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Abstract Organic residues can be a major source of

nutrients and are valuable fertilizers. But their benefits with

regard to soil quality are undisputed. However, only few

studies have focused on emissions of greenhouse gases from

soil enriched with organic residues. Amicrocosom approach

was employed to investigate the influence of the origin and

composition of various organic residues on mineralization

and N2O and CO2 emissions in an arable soil. In total, we set

up six treatments: control, poultry manure, bio-waste com-

post, sheep and wheat straw compost, cowmanure (CM) and

for further comparison, the mineral fertilizer calcium

ammonium nitrate. 500 g of sieved and homogenized soil

was mixed with the amendments and packed into micro-

cosms. After a pre-incubation period of 10 days, gas con-

centrations were measured periodically from the headspace

of the microcosm by means of an airtight surgical syringe.

The measurement period continued for 32 days. Soil

amended with CM showed a significantly (a = 0.05) higher

cumulative CO2 emission (914 mg kg-1) followed by bio-

waste compost than poultry manure, sheep waste compost,

control and calcium ammonium nitrate. Amending soil with

cow manure and poultry manure led to the highest N2O-N

emissions (110 lg kg-1). However, poultry manure and

calcium ammonium nitrate significantly enhanced mineral-

ization and net nitrification. Amendment of sheep and wheat

straw compost and cow manure led to C sequestration and

reduced N2O emission. Soil pH greatly decreased with

poultry manure, sheep and wheat straw compost and bio-

waste compost. Summing up, the application of organic

residues to soil has some disadvantageous environmental

effects calling for further research.
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Introduction

Climatic perturbations have increased due to greenhouse gas

emissions from anthropogenic sources during the last dec-

ades. The agricultural sector is generally known to release

about 50 % of the climate-relevant gas emissions (IPCC

2007). Soils are the major source of CO2, N2O and CH4

emissions (Rastogi et al. 2002). The aerobic decomposition

of organic compounds is the main biological process

responsible for the release of CO2 from soil to the atmo-

sphere (Alexander 1977). The incorporation of organic

residues has caught worldwide attention because it improves

the physical and chemical properties of soils. The application

of organic residues can enhance N2O and CO2 emissions

(Flessa and Beese 1995). Specific practices, such as organic

residue management (Pattey et al. 2005) can reduce green-

house gas emissions from the agricultural sector.

N2O is produced naturally in soils through the microbial

processes of nitrification and denitrification. In agricultural

soils, these processes depend on environmental factors,

heterogeneity of soil conditions and management practices

(Philippot et al. 2009), organic C (Boeckx et al. 2011), soil

pH (Mørkved et al. 2007), temperature (Saad and Conrad

1993), and water content (Bergsma et al. 2002).

Application of organic fertilizer is not an immediate

source of N but the provision of organic C in the form of

organic fertilizer enhances denitrifiers’ activity and the
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denitrification process. Mineral-N fertilizers also activate

microbial activity by providing inorganic nitrogen

(N) needed for growth (Khan et al. 2007).

Animal wastes are added to the soils as N source and,

besides this, for storing organic C in soil (Flessa and Beese

1995). Cow manure contains about 4.5–18.1 kg of N per

ton, most of it being in organic form. About half of this N is

converted to available N to the plants during the first

growing season. Organic matter, N and P contents in soils

significantly increased over the control when the soil was

amended with poultry manure and cow manure (Rahman

2010). Excess application of manure accumulates N in the

soil, resulting in the accumulation of NO3
- in crops and

ground water pollution (Harada 1992). Composting is a

reasonable solution to re-cycle the animal manure for

agricultural purposes (Bernal et al. 2009).

In Germany, the application of bio-waste is regulated by

‘‘application and introduction of materials onto or into the

soil’’ (BioAbfV 1998). Organic residues can be a significant

source of nutrients and a sound alternative to chemical fer-

tilizers if properly managed. The amount of N converted to

N2O depends on the bio-chemical composition of residues, in

particular on their C/N ratios (Baggs et al. 2000) and physic-

ochemical properties (Danga et al. 2010). Cumulative emis-

sions of N2O and CO2 were found to be negatively correlated

with C/N ratios of the organic residues (Huang et al. 2004).

