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Abstract The objective of this paper is to map landslide

susceptibility using a statistical analysis model and the

radius of influence within a geographic information sys-

tems environment. The statistical analysis included trig-

gering factors (e.g., topography, land cover, forest, and soil

properties) of adjacent areas, in addition to the landslide

sites themselves. To estimate the probability of landslide

occurrence using the radius of influence, and to produce a

landslide susceptibility index (LSI), we performed fre-

quency radio (FR) analysis by applying the radius of

influence to the domain of specific training sites. Landslide

susceptibility maps were generated for each radius of

influence, ranging from 0 to 300 m in 30 m increments.

We observed enhanced FR index values corresponding to

reduced exaggeration of statistical anomalies within the

proper radius of influence. It is referred that by adopting

the radius of influence the classes that not only affect the

landslide occurrence from the adjacent areas but also make

anomaly errors can be taken into account in FR analysis.

Moreover, comparing the FR values between adopting the

optimum radius of influence or not, we inferred that the

greater the gap, the bigger influence of adjacent areas the

classes have. In the validation stage, we identified the

optimum radius of influence by measuring the area beneath

the relative operating characteristics curve. We found that

the optimum radius of influence in the study area is 240 m,

for which the LSI map is 5.95 % points more accurate than

when not considering the radius of influence.

Keywords Landslide � GIS � Frequency ratio � Radius of
influence

Introduction

Landslides are one of the principal geological disasters in

urban areas, causing substantial property damage and

human casualties. Urban areas are particularly vulnerable

to landslides due to ground instability caused by human

activity. Moreover, the high population density of urban

areas means more people are exposed to geohazards than in

rural regions. In recent years, landslide frequency has

steadily increased due to intensifying rainfall, likely driven

by ongoing climate change (Guzzetti et al. 2007; Kim et al.

2011, 2015). It is vital, therefore, to identify landslide-

susceptible areas in order to mitigate and prepare for

landslide events. In this regard, several studies have

already made progress in landslide prediction based on

geostatistical approaches.

The majority of research to date has used geographic

information systems (GIS) to assess landslide susceptibil-

ity, as this is an effective approach to the quantitative

evaluation of large regions. For example, landslide sus-

ceptibility has been estimated using GIS for several regions

of South Korea where the risk of landslide hazards is

particularly severe (Choi et al. 2012; Lee et al. 2006, 2013;

Lee and Lee 2005; Lee and Min 2001; Park et al. 2013; Suh

et al. 2011). Most of these investigations used GIS to

perform spatial statistical analyses on susceptible areas.

Other studies have employed statistical methods to evalu-

ate landslide susceptibility; e.g., by comparing approaches
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including frequency ratio (FR) analysis, analytic hierar-

chical processes (AHP), artificial neural networks (ANN),

and logistic regression (LR). Additionally, principal trig-

gering factors of past landslides have been clarified and

verified by comparison with a landslide inventory database

(Akgun and Türk 2010; Oh and Pradhan 2011; Park et al.

2013; Pouduyal et al. 2010; Pradhan 2011; Reis et al. 2012;

Schleier et al. 2014; Shahabi et al. 2015; Suh et al. 2011;

Yalcin et al. 2011; Yilmaz 2009, 2010; Yilmaz et al. 2012).

Most previous studies have concentrated on assessing

susceptible areas by analyzing their geographical and

geological properties, especially focused on identifying the

spatial pattern of landslides without considering the prop-

erties of adjacent areas (Goltz 1996; Liucci et al. 2015;

Malamud et al. 2004). Yet the physical characteristics of

the surrounding area can influence landslide hazards in

both direct and indirect ways (Jones and Preston 2012;

Massey et al. 2013; Petley et al. 2005; Van Westen et al.

2003). Here, we present a statistical approach for evaluat-

ing landslide susceptibility that considers triggering factors

both at the landslide site and in the surrounding area, and

that enables the production of landslide susceptibility index

(LSI) maps with varying radii of influence. To find the

optimum radius of influence, we used the area under the

relative operating characteristics curve (AUC) method to

compare LSI maps with selected control areas of landslide

inventories.

