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Abstract Terrain attributes derived from digital terrain

model (DTM) were used to study spatial variation of total

soil C, N and available P in surface soils of a watershed of

Himalayan landscape. Terrain attributes elevation, slope

gradient and upslope catchment area (UCA) and terrain

indices [terrain wetness index (TWI), water power index

(WPI) and sediment transport index (STI)] were derived

from DTM and evaluated for their potential in soil nutrients

mapping. These nutrients showed positive correlation with

UCA, TWI, SPI and STP terrain indices. Among these

terrain indices, TWI showed highest correlation coefficient

for TC (r2 = 0.71), N (r2 = 0.67) and P (r2 = 0.66) fol-

lowed by WPI and STI. Geostatistical analyses used to map

these nutrients, co-kriging with TWI ? NDVI, TWI and

slope as co-variables, had improved the spatial prediction

to 60.46, 55.81, 44.18 % for TC and 33.63, 21.78, 17.82 %

for N, respectively, contrary to ordinary kriging. The pre-

diction accuracy for P was improved with co-variables of

TWI ? NDVI and TWI by 30.03 and 4.50 %, respectively.

The study clearly revealed that by integrating NDVI as co-

variable has significantly improved the accuracy for TC

followed by N and P. TWI alone as co-variable has

improved the spatial prediction significantly.

Keywords Geostatistics � Terrain attributes � DEM � Soil
nutrients mapping � Watershed

Introduction

Spatially explicit data of soil properties and nutrients are

required for better assessment of soil potential for sus-

tainable management of land resources and in precision

agriculture. In recent years, availability of high-resolution

satellite data and terrain data had provided large opportu-

nities for predictive soil mapping to generate accurate

spatially explicit soil maps (McBratney et al. 2003). The

variability in soil properties in any landscape is an inherent

natural phenomena conditioned by soil-forming factors. Its

spatial distribution is also influenced by soil erosion and

deposition processes occurring in the landscape. The

effects of topography on spatial distribution of soil attri-

butes and hydrologic processes have been intensively

studied by several researchers (Moore et al. 1993; Bell

et al. 1995; Herbst et al. 2006; Iqbal et al. 2005). Topog-

raphy controls the flow of water and sediments; hence it

mainly affects catenary soil development (Jenny 1941) and

the formation of typical patterns of spatially distributed soil

attributes and quality. C, N and P are major nutrients in

soils governing soil quality and thus vegetation growth. At

the regional scale, the distribution and quantity of SOC

depend on several factors such as precipitation, tempera-

ture, soil texture, soil depth, land management, and vege-

tation type (Janzen et al. 1998) but at local scale, its spatial

pattern is largely governed by topography.

Topography is one of the major factors affecting soil C

and N contents at landscape level (Cambardella et al. 1994;

Bourennane et al. 2000). Landscape attributes including

slope, aspect and elevation, and land use may be the

dominant factors impacting nutrients in the soil with

homogeneous parent material and a single climate regime

(Rezaei and Gilkes 2005). Terrain analysis intends to

derive topographic parameters comprising a set of primary
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and secondary terrain attributes used in digital soil map-

ping applications (Behrens et al. 2010). Topographic gra-

dients characterize the shape of the land surface thereby

dictating the distribution of soil physical and chemical

properties (Moore et al. 1991). Umali et al. (2012) inves-

tigated the effect of various management practices and

topography on the variability of key soil properties. Several

researchers (Moore et al. 1993; Zhang et al. 2012) estab-

lished statistical relationships between topographic indices

derived from digital elevation models, and spatially vari-

able soil properties.

Geostatistics is primarily used as a tool to describe

spatial patterns by semivariograms and to predict the val-

ues of soil attributes at unsampled locations. It recognizes

the continuous nature of soils and can account for random

variation through modeling the spatial correlation in soil

properties often present in the landscape. It also facilitates

integration of ancillary information such as terrain

parameters available easily at higher resolution for spatial

prediction of soil properties (McBratney et al. 2000). It has

been extensively used for quantifying the spatial pattern of

soil properties and environmental variables (Webster and

Oliver 2001; Zhang and McGrath 2004). Geostatistical

interpolation techniques such as kriging and co-kriging

have been widely used to predict soil properties at

unsampled locations and to understand their spatial varia-

tion in the landscape (Voltz and Webster 1990; Chien et al.

1997). Spatial dependency of soil properties was improved

by incorporating secondary variables, known as co-kriging

method (Goovaerts 2000; Triantafilis et al. 2001; Mueller

and Pierce 2003; Zhang and McGrath 2004).