Applications of manure, compost and bio-solids are the

recommended nutrient management practices to enhance C

sequestration. Recent findings (Mondini et al. 2010) sug-

gest that the addition of organic wastes can reduce CO2

evolution; however, this increases N2O emissions because

organic residues serve as an energy source for the microbes

enhancing nitrification and denitrification processes. The

organic material is enriched with carbohydrates (e.g. cel-

lulose), lipids, fiber and lignin. These compounds will

decompose slowly (Tuomela et al. 2000). The pre-domi-

nant kind of proteins in the residues affects C mineraliza-

tion (Mondini et al. 2010). It is a promising option to

produce compost with different degradability and conse-

quently, different N mineralization (Pal et al. 2010). The

magnitude of greenhouse gas reduction affiliated with

compost might be a few times higher than that of mineral

fertilizers (Enzo and Schleiss 2009).

An incubation experiment was performed with soil

amended with two different animal manures (poultry and

cow manure) and two composts of different organic com-

position (sheep and wheat straw and kitchen garbage

composts) and studied their biochemical properties in

relation to nitrogen concentration and total organic carbon

enhancing N2O and CO2 emissions from soil. The study

was based on the hypothesis that composts and animal

manures similar in composition amended to the soil alter C

and N cycling differently.

Materials and methods

Soil sampling and manure collection

The soil was taken from plots at the ‘‘Heidfeldhof’’

research station of Hohenheim University, Stuttgart, Ger-

many, which had been recently harvested for wheat.

Samples were taken from 0 to 15 cm depth. Sampled soil

was immediately transported to the laboratory, well

homogeneized, sieved to 4 mm (soil properties are given in

‘‘Physico-chemical properties of soil’’ section).

Soil organic amendments used were fresh poultry manure

(PM), fresh cow manure (CM), sheep and wheat straw

compost (SWC) and bio-waste compost (BWC). Fresh

poultry and cow manures were provided by the research

stations of Farm Animal Ethology and Poultry Production

and of Husbandry and Organic Farming affiliated with

Hohenheim University. The research station of Husbandry

and Organic Farming prepared sheep and wheat straw

compost using 15 % chopped wheat straw and pure sheep

excreta. Institute of Plant Nutrition, Hohenheim University,

prepared bio-waste compost that included bio-degradable

fraction (Andersen 2010) of kitchen and garden waste

(European Commission 2010).

Both composts under investigation were prepared by

Indian Bangalore method (FAO 1980). This method does

not require a particular structure. Consequently, recom-

mended dimensions for a heap are 5 feet wide by 3 feet

high (Illinois 2013). The chemical properties are mentioned

in Table 1. The major advantages of this method are: fre-

quent turning that provides aeration, reduces composting

period and higher temperatures are produced as a result of

turning (32.2–60� F) which will kill major pathogens and

weed seeds (Illinois 2013). This method has also some

disadvantages (FAO 2003), which are direct exposure to

weather conditions, nutrient losses due to high wind, fre-

quent turnings, time and labor consumptions.

For comparison we applied commercial mineral-N fer-

tilizer calcium ammonium nitrate (CAN; 27 % total N).

Experimental setup

Organic residues were oven dried at 60 �C, mashed in a

shredder and passed through a 1 mm stainless steel sieve.

The experimental setup included six treatments: control,

soil ? PM, soil ? SWC, soil ? BWC, soil ? CM, and

soil ? CAN with ten replicate each. In total, 60 micro-

cosms were prepared. 500 g soil (gravimetric water con-

tent: 28 %, on dry basis) was filled into each microcosm

(0.82 l). Amendments were mixed homogenously into the

soil. All amendments were applied as 50 mg N kg- 1 soil

comparable to the field applications. Likewise we added C
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as 600, 666, 416.5 and 116.64 as mg/kg through PM, SWC,

BWC and CM to each treatment.

Microcosms were pre-equilibrated for 10 days at room

temperature (23 �C) in the dark. Temperature was recorded

with two probes in the room. The water content of the cores

was regularly controlled by weighting. Evaporation losses

were compensated by adding deionized water to achieve

the target gravimetric water content of 28 %. Except for

the addition of water, no changes were made during the

entire period of incubation, that is, there was no further

mixing and no extra addition of fertilizer.

Prior to incubation, soil and manures were analyzed for

their properties. Mineral-N (NH4
? and NO3

-) and pH were

measured before amendment as well as on the 8th, 16th,

24th, and 32nd day (termination of experiment). Total

organic carbon % (TOC) was measured at the beginning

and at the termination of experiment.