The objectives of this paper are to (1) demonstrate our

evaluation model of landslide susceptibility, which utilizes

GIS technology and statistics; (2) estimate the LSI by

incorporating the effects of adjacent areas and varying the

radius of influence; and (3) identify the optimum radius of

influence and to validate this approach by comparing our

results with those of previous studies.

Study area

The study area is the Seoul metropolitan area (605.2 km2),

which, with 10.6 million inhabitants, is the most urbanized

area in South Korea. Seoul is located between the 37�250N
and 37�420N, 126�450E and 127�100E, and is surrounded by

mountainous terrain. Together with regular typhoons and

intense summer rainfall, this high-relief environment

results in a high incidence of landslides. For example, 69

landslides were recorded following intense rainfall (maxi-

mum hourly rainfall of 110.5 mm) on 27 July 2011, with

more than half of these occurring close to Mt. Umyeon in

the central-southern mountainous region of Seoul.

Geological structure of Mt. Umyeon, Seoul is mostly

composed of gneiss and granite covered by soil layer,

which has relatively stable bedrock. Yet infrastructures

made by human activities have expanded to the steep

mountainous area, slope failures including rock falls and

debris flows occur in rainy season. Landslides in Mt.

Umyeon in 2011 were triggered by heavy rainfall which

deteriorated the surface stability that result in soil failure.

In the same period of time, other landslide spots were in

similar situation, most damages were made by soil failure.

We assumed that the amount of precipitation over the study

area was almost equal, so that the triggering factors, such

as topography, soil, forest properties and land cover, which

are known as highly involved with soil failure including

debris flow, were chosen. Accordingly, the landslide sus-

ceptibility assessment of this study is focused on the case

of landslides triggered with same precipitation condition,

especially in urban areas on mountainous terrain.

A landslide inventory database is maintained by the

Seoul metropolitan government and includes location and

scale data for each landslide event. Location data include

text address and approximate longitude/latitude informa-

tion. The spatial extent of each event is recorded in the

scale field, though the coverage is not precise. To specify

the spatial coverage, the exact locations of landslide sites

are assigned by manual geocoding and coverage is repre-

sented by a circular area, the diameter of which is calcu-

lated from the spatial scale of the event. As the landslide

inventory is presented in map form, data are validated

against seven known landslide sites, which constitute

approximately 10 % of all landslide events (Fig. 1). The

validation sites are sampled from a uniform distribution

that properly represents each cluster. The remaining 62

landslide sites are used as training data for statistical

analysis.

Building the triggering factor database

In this study, 12 geospatial attributes are considered to be

triggering factors on the basis of their geological and

geographical properties (Table 1): slope angle, slope

aspect, curvature, land cover, forest age, forest density,

forest diameter, forest type, soil drainage, soil material, soil

texture, and soil thickness. In accordance with Lee and Lee

(2005), we selected these triggering factors for the fol-

lowing reasons: (1) spatial data on triggering factors are

obtainable from government organizations; (2) the study

areas are sufficiently close to one another, meaning that the

same triggering factors are relevant at both; and (3) the LSI

assessment method can be assessed effectively since we

have employed the same statistical processes. Spatial data,

including topographical maps, geological maps, and for-

est/soil properties maps, have been analyzed to rank the

landslide prone areas.

Entries of database are selected as major factors that

reflect the characteristics of landslide events in South
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Fig. 1 Locations of landslide

sites (for training and

validation) in the study area

Table 1 Landslide inventory and geospatial attributes database of the study area

Classification Factor Data type Scale Distributed by

Landslide inventory Location of landslide sites Point Area in m2 without coverage Seoul Metropolitan Government

