the ground surface emissivity and s6
represents the atmospheric transmittance. According to the

equations above, only three parameters are needed. The

effective mean atmospheric temperature (Ta) was calcu-

lated using the near-surface air temperature, acquired from

local weather stations. The effective mean atmospheric

transmittance (s6) was calculated using the equations

described in Qin et al. (2001) or Srivastava et al. (2014b)

with water vapor as the parameter. The water vapor of the

study area was estimated to be between 0.3 and 0.4 g/cm2

according to weather station data. The ground surface

emissivity (e6) was prepared using software developed by

Fig. 2 Typical land use types

and associated characteristic

photographs
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Zhang et al. (2006). Figure 4 shows the LST for 1998 and

2008, for which the accuracy analysis was performed using

the same method as in Zhang and Wang (2008).

Impervious surface (IS)

Impervious surface (IS) percentages for 1998 and 2008

were extracted from the TM images using the Linear

Spectral Mixture Analysis (LSMA) method. This method

assumes that the spectrum measured by a sensor is a linear

combination of the spectra of all components within the

pixel and that the spectral proportions of the components

represent the percentages of the surface features. This

method is widely used in remote sensing to estimate the

fractional abundance of material present within an image

pixel (Roberts et al. 1998; Daniel and Chein-I 2001).

Because of the complex composition of urban landscapes

and relatively coarse resolution of Landsat TM images, one

pixel in a TM image can contain more than one type of

surface feature. Thus, the LSMA method was adopted here

for ‘‘un-mixing’’ the pixels. The LSMA equation can be

expressed as:

Ri ¼
Xn

k¼1

fkRik þ ERi; ð4Þ

where i stands for the spectral band number, k represents

the end-member number, Ri stands for the spectral reflec-

tance of band i that consists of several end-members, fk
represents the percentage of end-member k contained

within the pixel, Rik stands for the known spectral reflec-

tance of end-member k within the pixel of band i, and ERi

represents the error of band i. This study used a constrained

least squares solution that assumed both the following

conditions were satisfied:

Table 1 Separability matrix report of training samples calculated using environment for visualizing images software for images from 1998 and

2008

Water Urban Farmland Grassland Forest Orchard Development Dike-Pond Paddy

Water

(1998) 1.9999 2.0000 2.0000 1.9999 2.0000 1.9999 1.8911 2.0000

(2008) 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 1.9221 1.9980

Urban

(1998) 1.9999 1.9815 1.8362 1.9995 1.9991 1.9779 1.9567 1.9974

(2008) 2.0000 1.9997 1.9870 1.9999 1.9998 1.9381 1.9883 1.9999

Farmland

(1998) 2.0000 1.9815 1.9606 1.9815 1.8626 1.9068 1.9921 1.9606

(2008) 2.0000 1.9997 1.9068 1.9997 1.8946 1.9999 1.9997 1.9986

Grassland

(1998) 2.0000 1.8362 1.9606 1.8362 1.8522 1.9999 1.9956 1.8143

(2008) 2.0000 1.9870 1.9068 1.8870 1.8902 2.0000 1.9999 1.8841

Forest

(1998) 1.9999 1.9995 1.9815 1.8362 1.8069 1.8362 1.9999 1.9655

(2008) 2.0000 1.9999 1.9997 1.8870 1.8759 1.9870 1.9999 1.9942

Orchard

(1998) 2.0000 1.9991 1.8626 1.8522 1.8069 1.9987 1.9858 1.8203

(2008) 2.0000 1.9998 1.8946 1.8902 1.8759 2.0000 1.9995 1.8277

Development

(1998) 1.9999 1.9779 1.9068 1.9999 1.8362 1.9987 1.9957 1.9993

(2008) 2.0000 1.9381 1.9999 2.0000 1.9870 2.0000 2.0000 2.0000

Dike-Pond

(1998) 1.8911 1.9567 1.9921 1.9956 1.9999 1.9858 1.9957 1.9362

(2008) 1.9221 1.9883 1.9997 1.9999 1.9999 1.9995 2.0000 1.9570

Paddy

(1998) 2.0000 1.9974 1.9606 1.8143 1.9655 1.8203 1.9993 1.9362

(2008) 1.9980 1.9999 1.9986 1.8841 1.9942 1.8277 2.0000 1.9570
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Ri ¼
Xn