N2O and CO2 flows measurement

The whole system was airproof with rubber seals and

butyl rubber septa in plastic lids of the microcosms

allowing for the sampling of headspace gas. The plastic

lids were fitted with a two way Luer-Lock valve. Samples

were taken at 0, 30 and 60 min by connecting the head-

space with a vacutainer (25 ml) through a mounted sep-

tum using a 100 cm3 multi sample syringe (Smith et al.

1995). To ensure the prior absence of N2O, all vacu-

tainers were evacuated and rinsed with N2 thrice, shortly

before sampling. N2O and CO2 concentrations were

analyzed by gas chromatography (AutoSystem XL Perkin

Elmer) equipped with an N63 electron capture detector

(ECD) and a flame ionization detector (FID), respec-

tively, coupled to an auto sampler. The instrumental

conditions were as follows: oven temperature 65 �C,
ECD operation temperature 100–350 �C, carrier gas for

ECD and FID CH4/Ar (10 %/90) and He (95 %),

respectively. Calibration was done with three external

standards of 700, 900 and 1500 ppb for N2O and 400,

1500 and 3000 ppm for CO2. Gas flow rates were cal-

culated from the change of concentration in the head-

space of the microcosm using linear regression

(Livingston and Hutchinson 1995). Cumulative emission

was calculated by linear interpolation thereafter.

Analytical methods used for organic fertilizers

The dry matter content of the organic fertilizers was

determined by drying samples to constant weight at 60� C.
Total N and total organic carbon (C) contents were ana-

lyzed using an automatic elemental micro-analyser (NA

1500 Carlo Erba). Remaining analyses were performed at

the State Institute of Agricultural Chemistry (LA Chemie),

Stuttgart. Crude protein, total sugar, acid detergent fiber

(ADF), acid detergent lignin (ADL) and cellulose were

determined according to EU and VDLUFA guidelines [VO

(EG) Nr.152/2009 III C, VO (EG) Nr.152/2009 III M, VO

(EG) Nr.152/2009 III J, see http://eur-lex.europa.eu;

VDLUFA MB III 6.5.2, VDLUFA MB III 6.5.3, see http://

www.vdlufa.de/Methodenbuch/]. The cellulose content

was determined by subtracting ADF (cellulose?lignin)

from ADL.

Soil analysis

TOC % was detected by a LECO 2000 CN analyzer. The

particle size distribution was determined by the Pipette

method (Gee and Bauder 1986). Soil pH was measured in

1:2.5 (soil/0.01 M CaCl2) using glass electrode pH meter.

Soil mineral-N (NH4
? and NO3

-) was extracted in a

1 mol L-1 KCl solution (soil/liquid ratio 1:5 w/w) as

referred by Keeney and Nelson (1982). The filtrates were

then analyzed on an automated flow injection analysis

(Brann en Luebbe TrAAcs 800 Auto analyzer).

Net nitrogen nitrification (NNN) was calculated as final

concentration of NO3
- minus initial concentration of

NO3
-. Likewise, net nitrogen mineralization (NNM) was

assumed as final concentration of NO3
- plus NH4

?, minus

initial concentration of NO3
- plus NH4

?.

Physico-chemical properties of soil

The soil was classified as Haplic Luvisol (FAO-UNESCO

1997). Soil pH was nearly neutral (pH 6.8). Bulk density

Table 1 Biochemical properties of the organic fertilizers included in the study

Amendment Total N (%) pH C/N ratio C/N ratio Total Sugar (%) ADF (%) ADL (%) Cellulose (%)

Cow manure (CM) 6 8.1 4.6 35.4 \0.50 38 11 27

Poultry manure (PM) 3 7.8 12 16.1 0.88 18.1 3.1 15

Bio waste compost (BWC) 3 7.3 8.3 14.2 \0.50 61.1 20.4 40.7

Sheep and wheat straw compost (SWC) 3 7.3 13 17.9 \0.50 56.7 29.8 26.9

All percentages are given on dry weight basis

The cellulose percentage has been calculated from ADF and ADL

ADF acid detergent fiber, ADL acid detergent lignin
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was 1.23 g/cm3. Particle size distribution was 19 % sand,

52 % silt and 29 % clay (silty loam). TOC was 1.2 % by

mass. NO3
- and NH4

? contents of the soil before incu-

bation and addition of amendments were 10.8 and

5.6 mg kg-1, respectively.