Training sites Polygon –

Validation sites Polygon –

Topographic map Slope angle Grid 30 m 9 30 m ASTER G-DEM

Slope aspect

Curvature

Land cover map Land cover Polygon – WAMIS

Forest properties map Forest age Grid 30 m 9 30 m

Forest density

Forest diameter

Forest type

Soil properties map Soil material Grid 30 m 9 30 m

Soil texture

Soil thickness
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Korea. Generally, slope angle, slope aspect and curvature

are topographic attributes that are commonly suggested as

landslide triggering factors (Schleier et al. 2014; Shahabi

et al. 2015; Van Westen et al. 2003). The distance from the

fault is also an important factor but there was no spatial

database to be excluded. Seoul, the study area, has

numerous soil failure, including debris flow and debris

slide to cause the most dominant damages, land cover,

forest and soil properties are chosen as triggering factors

which have relation with inducing soil failure. Especially,

previous studies in South Korea (Choi et al. 2012; Lee and

Lee 2005; Lee et al. 2006; Yune et al. 2013), forest and soil

properties are found as effective to accelerate or prevent

from landslide occurrences.

To avoid the redundancy of the dataset, the classes

which contain similar properties are required to be checked

before FR analysis. In the entries of constructed database,

forest age and forest diameter seem to be in close corre-

lation but according to forest type, they could not be

interdependent to each other. Likewise both soil texture

and soil material are a similar kind of lithology attributes

but they could show different aspects in surface drainage or

moisture absorptivity depending on the combination.

Hence, we conduct FR analysis to define them whether

independent from landslide occurrence or not, and design

more sophisticated analysis model.

All topographical data are constrained using a digital

elevation model (DEM; ASTER G-DEM V2) with a res-

olution of *30 m. This globally constant DEM is freely

available from the Japanese Ministry of Economy, Trade

and Industry (METI) and the US National Aeronautics and

Space Administration (NASA). Maps of forest/soil prop-

erties and land cover are available from the Korean Water

Management Information System (WAMIS; http://www.

wamis.go.kr/) in GRID format and can be converted to

raster files with a spatial resolution of 30 m.

The values of triggering factors are regarded as being

either discrete or continuous. Basically, the classes of each

triggering factor are classified with discrete (categorical)

values, such as land cover and forest/soil properties.We tried

to describe the whole classes in quantitative values even

constructed with discrete values. Though, soil drainage was

the only factor that cannot be numerated due to the surveys

were made by naked eye of investigators who have spe-

cialized in over 20 years (Hong et al. 2009). Except this case,

the quantitative factors, which are investigated with certain

categories as constant interval method (i.e. forest age, forest

density, forest diameter, and soil thickness), are used as the

classes of the factors in FR analysis.

For the trigger factors comprising continuous values but

generally defined with discrete classes, each factor map is

reclassified into several classes using a constant interval

method: flat and eight directions for aspect, and flat,

concave, and convex for curvature. However, in the case of

slope angle data, use of the constant interval method results

in the data of each class being strongly skewed. To

equalize the irregular distribution, it is common method in

classification to apply natural breaks (Jenks optimization),

quantile interval or standard deviation. Comparing the

results from adopting these methods, the standard deviation

method is used for the reclassification and we manually set

the number of domains to be similar in each class. In the

occasion of the data are distributed irregularly, natural

breaks or equal-constant interval methods cannot classify

the number of domain to each class properly. On the other

hand, equal-area interval method can solve the unbalanced

distribution but suggest ambiguous border that hardly show

the distinct characteristics of classes as excessively focus-

ing on equality of the domain. If certain class has not

sufficient samples or the number of classes of certain

triggering factor is not enough, it can be supplemented by

applying other methods including natural breaks, equal-

constant interval or equal-area interval method.

Concept of the radius of influence

Our approach differs from previous assessments of landslide

susceptibility in that we incorporate the radius of influence

into our GIS-based statistical analysis. Because of the likeli-

hood that geohazards such as landslides can be caused by

triggering factors in adjacent areas (Massey et al. 2013; Petley

et al. 2005), it is more effective and accurate for landslide

susceptibility training domains to cover an area extending

beyond the immediate site of the event (Fig. 2). Adopting this

concept is particularly advantageous in the case of landslides

occurring at sites where triggering factors are deemed ‘‘less

likely’’ or ‘‘rare,’’ suchas at points (A) and (B), respectively, in

Fig. 2. Triggering factors can be exaggerated in probability

calculations due to a lack of sufficient domains, resulting in

erroneous assessments of landslide vulnerability and reduced

accuracy of statistical analysis. On the other hand, the area

within an overestimated radius of influence might contain

factors that do not contribute to landslide occurrence. Such

exaggerations (i.e., if the radius of influence is not applied or is

overestimated) can be reduced.