k¼1

fkRik þ ERi; ð5Þ

0� fk � 1: ð6Þ

The 1998 and 2008 IS images from the PRD are shown

in Fig. 5. High-resolution images from Google Earth’s

Historical Imagery for 1998 and 2008 were used to eval-

uate the IS accuracy. Six hundred and fifty random samples

were generated using a 3 9 3 sampling grid to eliminate

the negative effects of geometric errors between the TM

and Google Earth images. The root mean square errors for

IS were 0.06 and 0.16 for 1998 and 2008, respectively.

Other data

In addition to land use, LST, and IS, the Greenness (G),

Brightness (B), and NDVI were retrieved from the 1998

and 2008 TM images. Greenness and Brightness data were

generated through the Tasseled Cap transformation (K–T

transformation), which was proposed by Kauth and Tho-

mas (1976) and initially used for Landsat MSS images. The

K–T transformation is a conversion of the original bands of

an image into a new set of bands with defined interpreta-

tions that are useful for vegetation mapping. The first new

band corresponds to the overall brightness of the image; the

Fig. 3 Classification images of the Pearl River Delta area: (left) 1998 and (right) 2008

Table 2 Accuracy of classification for each class in images from 1998 and 2008

Year Water Urban Farmland Grassland Forest Orchard Development Dike-Pond Paddy Overall accuracy Kappa coefficient

1998 0.92 0.84 0.83 0.85 0.85 0.76 0.82 0.79 0.81 0.826 0.88

2008 0.87 0.85 0.79 0.83 0.9 0.82 0.78 0.86 0.79 0.805 0.82
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second band corresponds to greenness, and the third tas-

seled-cap band is often interpreted as an index of wetness.

The first (Brightness) and second (Greenness) components

of the K–T transformation were used as indicators for the

environmental evaluation. The process is performed

directly using the function integrated in the Environment

for Visualizing Images software.

NDVI is a popular indicator with which to assess veg-

etation health and it can be calculated using the following

equation:

NDVI ¼ ðb4� b3Þ=ðb4þ b3Þ; ð7Þ

where b4 is the reflectance in the near-infrared corre-

sponding to Band 4 in the TM data and b3 is the red band

in the TM data. The values of NDVI range between -1 and

?1. Vegetated areas, which have relatively high reflectance

in the near-infrared wavelength and low reflectance in the

visible wavelength, generally yield high NDVI values.

NDVI is often used to estimate vegetation health and to

monitor vegetation changes over time.

Among the factors retrieved from remote sensing ima-

gery, LST is correlated directly with atmospheric temper-

ature, and the G/B index reflects vegetation health and the

balance between thermal energy and moisture content.

Land use change, NDVI, and the G/B index were the

principal sources of raw data used in this analysis of eco-

logical change in the PRD area.

Analytical methods

Factor analysis was the primary method used in this

research to develop the ecological evaluation model

(EEM). Factor analysis attempts to represent a set of

observed variables (X1, X2, …, Xn) in terms of a number of

common factors in relation to a potentially lower number

of unobserved variables (Tabachnick and Fidell 2001). It is

assumed that the observed variables are correlated through

sharing one or more underlying causes. Factor analysis

reduces a correlation matrix to a few major factors, such

that the variables within a factor are more highly correlated

with each other than with the variables of another factor

(Belton and Stewart 2001). The number of factors selected

depends on the percentage of the variance explained by

each factor. Usually, the first factor contains most of the

variance within the data, and each successive factor con-

tains progressively less of the variance (Tabachnick and

Fidell 2001). If X1, X2, …, Xn are considered as the

observed variables and F1, F2, …, Fm represent common

Fig. 4 Pearl River Delta land surface temperatures: (left) 1998 and (right) 2008
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factors, then the variables may be expressed as linear

functions of the factors, as below:

X1 ¼ a11 � F1 þ a12 � F2 þ � � � þ a1m � Fm þ e1

X2 ¼ a21 � F1 þ a22 � F2 þ � � � þ a2m � Fm þ e2

Xp ¼ ap1 � F1 þ ap2 � F2 þ � � � þ apm � Fm þ ep

ð8Þ

where a11, a12, …, apm are factor loadings (coefficients)

and e1, e2, …, ep are independently distributed errors. They

are all regression equations and factor analysis attempts to

compute the coefficients that best reproduce the observed

variables from the factors. When the factors are uncorre-

lated, they show the correlation between each variable and

a given factor. Taking a11 as an example, it shows the

effect on variable X1 of a one-unit increase in F1. There-

fore, the larger the loading, the stronger the correlation will

be between variable X1 and factor F1.

Sometimes it can be beneficial to describe features of a

research object using factors instead of original variables,

because factors can reflect information related to the

original variables. Common factors can be expressed as

linear combinations of variables or samples, e.g., Fj =

Bj1 9 X1 ? Bj2 9 X2 ? ��� ? Bjp 9 Xp, (j = 1, …, m).

Such an equation is called a factor score function and it can

be used to calculate factor scores for each sample. Because

the number of equations (m) is less than the number of

variables (p), factor scores cannot be calculated accurately,

but estimates can be derived. Grice (2001) and Williams

et al. (2010) have described a detailed implementation of

this procedure and thus there is no need to repeat the

description here.

Results and discussion

Single-index analysis

In this study, factor analysis was applied to build an

EEM and to quantize the ecological levels of the PRD

area using five geographical indices (IS, LST, NDVI,

and the G and B factors generated from the K–T

transformation). Within a GIS environment, land use data

from 1998 and 2008, derived from Landsat TM imagery,

were converted to a vector format (polygons) based on

specified thresholds. The resulting land use maps were

then used to extract information with regard to IS,

NDVI, LST, and G/B for every land use type. Average

values of these five indices for each land use type are

listed in Table 3.

Fig. 5 Distribution of Impervious Surface percentages for the Pearl River Delta: (left) 1998 and (right) 2008
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According to the data displayed in Table 3, Forest has

the highest average NDVI value, followed by Farmland,

Grassland, Orchard, Paddy, Urban, Development, and

Dike-Pond. NDVI values for Urban, Farmland, Grassland,

Forest, Orchard, and Paddy areas declined slightly from

1998 to 2008, which implies an ecological degradation of

the entire PRD area.

Compared with the NDVI, the G index presents a dif-

ferent trend over the observation period. The values of the

G index for different land use types changed from 1998 to

2008. The Urban G value remained stable, which illustrates

the stability of the urban ecology; however, the values for

Farmland, Grassland, and Development areas declined

significantly, most likely because of changes in land use.

Plant types and rainfall can also contribute to changes in

the values of the G index. The observed change in the G

index value for Development areas can be related to the

degree of development within a particular region. In the

PRD area, large areas of land have been converted to

developed land. When cities expand, Development land is

used accordingly, with some plant cultivation, which cau-

ses the value of the G index to rise year by year.

The B index has a symmetrical spatial distribution

within the PRD area. There are a few spots with high B

values throughout the PRD region, and small annual

changes near the edges of the cities of Conghua and

Guangzhou. In 1998, the study area had a very high B

value over a large area; however, in 2008, this area had

become very small and only one point can be seen in the

TM images. The cause for this change was the develop-

ment of the Baiyun International Airport, which was under

construction from 1998 to 2000. In addition, the B value of

the Dongguan–Shenzhen area shows a rising tendency,

which reveals the transformation of a large area to

Development land and the emergence of bare land in this

zone.