Statistical analysis

Measured data were statistically evaluated by one way

analyses of variances (ANOVA) using the software IBM

SPSS Statistics Version 19. The least significant difference

(LSD) test (a = 0.05) was used to identify significant

differences between treatments. Correlation was calculated

as Pearson’s correlation coefficient using Sigma plot 12.

Results

Chemical and bio-chemical properties of organic

fertilizer added

Bio-waste and sheep and wheat straw composts had pH

values of 7.3 (Table 1). Animal manures were somewhat

more alkaline. All amendments had low C/N ratios

(Table 1). CM contained high crude protein. Total sugar of

PM was slightly higher than 1 %, but higher than that of

the other organic fertilizers. In contrast, BWC had the

highest cellulose content followed by CM, SWC and PM.

ADF and ADL were pre-dominantly higher in BWC and

SWC compared to the other organic fertilizers tested

(Table 1). The only inorganic fertilizer used was CAN,

which is a compound fertilizer (NH4NO3 ? CaCO3) with

neutral pH (pH 7.0). Ca and N contents of CAN were 8 and

27 % by mass, respectively.

Cumulative N2O flow

Figure 3 shows the release of N2O of the different treat-

ments, measured over a period of 32 days. The amendment

with animal manures resulted in significantly (a = 0.05)

higher N2O emissions compared to the other amendments

(Fig. 1). N2O flows decreased in the following sequence:

PM\CM\CAN\BWC\ SWC\ control.

Cumulative CO2 flow

Soils amended with CM and BWC showed a significantly

higher release of CO2 than the other soils (Fig. 2). CO2 emis-

sion decreased in the following order CM\BWC\
CAN\PM\SWC\ control. The cumulative flows of PM,

CAN and SWC were similar to that of the control.

Course of N2O flow from soil

The highest flow of N2O was observed during the first

3 days after the addition of CM (Fig. 3). With PM, the N2O

flow was low in the first week of incubation, but started to

rise between the 10th and the 15th day. SWC treatment

showed continuously low N2O flows from the beginning to

the end of experiment (\2 lg kg-1 h-1). BWC and CAN

also emitted low flows (\4 lg kg-1 h-1).

Dynamics of CO2 evolution from soil

Soil respiration (Fig. 4) showed the largest reaction to CM

and BWC amendment, where it sharply increased at the

early stages of the experiment, while it declined after a few

days. CAN showed a similar increase, which, however,

remained smaller. CO2 emissions of PM, SWC and also the

control fluctuated at relatively low levels.
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Fig. 1 Cumulative N2O-N flows (lg kg-1) of different treatments.

Bars denote the means of three replicates, error bars standard errors.

Different lower case letters indicate significant difference at a = 0.05
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Bars denote the means of three replicates, error bars standard errors.

Different lower case letters indicate significant difference at a = 0.05
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Total organic carbon

Only the amendment of SWC significantly increased the

TOC over the time of incubation (Fig. 5). It was signifi-

cantly higher than the other treatments.

The application of PM and CAN led to a significant

increase of N concentration after 32 days (Fig. 6). In the

PM treatment, concentration of NH4
? shot up to

110 mg kg-1. From the fifth day on, nitrification started

and NH4
? decreased. Soil amended with CAN reached

50 mg kg-1 NH4
? and then, like PM, dropped down

from the fifth day on. In the other treatments, the NH4
?

concentration increased slightly and remained more or

less constant at values of around 20 mg kg-1 for most of

the incubation period until it declined towards the end.

The NO3
- concentration was higher during the experi-

ment. Throughout the experiment, the net mineralization

and net nitrification of PM were 52.8 62.0 mg kg-1,

while those of CAN 57.7 and 56.4 mg kg-1,

respectively. These values were significantly higher than

the respective values of SWC, BWC and the control.

The net nitrification of CM and SWC was only 5.6 and

6.7 mg kg-1 and in case of BWC even less

2.53 mg kg-1 (Fig. 6).

Soil pH

The soil pH data are presented in Fig. 7. During the

incubation soil pH of the SWC, BWC and PM amended

treatments decreased by about one unit. After addition of

CAN soil pH slightly increased, while after CM amend-

ment it slightly decreased.

Correlation

No other factors were correlated with each other. Only

NO3
- concentration was negatively correlated (r = -0.61)

with NH4
? in PM amended soil.
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Discussion

CO2 flows and C sequestration

The soils amended with organic fertilizers (composts,

manures) behaved quite differently in the first 10 days of

incubation (Fig. 4). BWC and CM showed CO2 emission

peaks while PM and SWC did not. The peaks may be

attributed to the low C/N ratios of BWC and CM rather

than to other factors (Table 1). The stability of SWC (cf.