In summary, it is crucial to find the optimum radius of

influence in order to produce the most accurate results.

This can be determined in the validation stage, following

statistical analysis and production of the LSI maps. In the

present study, we calculated different radii of influence at

an interval of 30 m, which is the minimum spatial reso-

lution of available property maps. To determine the opti-

mum radius of influence for triggering factors, we

conducted statistical analyses over 11 different radii, from

0 to 300 m (Fig. 3).
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Frequency ratio analysis for each area of influence

To quantify landslide susceptibility, we used FR analysis.

This statistical approach is commonly applied to suscepti-

bility assessments in cases when both the landslide

inventory database and triggering factor maps are available

for the entire study area (Choi et al. 2012; Park et al. 2013;

Reis et al. 2012; Schleier et al. 2014; Shahabi et al. 2015;

Suh et al. 2011; Ulrich et al. 2008; Yalcin et al. 2011;

Yilmaz 2009). Specifically, the FR method estimates the

Fig. 2 Conceptual diagram

showing the effects of applying

the radius of influence to a

statistical analysis of landslide

susceptibility

Fig. 3 Spatial database and

process model for assessing

landslide susceptibility in this

study
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probability of each class of triggering factors through

spatial comparison with landslide inventories, both at the

landslide site and elsewhere. Ultimately, the FR index

indicates the degree to which each class of triggering fac-

tors correlates with landslide occurrence. In the case that

the landslide training domain is much smaller than the

whole domain, the class of the triggering factor supports

ground stability. If the situation is reversed, the FR index

exceeds 1, indicating a vulnerability to landslide failure. If

the FR index is close to 1, the class of triggering factor has

no effect on the potential for landslide events.

TheFR index can be determined usingEq. 1, inwhich each

variable is assessed by overlaying the maps of spatial data-

bases. For the sake of calculation, the number of grid cells in

the landslide inventories and for the entire study area need to

be measured. It is also necessary to count the grid cells for

different classes of triggering factor that occur within each

domain, both in the landslide inventory and over the whole

study area. The FR index of each class of triggering factor can

then be evaluated by inserting these values into the equation.

Frequency Ratio FRð Þ

¼ Percent of Landslide Training Domain for each class

Percent of Whole Domain for each class

ð1Þ

Accordingly, FR index layer maps of 12 factors are gen-

erated in 11 separate training domains for each radius of

influence. The variables for each area of influence are

measured by cross-tabbing training domains with maps of

geological and geographical properties. While this process

is time consuming when done manually, our spatial process

module is designed to compute these analyses with multi-

ple iterations of the radii of influence, resulting in FR index

values for each class of triggering factors (Table 2).

Without considering the radius of influence, the most

landslide-prone classes include mountainous terrain in the

land cover category,\10 years old in forest age,\6 cm in

forest diameter (i.e., the median trunk diameter at breast

height), Pinus koraiensis and artificial hardwood forest in

forest type, and well drained in soil drainage. Together,

these characteristics suggest that landslides occur primarily

in mountainous regions with a cover of young, relatively

small trees that are unlikely to support ground stability.

As the radius of influence increases, several FR indices

show a gradual decrease or increase, ultimately approach-

ing a value of 1. Therefore, any previous exaggeration of

these classes is reduced when the area of influence is taken

into account. For example, for classes with an initial FR

index value of 0, the value increases dramatically once the

radius of influence expands. This explains why larger areas

of influence yield larger sample numbers from the training

sites. This approach can help reduce the exaggeration of

data and improve the accuracy of LSI maps.T
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Figure 4 shows representative trends in FR index values

for each class of forest type. The FR index values for Pinus

koraiensis and artificial hardwood forests exceed 15 within a

0 m radius. However, the values for Pinus koraiensis drop

sharply from 20.76 to 2.037 with increasing radius size,

indicating that this forest type is not a principal triggering

factor for landslides. In contrast, the FR index value of

artificial hardwood forest does not decrease but remains

close to 15 for every radius of influence, suggesting that this

class contributes to landslides in a way that is largely inde-

pendent of the radius of influence. Similarly, there are trig-

gering factors that tend not to induce a landslide. For

example, both non-forested land and Populus deltoides

classes give values of zero within a 0 m radius. However, as

the radius increases, the FR index value of non-forested land

increases gradually from0 to 0.297, which is not apparent for

radii of \60 m. Meanwhile, the Populus deltoides class

shows no change in FRwith increasing radius, indicating that

this factor is independent of the radius of influence.