The Himalayan landscape witnesses soil erosion by

water where topography is a major factor in controlling the

erosion and resulting in spatial variation of soil nutrients in

the watershed. Thus, the present study aims to: (a) analyze

the role of terrain attributes in controlling nutrients such as

C, N and P in soil and (b) use terrain attributes and spectral

vegetation index as co-variables in improving prediction of

spatial distribution of soil nutrients using geostatistical

methods.

Study area

The study area is located in the western part of Doon

Valley in Dehradun District of Uttarakhand State of India

(Fig. 1). The watershed covers an area of 8.05 km2; lies

between 30�250–30�300N and 77�450–78�000E that falls

within the Sitlarao watershed, belonging to Asan river

system, a tributary of Yamuna River. The CartoDEM was

used for terrain analysis. The combination of Cartosat-1

Image and Toposheet 53F/15 was used to delineate the

watershed boundary after proper knowledge of study area

visit.

The climate of the study area is characterized by humid

sub-tropical. The mean annual temperature ranges from

15 �C in winter to 35 �C in summer. The mean annual

rainfall received is 2051 mm (1983–2008) and 70 % of

rainfall is received during monsoon season (June–

September). The soil texture is predominantly sandy loam

to loam. The area comprised forest, agriculture and scrub

as dominant land use/land cover.

Data used and methodology

Data used

IRS Cartosat-1 stereo digital data (24 December 2008)

were used to generate digital elevation model (DEM) and

Resourcesat-1 LISS IV digital data of 12 December, 2004

were used to prepare a land use/land cover map. Cartosat

Stereo satellite data were processed using ERDAS to

generate digital elevation model. 23 Nos. of GCPs were

collected in the area using DGPS for geo-rectification. The

DEM generated had the spatial resolution of 30 m and the

vertical accuracy of RMSE 4.48 m. SOI Toposheet 53F/15

was used for georeferencing of satellite data and in the field

survey.

Methodology

ArcGIS (Ver. 9.3) was used to carry out terrain analysis

and integration of maps by spatial analysis. ERDAS

Imagine (Ver. 9.0) was used to process the digital satellite

data to prepare a land use/land cover map. The method-

ology in detail has been discussed as: (a) soil sampling to

analyze total carbon and total nitrogen (TC and TN);

(b) deriving primary and secondary terrain attributes from

DEM; (c) statistical relationship of terrain attributes and

soil nutrients; (d) variogram analysis to study spatial

dependency of soil C and N using (1) kriging and (2) co-

kriging methods of geostatistics; and (e) validating spatial

prediction of soil nutrients in the landscape. Variogram

analysis was done to understand the spatial pattern and

trend of the data.

Soil sampling and analysis of total soil carbon (TC)

and total nitrogen (TN)

Geostatistical analysis requires a closer sampling density to

determine spatial dependency parameters for interpolation

of data (Yemefack et al. 2005). Therefore, a regular grid

sampling (Fig. 2) was carried out in the watershed. A total
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of 113 samples at spatial distance of 200 ± 25 m were

collected and out of it 100 samples were used for prediction

and remaining 13 samples for validation. The soil sampling

was done in the month of April–May, 2010. Grid sampling

positions were determined by marking grids on large-scale

(1:10,000) satellite imagery of IRS Cartosat-1 data. Grids

in the fields were located with the help of toposheet and

ground features identified on the imagery.

Geospatial locations of 113 soil sampling points were

recorded using Garmin GPS receiver (GPS 12 CX) and soil

samples of the surface layer (0–15 cm) were collected. Soil

samples distribution in different land use/land cover are

described in Table 1. The soils in the area are skeletal,

having[35 % coarse fragments in the top layer. All soil

samples were air dried to ensure the removal of soil

moisture and stored in air tight containers for total carbon

Fig. 1 Location of the study area
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(C) and nitrogen (N) analysis using CHNS analyzer (Nel-

son and Sommers 1982) and available phosphorus (P) by

the Olsen and Sommers (1982) method.

Deriving primary and secondary terrain attributes

from DTM

Cartosat DEM generated from stereo-cartosat-1 data was

used to characterize primary and secondary terrain attri-

butes using ArcGIS ver. 9.3. Primary terrain attributes such

as elevation, slope, plan curvature, profile curvature and

flow accumulation and secondary attributes such as terrain

wetness index (TWI), stream power index (SPI) and sedi-

ment transport index (STI) were generated. Terrain indices

are used to characterize the water flow over the surface.

These indices were used to analyze statistical relationship

with soil nutrients. The terrain indices were calculated

using Spatial Analyst in ArcGIS (Environmental Science

Research Institute, Redlands, CA, USA, v 9.3). A brief

description of various terrain indices derived using primary

terrain attributes is discussed as below.