Fig. 5), the compost with the higher C/N ratio, may be

attributed to the fact that SWC is made up to 15 % of

wheat straw, which contains a high fraction of lignin

(Table 1). It is, therefore, quite resistant to mineralization

due to strong chemical bonds (McCrady 1991). Addition of

such high lignocellulosic material to a compost leads to

slower decomposition, so that less CO2 is emitted. Com-

paring sheep and wheat straw compost to cow and wheat

straw compost, Jianming et al. (2008) pointed out that

sheep and wheat straw compost is more resistant to rapid

degradation, so that its nutrients are released rather

according to the changing demand of the growing crop

(melon). Fabrizio et al. (2009) found a linear response of C

sequestration to the application dose of sheep and wheat

straw compost. Roberson et al. (2008) suggested that no

tillage is an effective way to mitigate CO2 emission from

soil amended with PM.

The respiration peak of BWC indicates that, even after

3 months of storage, BWC still contains a considerable

fraction of easily degradable material. CM shows a similar

CO2 emission pattern as BWC (Fig. 4), but showed the

different trend for N2O (Fig. 3) the N2O flows were lower

in BWC treatment, probably because the easily minerliz-

able N containing substances have already been mineral-

ized during the composting process. This is also indicated

by the C/N ratios of these amendments (Table 1).
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However, CAN produced a priming effect, it enhanced soil

respiration by providing N to accelerate the decomposition

of indigenous organic matter by soil microorganisms. The

stimulation of soil respiration by the addition of mineral-N

fertilizer has already been reported many times (e.g. Khan

et al. 2007; Wang et al. 2010).

With SWC amended soil, the maximum emission of

CO2 (Fig. 4) was observed in the second phase of the

experiment. It was accompanied by a decline in NH4
?-N

content (Fig. 6). The coincidence mirrors the interconnec-

tions of microbial utilization of C compounds as energy

source and of mineral-N for their cellular synthesis (Deenik

2006). Over all, bio-waste compost amended soil respired

80 % of the C added within first 5 days. Approximetly

46 % of added C respired till third day, added as cow

manure. Conversely, poultry manure and sheep and wheat

straw compost amendment only emitted 19 and 2.5 % of C

added (Fig. 4).

N2O flow and N concentration

N2O emission from soil amended with manures is well

documented in the literature (Baggs et al. 2003; Huang

et al. 2004; Millar and Baggs 2004; Millar et al. 2004). In

case of the CM amendment, the main N2O emission

occurred within the first 5 days and it was accompanied by

a CO2 peak, reflecting rapid mineralization. It seems that

the mineral-N released in the course of mineralization is

readily denitrified and released as an N2O peak. Despite a

similarly high mineralization, BWC showed no such peak.

However, because of the low sampling resolution (7 days)

a mineral-N peak may have remained undetected. The late

appearance of the N2O peak after the PM amendment

(compared to CM amendment) is a consequence of the

higher C/N ratio and the higher crude protein content

(Table 1). Because of the slower mineralization, nitrifica-

tion of PM amended soil started later than that of CM

amended soil (Fig. 6). Dutta and Stehouwer (2010) repor-

ted immediate heterotrophic activity after the application

of organic amendment, but low levels of NO3.

To ensure homogeneity, all manures were finely ground

and sieved before mixing with soil. This may have resulted

NO3
- content and N2O emission. Cabrera et al. (1994)

noticed higher N2O emissions when PM was applied as a

powder rather than as pellets.

CAN amendment generated a moderate N2O peak

shortly after the beginning of incubation, which was con-

siderably lower than the N2O peak of the soil amended

with animal manures. Upendra et al. (2010) reported that

N2O emission after PM amendment was higher than after

the application of mineral fertilizer. They explained their

finding with the enhancement of C and N cycling by the

addition of extra C. In contrast, Cayuela et al. (2010) and

Velthof et al. (2005) observed similar N2O emissions after

the application of CM and CAN, respectively.

NH4
? and NO3

- contents of soil after CAN application

were similar in the first half of the experiment, reflecting

the equal proportion of NH4
? and NO3

- in CAN. The

solubility of a mineral fertilizer depends on its type (Millar

et al. 2010). CAN is one of the readily soluble N fertilizers.