Compilation of LSI maps

To calculate LSI values, the corresponding FR index values

of the factors listed in Table 2 are calculated for each grid

cell according to Eq. 2. Subsequently, LSI maps for each

radius of influence are generated by stretching the summed

values of each grid cell from 1 to 100 in equal area. As

shown in Fig. 5, mountainous regions in southern areas,

where major landslides have occurred, are classed as highly

susceptible. The southeastern and northern parts of the

study area are classified as highly vulnerable, though

landslides have not yet occurred in these regions. As the

radius of influence increases, the LSI map becomes blur-

red, indicating that highly variable values are being

smoothed. As depicted in Table 2, this smoothing effect

occurs when the LSI value of each grid cell is deduced on

the basis of compensated FR index values.

LSI ¼
X

FR of each factor for each radius of influence: ð2Þ

Validation of the estimated optimal radius
of influence

As landslide susceptibility maps for each radius of influ-

ence are useful predictive tools, it is important to evaluate

which LSI map is the most accurate by comparison with

validation data. The most common approach for making

this comparison in geohazard contexts employs the relative

operating characteristics (ROC) curve method and the area

under the ROC curve (AUC) method (e.g., Choi et al.

2012; Lee et al. 2013; Mason and Graham 2002; Oh and

Fig. 4 Frequency ratio index

values of different forest types

according to the radius of

influence
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Pradhan 2011; Suh et al. 2013; Yilmaz 2009). To draw the

ROC curve, LSI maps for each radius of influence are

combined with the landslide validation area. The cumula-

tive frequency histogram is made using the ratio of corre-

sponding grid cells to LSI, as shown in Table 3. To ensure

the AUC value shows a positive correlation with the

accuracy of the LSI map, LSI is ranked in descending

order. With increasing measured value of AUC, the aver-

age LSI of the validation sites also increases, which indi-

cates the LSI map has greater accuracy.

Fig. 5 Generated LSI maps for each radius of influence
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As the radius of influence increases, both the AUC

values and LSI values (e.g., minimum LSI, LSI of the top

80 %) also increase (Fig. 6). However, the magnitude of

the increase declines considerably and AUC values fluc-

tuate beyond a radius of 210 m. We speculate that this

pattern indicates that triggering factors in adjacent areas

have a measurable impact on landslide occurrence up to the

radius of 210 m. Conversely, AUC values decrease slightly

beyond 270 m, which we interpret as overestimation of the

area of influence, resulting in the inclusion of irrelevant

triggering factors in the analysis.

Through this verification process, we determined that

the optimum radius of influence is 240 m, where the AUC

value peaks. The AUC value of 86.49 % obtained using

existing methods shows an increase to 92.44 % when

considering the optimized radius of influence. Moreover, in

the case of 0 m, the lowest LSI is 35 %, while for 240 m it

is only 20 %. According to Yilmaz (2009), the lowest

Table 3 Cumulative frequency of LSI and accuracy of prediction maps according to the radius of influence

LSI in rank

(%)

Radius of influence

0 m (%) 30 m

(%)

60 m

(%)

90 m

(%)

120 m

(%)

150 m

(%)

180 m

(%)

210 m

(%)

240 m

(%)

270 m

(%)

300 m

(%)