The IS changes for each land use type demonstrate three

trends: (1) the IS data for Orchard, Development, Dike-

Pond, and Paddy areas show only minor changes, i.e., these

land use types were stable; (2) the IS data for Urban and

Farmland areas show large increases; and (3) the IS data

for Grassland and Forest show smaller changes. According

to Table 1, it can be seen that in the decade from 1998 to

2008, large areas of farmland, forest, and grassland have

been converted to urban land use.

Ecological analysis using the ecological evaluation

model (EEM)

To build the EEM, 1200 pixels (randomized and stratified

based on land use) were selected and the values of the five

indices described above were extracted. The SPSS� soft-

ware package was used to perform the factor analysis

according to the earlier description. In a first step, the

Kaiser–Meyer–Olkin score (KMO) (0.921) and Bartlett’s

Test of Sphericity significance (0.907) were calculated to

check the suitability of the data for factor analysis. Usually,

the KMO value varies between 0 and 1. A value close to 0

Table 3 Average values of five indices for each land use type in 1998 and 2008

Average value Urban Farmland Grassland Forest Orchard Development Dike-Pond Paddy

1998 NDVI -0.004 0.007 0.006 0.018 0.003 -0.005 -0.012 0.002

2008 NDVI -0.007 0.002 0.003 0.013 0.001 -0.002 -0.010 -0.001

1998 LST (K) 282.6 282.6 282.4 281.6 281.6 282.8 279.7 280.9

2008 LST (K) 290.6 290.6 290.3 288.2 289.9 291.0 287.8 289.7

1998 G factor 59.75 134.8 171.3 192.1 161.9 89.6 72.7 188.1

2008 G factor 57.7 107.9 121.0 189.0 156.9 61.3 75.5 127.5

1998 B factor 154.3 168.8 164.6 90.8 134.6 228.2 76.4 128.4

2008 B factor 146.6 167.1 163.0 89.7 125.0 225.4 90.5 137.8

1998 IS (%) 54.0 31.0 42.0 13.0 9.3 69.0 0.2 0.4

2008 IS (%) 67.0 42.0 39.0 9.8 9.4 70.0 0.3 0.5

Table 4 Ecology scores and

associated color ranges
EEM score Color Level of ecology EEM score Color Level of ecology

-0.3378–0.0847 White 5 1.4545–1.7930 Orange4 3

0.0847–0.5072 Blue3 5 1.7930–2.1316 Green1 2

0.5072–0.9297 Cyan 4 2.1316–2.4702 Green3 1

0.9297–1.4545 Orange1 3 2.4702–3.0422 Green3 1
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implies that the sum of the partial correlations is large

relative to the sum of the correlations, indicating that factor

analysis is likely to be inappropriate. A value close to 1

indicates relatively compact patterns of correlation for

which factor analysis could output distinct and reliable

factors. Kaiser and Cerny (1979) suggest that factor anal-

ysis is acceptable when the KMO value is[0.5. However,

values of 0.5–0.7, 0.7–0.8, 0.8–0.9, and[0.9 are consid-

ered mediocre, good, great, and superb, respectively (Ste-

vens 2002). For the data used in this study, the value was

0.921, which falls into the range of being superb, implying

that factor analysis was very appropriate for these data. A

principal component analysis was used to extract factors

with eigenvalues associated with each linear component

calculated. According to the variance percentage of each

component, the first principal component (F1) contributed

78.12 % of the variance to the data; therefore, the first

component was used as the EEM to assess the ecological

quality and to map the ecological status of the PRD. Fur-

thermore, a rotated factor matrix, which is a matrix of the

factor loadings for each variable onto each factor, was

generated using SPSS�. Loadings of all the factors are

Fig. 6 Ecology maps based on the scores of the ecological evaluation model: (left) 1998 and (right) 2008

Table 5 Areas for each level of

ecological zone (ha)
Ecological zone 1st level 2nd level 3rd level 4th level 5th level