NH4
? stimulates the activity of nitrifiers in soils (Khan

et al. 2007). Nitrifiers are obligate chemolithoautotrophs as

they use NH4
? as an energy source instead of organic

material. The divergence of the NH4
? and NO3

- contents

in the second half of the experiment indicates the onset and

ongoing of nitrification.

The amendment of composts, be it SWC or BWC,

resulted in considerably lower N2O flows due to the slow

release of N from composts. This finding is in an agreement

with the data of Dennis and Burke (2001). It is mainly due

to high contents of cellulose and fiber (Pal et al. 2010), as

well as of lignin (Tuomela et al. 2000) (Table 1). Organic

N mineralization of SWC stopped at the 15th day of

incubation. N concentration in SWC amended soil is low

and with low N2O emission. Mixing of straw is an effective

strategy to avoid excess NO3
- and to reduce greenhouse

gas emission (Shaojun et al. 2009) and nitrate leaching

(Eghball et al. 1997).

Because of the small proportion of readily mineralizable

N in composted manures, organic N is less likely to be

released quickly. The developing microorganisms require

more N than the substrate provides. In compost amended

soil, the mineral-N pool was constant until the end of the

incubation, reflecting the gradual mineralization and uti-

lization of mineral-N by microbes (Deenik 2006).

The TOC contents of the CAN amended soil (0.81 %)

were similar to that of the manure amended soil in the

beginning. CAN application has an impact on the activity

Treatments
C PM SWC BWC CM CAN

TO
C

 %

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Initial
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ab 
ab

ab
  ab    ab

      c

ab
    ab   ab

 abab ab

Fig. 5 TOC % contents of soil after amendment. Different lower

case letters indicate significant difference at a = 0.05
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of nitrifying bacteria and subsequent N transformations

(Watson et al. 1995). The course of mineralization of PM

amended soil resembled that of the CAN amended soil, but

that of CM did not.

Nitrogen content of manures

Nitrogen content of poultry manure was found to be lower

than that of cow manure (Table 1). It is a general finding

(Kaur et al. 2005) that the total N content of poultry

manure is higher than that of cow manure. The poultry

manure used in this study was collected from layer poultry

cages. Layer poultry manure contains lower N content than

that from broilers and turkeys (Menzi et al. 1998). The cow

manure was collected directly in cow houses. Within the

dairy cow group, calves, heifers, lactating cows, dry cows

and veal calves will show variations with regard to their N

content of manure. The nutrient content of manures varies

with type of animal, bedding material, storage, and pro-

cessing (Rosen and Bierman 2005).

There are still some gaps in the scientific understanding

of the factors controlling nutrient composition (especially

N), handling of manure and its long term efficiency in

northern and central Europe (Menzi et al. 1998). The C/N

ratio of the cow manure was much lower (Table 1) than

previously calculated by Rynk (1992) and Hills (1979), i.e.

19 and 8. It was lower than the C/N ratio of the decom-

posers. Soil microorganisms have a C/N ratio of approxi-

mately 8. They must acquire enough C and N from the

environment in which they live to maintain the C/N of their

bodies (USDA 2011). A high C/N ratio means that N will

be exhausted before the C is digested by the bacteria as an
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energy source. Conversely, a low C/N ratio results in high

NH4
? concentrations which may become toxic to the

anaerobic bacteria (Homan et al. 2013).

Soil pH as an influencing factor of denitrification

The application of compost leads to a decrease of soil pH.

Ano and Ubochi (2007) found a significant decrease of soil

pH (by one unit) after compost application because of the

release of fulvic and humic acids (Tuomela et al. 2000).

The decrease of pH with PM was similar (Fig. 7). In CM, it

declined negligibly due to uric acid (Nahm 2003). This

effect of cow manure is known to be due to its buffering

agents, such as carbonates and organic matter. Risse et al.