1 2.44 3.66 8.54 6.10 10.39 11.11 4.92 4.76 5.26 1.72 1.96

2 7.32 8.54 15.85 18.29 23.38 11.11 8.20 7.94 12.28 6.90 7.84

3 8.54 9.76 23.17 24.39 24.68 13.89 13.11 12.70 15.79 13.79 15.69

4 9.76 10.98 26.83 25.61 25.97 20.83 16.39 14.29 19.30 15.52 21.57

5 9.76 19.51 35.37 29.27 29.87 27.78 24.59 19.05 22.81 22.41 25.49

6 10.98 21.95 40.24 37.80 36.36 30.56 26.23 25.40 28.07 29.31 31.37

7 28.05 37.80 47.56 41.46 42.86 34.72 32.79 31.75 36.84 34.48 43.14

8 39.02 47.56 47.56 47.56 48.05 44.44 45.90 39.68 45.61 41.38 49.02

9 47.56 53.66 50.00 48.78 50.65 51.39 52.46 52.38 54.39 53.45 56.86

10 54.88 54.88 53.66 51.22 55.84 56.94 62.30 61.90 68.42 65.52 68.63

11 59.76 62.20 54.88 54.88 62.34 65.28 70.49 68.25 78.95 74.14 74.51

12 62.20 62.20 58.54 57.32 66.23 66.67 77.05 69.84 80.70 82.76 80.39

13 62.20 62.20 60.98 57.32 71.43 69.44 81.97 82.54 92.98 93.10 86.27

14 62.20 62.20 65.85 65.85 77.92 75.00 88.52 90.48 94.74 96.55 90.20

15 62.20 62.20 68.29 68.29 80.52 83.33 88.52 90.48 94.74 96.55 96.08

16 62.20 62.20 70.73 69.51 81.82 83.33 91.80 92.06 98.25 96.55 98.04

17 62.20 62.20 73.17 70.73 81.82 88.89 95.08 98.41 98.25 98.28 98.04

18 63.41 63.41 74.39 76.83 87.01 90.28 98.36 98.41 98.25 100.00 98.04

19 63.41 63.41 76.83 79.27 89.61 90.28 98.36 100.00 98.25 98.04

20 67.07 65.85 79.27 82.93 93.51 95.83 98.36 100.00 98.04

21 69.51 69.51 84.15 84.15 93.51 97.22 100.00 100.00

22 71.95 73.17 85.37 86.59 93.51 97.22

23 74.39 74.39 85.37 86.59 94.81 98.61

24 74.39 74.39 85.37 86.59 96.10 100.00

25 84.15 75.61 86.59 86.59 97.40

26 87.80 86.59 86.59 87.80 97.40

27 89.02 90.24 89.02 90.24 98.70

28 90.24 90.24 91.46 90.24 100.00

29 90.24 90.24 91.46 93.90

30 92.68 90.24 91.46 95.12

31 92.68 91.46 91.46 96.34

32 93.90 92.68 97.56 100.00

33 96.34 97.56 100.00

34 96.34 100.00

35 100.00

AUC 0.8649 0.8693 0.8898 0.8898 0.9112 0.9104 0.9175 0.9160 0.9244 0.9222 0.9239
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value of AUC within a 0 m radius of influence (0.8649)

remains valid, but LSI maps incorporating the optimized

radius of influence will be more effective for hazard

prediction.

Discussion

We compared both FR values that adopting the optimized

radius of influence and not, in order to specify the reason of

accuracy increase (Table 4). The number of classes which

had comparatively constant FR values regardless of the

radius of influence were 54 out of 85. From among these,

six classes remained high in FR values, for instance

[75.0 % in forest density and artificial hardwood forest in

forest type. Still, eight classes kept 0 such as 40–50 years

[50 % in forest age and wet land in land cover. The

classes which retain their FR values, distributed domi-

nantly around landslide occurred sites, can be divided into

two categories, the spatial conditions where landslide can

occur or not and triggering factors that can induce or pre-

vent the landslide mechanism. It is the factors concerning

with spatial conditions are[75.0 % in forest density and

wet land in land cover. Meanwhile, artificial hardwood

forest in forest type and 40–50 years[50 % in forest age

contribute in triggering the landslides which directly affect

to the ground stability and precipitation effects. These

classes show the smaller fluctuation in FR values when

varying radius of influence, which indicate the lower

existence probability of other classes around adjacent

areas, also assume rare influence to the adjacent areas.