Score 2.1316–3.0422 1.793–2.1316 0.9297–1.793 0.5072–0.9297 -0.3378 to 0.5072

1998 92,585.535 241,714.029 773,069.805 120,219.722 86,102.504

2008 27,683.604 102,774.292 951,596.991 178,445.025 53,191.683

Change -64,901.931 -138,939.737 178,527.186 58,225.303 -32,910.821

cFig. 7 Class maps of the five ecological status levels: (a1) and (a2)

are the first ecological-level zones for 1998 and 2008, respectively;

(b1) and (b2) are the second ecological-level zones for 1998 and 2008,

respectively; (c1) and (c2) are the third ecological-level zones for

1998 and 2008, respectively; (d1) and (d2) are the fourth ecological-

level zones for 1998 and 2008, respectively; and (e1) and (e2) are the

fifth ecological-level zones for 1998 and 2008, respectively
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Fig. 7 continued
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displayed in the rotated factor matrix. Component score

coefficients were then computed with values of 0.921 for

IS, 0.0762 for LST, 0.662 for NDVI, 0.592 for G, and

0.469 for B, respectively. These component coefficients

values were the basis of building the equation of EEM.

According to the analytical methods and equations of the

previous section, the final EEM equation was calculated as

follows:

F1ðEEMÞ ¼ 0:921� ISþ 0:0762� LSTþ 0:662� NDVI

þ 0:592� Gþ 0:469� B

ð9Þ

Using this equation, the F1 value could be calculated for

each pixel over the study region. For visual interpretation,

the EEM was divided into five levels using the standard-

deviation segmenting method proposed by Zhang and

Wang (2008), based on which ecological-level maps were

created for 1998 and 2008 (Table 4, Fig. 6). Simultane-

ously, areas for each ecological level were obtained using

the threshold of each level (Table 5).

Table 5 and Fig. 6 illustrate a number of features. (1)

The area of the first level decreased rapidly from

92,585.5 ha in 1998 to 27,683.6 ha in 2008. (2) The area of

the second level decreased the most during the same period

(by 138,939.7 ha). (3) The area of the third and fourth

levels increased by 178,527.2 and 58,225.3 ha, respec-

tively. (4) The area of the fifth level, which mostly con-

sisted of water, remained largely unchanged.

Comparison of the two ecological maps from 1998 and

2008 (Fig. 6) revealed a considerable change in the overall

ecological environmental quality in the PRD over a 10-year

period. In 1998, the ecological area of the first level was

concentrated mainly in Conghua, but it had shrunk to a

region north of the city by 2008, i.e., a decrease of

64,901.931 ha had occurred in southern parts of Conghua.

In 1998, second-level ecological areas were located in

Conghua, Luogang, Panyu, Nansha on the eastern edge of

Dongguan, and Shenzhen, but by 2008 they could only be

found in Conghua and Shenzhen; an overall decrease in

area of 138,939.7 ha. Conversely, over the studied 10-year

period, the total areas of the third and fourth ecological

levels increased dramatically. The area of the third eco-

logical level expanded gradually to northern parts of the

PRD area, and almost across the entire region by the end of

2008. Areas of the fourth ecological level were located in

Foshan, Zhongshan, and Dongguan in 1998. Following

Fig. 7 continued

Environ Earth Sci (2016) 75:327 Page 13 of 16 327

123



economic development, the area of the fourth ecological

level by 2008 had increased by 58,225.3 ha, concentrated

mainly around Foshan and Dongguan. The ecological

environment within the areas defined by these two types

had become worse. The atrophication of high-quality

ecological areas (first and second levels) and the expansion

of low-quality ecological areas (third and fourth levels)

indicate obvious deterioration of the ecological environ-

ment. Areas of the fifth ecological level (lowest-quality

areas) did occur throughout the PRD region in 1998 but

they were reduced to an area of 32,910.8 ha by 2008,

especially in Foshan and Dongguan. There have been signs

of a gradual recovery in the ecological condition, which

suggest that despite economic development, the importance

of protecting their ecological environment has been real-

ized by humans.