(2006) found that soil pH of plots receiving mineral fer-

tilizer increased by half a unit (5.2–5.6). This supports the

results of the current study, which showed a similar

increase of pH in the CAN treatment. N2O emission from

CAN treated soils decreased regardless of the increase in

pH insinuates that the decrease in soil pH in the treatments

with organic amendments was not the limiting factor of

N2O emission. Denitrification is not only positively cor-

related with soil pH, but several other factors exert an

influence, such as abundance and kind of denitrifiers

(Lakha et al. 2009). The ultimate low N2O emission rate

can be credited to the decline or declined activity of the

denitrifier population with the passage of time (Nemeth

2012). Although the trends of pH are different, PM and

CAN amendment leads to a comparable reaction regarding

the process of nitrification and the course of NO3
- con-

centrations. Tarre et al. (2004) also observed a high nitri-

fication rate despite a low pH.
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Efficiency of manures and composts in sequestering

C

The slow degradability of sheep and wheat straw compost is

the result of high lignin content (Table 1) which becomes

even higher in the composting process (Leifeld et al. 2002).

Co-composting with wheat straw, which is a relatively slow

releasing material has been suggested as a mitigation prac-

tice for N2O (Kariyapperuma et al. 2012). Organic residues,

either as manures (green or animal) or composts are added to

the soil as a source of organic matter (Bot and Benites

2005). Organic matter with low C/N ratio provides larger

amount of readily mineralizable N substrate for microbial

N2O production (Kawabata et al. 2010). In the end of the

experiment, only sheep manure and wheat straw compost

had sequestered C significantly. It can be concluded that the

bio-degradable portion of organic C of the mentioned

compost was not high enough. An other explanation is in the

maturity of compost (Biala 2011). The sheep and wheat

straw compost was more mature (1 year) than the bio-waste

compost (3 months). On the other hand, the application of

sheep manure alone has also been reported to increase

organic matter and cation exchange capacity of soil (Dong

and Shu 2004). The sheep manure exchanges NH4
? with

other cations and retains nutrients in soil. For soil C

sequestration strategies to be effective in the long-term, it is

likely to increase the slow and passive pools of soil organic

matter (Franzluebbers and Stuedemann 2002). Further

research is recommended to compare sheep manure appli-

cation with composted sheep manure regarding CEC effi-

ciency and reduction of CO2 and N2O emissions.

The results obtained were in line with the hypothesis

suggesting that manures contain different easily soluble C

and N fractions. The small proportion of readily mineraliz-

able N in some manures suggests that the organic N in these

manures may be more strongly bound and is less likely to be

released quickly. In our investigation, all organic residues

had C/N ratios less than 20. The higher net NH4
? mineral-

ization of the poultry manure treatments might be explained

by a higher specific mineralization rate, probably related to a

higher decomposability and low C/N ratio of poultry man-

ure. Organic residues are applied to the soil as a source of N

and require a reasonable understanding to predict the min-

eralization of organic N compounds.

Conclusion

The use of composts has decelerated not only N mineral-

ization and N2O flow, but it also decreased soil pH, which

could slow down nitrification. The practice of applying

composts with such low C/N ratios could be advantageous

for soils with moderate to high pH, but it is not

recommended for soils with pH below 7. Application of

PM has emitted significantly more N2O, but still less than

1 % of applied N. PM showed fast mineralization, but it

considerably reduces soil pH which again is not suitable for

acidic or neutral soils. CM and BWC emitted significantly

more CO2 indicating higher mineralization, which, in

principle, could enhance denitrification.

Not only composts but also poultry manure reduced soil

pH; this will slow down the nitrification process and can

reduce rapid NO3
- losses through leaching. Cow manure

stabilized soil pH. Whalen et al. (2000) reported that

application of cow manure increased pH of acid soils. Soils

with low organic matter and N content and high pH can be

improved by cow manure application lowering soil pH and

increasing N content to fulfill crop requirement. Cow

manure application to soil as a fertiliser and organic matter

source is the most adopted agricultural technology by

developing countries.

Animal manure applications are anticipated to supple-

ment soil organic matter and augment total N content, which

was not evident in our study (Fig. 5). Total C increased after

amendment with SWC, but not BWC. There is little specific

research on N2O and CO2 flows after compost application in

farming systems. Further studies with a wide variety of C/N

ratios are required to evaluate composts and their applica-

tion rates under laboratory and field conditions.

Recommendations

• It is recommended to avoid direct application of animal

manure to the soil.

• Co-composting of cow and poultry manures with wheat

straw or rice-husk (with high lignin) are advantageous

to reduce N losses from soil.

• Co-composting of bio-waste with wheat straw reduces

N2O and CO2 losses.

• Residual effects of manures and composts (Ginting

et al. 2003) should be evaluated under laboratory and

field conditions.

• Applying compostswith lowC/N ratios to the field ismore

effective than applying manures with low C/N ratios.
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