The number of classes that the FR values were reversed

below 1 to over 1, or vice versa, is 16 out of 85. However 6

out of 16 classes changed less than 200 %, which are titled

as remained, and the other 10 classes showed sharp

variations. The 31 classes had their FR values increase or

decrease over 200 %. It means that adjacent triggering

factors concern with landslide occurrence as much as the

gap grows bigger, far from 1 in FR value. 7 out of 85

classes whose FR values were zero, titled as advent, were

additionally included in training domain when adopting the

radius of influence. It is the benefit to apply the radius of

influence when the spatial data are distributed excessively

sparse or dense, especially for the classes whose FR values

become closer to 1. The more optimizing the radius of

influence, the more powerfully the error can be mitigated

so that overestimation can be relieved. The correction

effect is highly likely in case of higher spatial resolution.

Unless, it is useless to widen the radius of influence

because most properties of domain are in same classes.

Therefore, it is the effective way to apply the radius of

influence when whole spatial database has similar spatial

resolution.

Conclusions

In this study,we applied the radius of influence to assessments

of landslide susceptibility in order to statistically analyze the

importance of various triggering factors. For the sake of

compiling precise LSI maps, a series of spatial analysis

models was built to find the optimum radius of influence for

predicting landslide hazards with greater accuracy. We

adopted the widely used FR method as the statistical method

for each radius of influence, and selected 12 triggering factors

from geographical and geological properties. The radius of

influence was increased in 30-m increments from zero to

300 m, enabling us to construct 11 layered LSI maps. During

the validation stage, we determined the optimum radius of

influence of the target area tobe240 mbycomparing theAUC

values for each radius of influence.

The most striking effect of applying the appropriate

radius of influence is the large reduction in data exagger-

ation and anomaly errors. As the domain of the training

sites increases, the triggering factors in adjacent areas can

be included in the statistical analysis. Subsequently, we

discovered that several classes of triggering factors are

either over- or underestimated, or even omitted, when the

area of influence is not included. Conversely, if the radius

of influence increases, the accuracy of the LSI map decli-

nes due to redundant referencing.

The most critical change of process was FR analysis

when adopting the radius of influence. 36 % of whole

classes varied in FR values over 200 % and even 7 classes

whose value were zero gained positive values. As the

amount of increase or decrease in FR values are greater, it

is implied that the classes of adjacent area have more

influence on landslide occurred sites. 64 % of classes were

Fig. 6 AUCs of prediction maps according to the radius of influence

(0, 60, 120, 180, 240, and 300 m)
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Table 4 Changes in FR index (0 m and 240 m) for each class of triggering factor