Figure 7 and Table 5 show that in both 1998 and 2008,

the first ecological-level zones of the PRD were located

mainly in the north. These areas are mostly covered by

forest, particularly the Baiyun Mountain Nature Preserve.

Although the first ecological level had an overall area of

nearly 100,000 ha, its area decreased by 64,901.9 ha by

2008. A similar change occurred in the area of the second

ecological level, which lost over half its area (a decrease

from 241,714 to 102,774 ha), with a concurrent reduction

in occupation. The areal decreases of these two levels

indicate that the ecological quality experienced serious

decline. In contrast, the third and fourth ecological-level

zones increased in area by 178,527 and 58,225 ha,

respectively. The fifth ecological-level zone includes

mostly water, such as rivers, lakes, and reservoirs, and this

zone decreased in area from 86,102 to 53,191 ha between

1998 and 2008, perhaps because of variations in rainfall

during different seasons. It is believed that some of the first

and second ecological-level zones were transformed into

third and fourth levels because of human activities.

Government and society have realized that ecological

health is an important resource for humans, and that

humans must participate actively in protecting their envi-

ronment and restoring a deteriorating ecology.

Conclusions

Ecology is a complex issue that concerns the combination

of abiotic (or physical) and biotic (or living) components.

Different researchers have different views, different

understandings, and different methods regarding the

investigation of ecological problems, including environ-

mental changes. Diverse methods and technologies have

been applied over recent years, among which the technique

of remote sensing has proven useful and effective for

monitoring and evaluating ecological change.

In this study, a number of important geographical indi-

ces used for investigating land use (i.e., IS, NDVI, LST,

Greenness, and Brightness) were selected and studied.

They were all retrieved using the general methods of

remote sensing image processing. Based on land use data

from 1998 and 2008, a change analysis for each index was

performed to reflect the ecological status of the PRD. It

was established that NDVI values for the Urban, Farmland,

Grassland, Forest, Orchard, and Paddy land uses declined

slightly from 1998 to 2008, implying an ecological

degradation of the entire PRD area. The other indices also

showed various changes for the different land use types

from 1998 to 2008. The results showed that the changes in

the geographical indices reflect the changing ecological

status, patterns, and processes, and that they are of eco-

logical significance. The values of these indices were used

as variables to build an EEM through factor analysis. Using

the EEM, a comprehensive evaluation factor was con-

structed that combined the different geographical indices.

Based on the EEM values, the zones of five ecological

levels were identified using a standard-deviation segment-

ing method, which were then used to map the distribution

of ecological zones in the PRD and to analyze the eco-

logical changes. The statistical results of each level zone

indicated that significant change has occurred over the

10-year period from 1998 to 2008. It was determined that

ecological quality has undergone serious degradation, i.e.,

the first and second ecological-level zones had become

largely transformed into third ecological-level zones,

illustrating that the extent of high-quality ecological areas

had diminished. Nevertheless, a concurrent increase in the

size of the fourth ecological-level zone, and a decrease in

the extent of the fifth ecological-level zone, indicated the

existence of processes that were leading to ecological

repair.

In studies such as this, uncertainties inherent in EEMs

for large regions are a considerable concern. It is virtually

impossible to have complete certainty regarding the ana-

lytical process that leads to decisions, because in the

modern world, decision making almost always involves

multiple stakeholders with multiple viewpoints. In most

cases, the number of state variables in EEMs that require

initialization is much larger than what is currently avail-

able. Consequently, it is necessary to create maps by spatial

interpolation and interpretation of data points.

This study provided not only information about eco-

logical change, but also data concerning the spatial change

of ecological zones. Moreover, an integrated EEM was

developed using five geographical indices and a macro-

scopic, quantitative ecological score was produced. In

addition, degrees of ecological health were distinguished.

Ultimately, it was shown that remote sensing methods are

practical for the analysis of ecological change, thus this
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work could be considered as a case study for other eco-

logical monitoring research.
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