Factor Class Radius of

influence

Reversed Remained Advent Increased

over 200 %

Decreased

over 200 %

0 m 240 m

Slope 0.00�–2.01� 0.041 0.230 H

2.01�–5.05� 0.186 0.516 H

5.05�–8.08� 0.779 1.039 H H

8.08�–11.1� 1.499 1.499 H

11.1�–14.1� 2.054 1.757 H

14.1�–17.2� 2.773 2.048 H

17.2�–20.2� 3.390 1.826 H

20.2�–56.0� 2.414 1.548 H

Aspect Flat 0.082 0.356 H

N 0.698 1.009 H H

NE 0.909 0.864 H

E 1.289 0.827 H H

SE 1.055 0.645 H H

S 0.397 0.660 H

SW 0.272 0.785 H

W 0.881 0.992 H

NW 1.327 1.500 H

Curvature Concave (-) 1.927 1.316 H

Flat 0.659 0.778 H

Convex (?) 1.271 1.395 H

Land cover Water 0.000 0.000 H

Urban area 0.148 0.535 H

Bare soil 0.198 0.498 H

Wet land 0.000 0.000 H

Grass land 0.582 0.516 H

Mountainous

terrain

2.691 1.975 H

Rice field 0.818 0.851 H

Farm land 0.972 1.089 H

Forest age ([50 % of whole timber) 0–10 years 19.64 2.629 H H

10–20 years 1.839 2.384 H

20–30 years 3.622 2.413 H

30–40 years 0.292 1.651 H

40–50 years 0.000 0.000 H H

Forest density \50.0 % 0.603 2.066 H

50.0–75.0 % 1.911 1.774 H H

[75.0 % 9.018 5.543 H

Forest diameter \6 cm 19.52 2.737 H

6–16 cm 3.162 2.453 H

16–28 cm 0.143 0.828 H

Forest type Larix Kaempferi 0.000 0.000 H

Mixed forest 0.306 1.240 H

Pinus Densiflora 2.990 2.484 H H

Hardwood forest 5.139 3.125 H

Farm land 0.113 0.333 H

Pinus Rigida 0.811 2.118 H

Pinus Koraiensis 20.76 2.650 H H
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independent from the radius of influence, especially whose

spatial data were distributed relatively flat. It is less likely

for the classes to concern with triggering landslide from the

adjacent areas.

The classes with extreme FR values, such as wet land in

land cover and[75.0 % in forest density, are highly related

with geological properties where the landslide events

occur, while 40–50 years[50 % in forest age and artificial

Table 4 continued

Factor Class Radius of

influence

Reversed Remained Advent Increased

over 200 %

Decreased

over 200 %

0 m 240 m

Non-forest land 0.000 0.236 H

Artificial

hardwood forest

15.17 15.43 H H

Populus Deltoides 0.000 0.000 H

Soil drainage (observation made by

specialists’ naked eye)

Excessively 2.209 2.056 H

Well 8.233 7.812 H

Moderately 0.437 0.519 H

Rarely 0.000 0.179 H

Poorly 0.186 0.378 H H

Outcrop 0.540 0.643 H

Soil material Alluvium 0.024 0.132 H

Valley alluvium 0.000 0.092 H

Gley alluvium 0.189 0.377 H H

Sedimentary soil 0.000 1.008 H

Red yellow soil 0.055 0.411 H H H

Lithosol and red

yellow soil

0.712 0.663 H

Lithosol 2.490 2.325 H

Red yellow

sedimentary soil

0.738 2.535 H

Outcrop 0.540 0.643 H H

Soil texture Coarse sand 0.012 0.096 H

Silt loam 2.122 2.771 H

Gravelly loam 0.000 1.429 H

Clay sand 0.000 1.008 H H H

Clay loam 0.229 0.228 H H H

Clay 0.023 0.464 H

Gravelly sand 0.000 3.423 H

Sandy silt loam 0.000 0.000 H H H

Coarse loam 2.087 1.764 H

Rocky loam 0.738 2.535 H

Sandy loam 0.797 1.363 H H

Outcrop 0.540 0.643 H H

Soil thickness [150 cm 0.059 0.325 H

125–150 cm 0.228 0.245 H

100–125 cm 0.512 0.496 H

75–100 cm 2.122 2.771 H

50–75 cm 0.068 0.645 H

20–50 cm 1.897 1.793 H

\20 cm 0.000 0.000 H

Outcrop 0.540 0.643 H
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hardwood forest in forest type are triggering conditions of

landslide, especially with soil failure. 7 Classes which had

rapid changes in FR values had been considered as extreme

triggering factors without the radius of influence but not

actually. It is the reason that the landslides spread and

damage adjacent areas why the radius of influence should

be considered to include those factors in the stage of sta-

tistical analysis. As a result, an LSI map that considers the

optimum radius of influence is 5.95 % points more accu-

rate than the map without. We anticipate finding more

suitable values for the radius of influence in future studies.

The peak AUC value in our experiment is clearly

apparent, and we stress that it is important to find the point

at which AUC values cease to rise. If the radius of influ-

ence is set excessively high or low, the accuracy of the LSI

maps will be reduced. The optimum radius of influence

differs case by case. The number of sections and range of

the radius of influence must be established in a manner that

reflects each specific situation. If the spatial resolution of

the database is insufficient or excessively fine, the area of

influence might not be detected. With this in mind, it is

prudent to apply the radius of influence to statistical models

that incorporate not only FR analysis but also other

methods, such as analytical hierarchy processes, bivariate

statistics, logistic regression, and artificial neural networks.
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