Terrain wetness index (TWI) It provides a relative index

of whether a point in a landscape position is likely to

receive runoff water by taking the natural log of the

specific catchment area divided by the local slope (Beven

and Kirkby 1993). It is a well-studied indicator of soil

property and soil moisture distribution at different land-

scape positions. It is defined by:

TWI ¼ ln As= tan bð Þ ð1Þ

where As is specific catchment area and b is slope in

radians.

Fig. 2 Spatial distribution of soil sampling locations in the watershed

Table 1 Distribution of soil samples collected in various land

use/land cover

Land use/land cover types No. of samples

Dense forest 31

Moderate dense forest 15

Open forest 9

Agriculture 49

Orchard land 5

Total 113
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Higher TWI values indicate a point with high con-

tributing area and/or lower slopes.

Stream power index It is indicative of erosive power of

overland flow and could be used to identify suitable loca-

tions for soil conservation measures, to reduce the effect of

concentrated surface runoff. High value areas show more

prone to erosive power of runoff. It is expressed as:

SPI ¼ As � tan b ð2Þ

Sediment transport index It is widely used to characterize

the water flows in landscapes. It is suitable for identifying

erosion processes. It accounts for the effect of topography

on erosion.

STI ¼ As=22:13ð Þ0:6 � sin b=0:0896ð Þ1:3 ð3Þ

Satellite data-derived spectral index

IRS Resourcesat-1 LISS IV (5.8 m) satellite data were used

to generate normalized difference vegetation index

(NDVI). The spectral index is most widely used for veg-

etation studies. It is often directly related to other ground

parameters such as percent of ground cover, photosynthetic

activity of the plant, amount of biomass and surface soil

properties etc. NDVI can be used to better capture the

spatial variability associated with soil (Rivero et al. 2009).

NDVI value of natural vegetation cover (Forest/scrubland)

was used as spectral index parameter in spatial prediction

of soil properties in the study. NDVI using remote sensing

IRS LISS IV was calculated as:

NDVI ¼ NIR� Redð Þ= NIRþ Redð Þ ð4Þ

where near infrared (NIR) and Red represent Band 3 and

Band 2, respectively, in LISS IV data.

The value for NDVI lies between -1 and ?1. Negative

values correspond to water bodies, near to zero bare earth

or barren lands and near to ?1 correspond to highly veg-

etative lands.

To study correlation of terrain attributes and soil nutrients

Pearson coefficient of correlation (r) and corresponding

coefficient of determination (r2) were computed for all

pairs of terrain attributes (predictor variables) and topsoil

attributes (predicted variables) to evaluate its predictive

capacity. Linear relationships of soil nutrients and terrain

attributes such as slope, elevation, As, TWI, STI and SPI

were studied using statistical software. Terrain attributes

with highest correlation coefficient were selected as co-

variable for co-kriging interpolation.

Variogram analysis to study spatial dependency of soil

nutrients using geostatistics

The geostatistical analyses were carried out using ArcGIS

software (version 9.3) and its extension module of Spatial

Analyst (version 2.0). Before applying inferential statistics

to study spatial dependency of soil properties, some sta-

tistical parameters such as minimum, maximum, mean and

SD of the soil properties were calculated to get an

impression of how the sample data are distributed (Sne-

decor and Cocharn 1980). Data were visualized by his-

togram and box plot using geostatistical software R and

Geostatistical wizard of ArcGIS.

Variogram analysis Computation of variogram also

known as semivariogram is a common way of visualizing

spatial dependence. An experimental variogram estimates

the average semi-variance of all the point pairs in a bin

separated by certain vector by the equation:

c hð Þ ¼ 1

2N hð Þ
XN hð Þ

i¼1

Z ið Þ � Z iþ hð Þð Þ2 ð5Þ

Variogram parameters such as sill, nugget and range pro-

vide quantitative expression of spatial structure for the

measured property. Sill is the maximum semi-variance that

reflects the variability in the absence of spatial dependence.

Nugget is the semi-variance as the separation approaches to

zero and reflects the unexplained variability of the spatial

structure. Range defined as separation distance at which the

sill is reached and reflects the distance at which there is no

evidence of spatial dependence (Rossiter 2007).

Experimental variograms were computed with geosta-

tistical wizard of ArcGIS for the given dataset and fitted

with some theoretical model to explain the local spatial

dependence of the soil properties. The computed variogram

was then compared on the basis of sum of squared differ-

ences to obtain best fitted model.

SSD ¼
Xn

i¼0

Zi � Zi�ð Þ ð6Þ

Corresponding partial sill, nugget and range of the fitted

variogram were computed.

The ratio of the nugget to the total sill was assumed to

be criterion to classify spatial dependence of soil proper-

ties. Ratio lesser than 25 % and higher than 75 % corre-

sponds to strong and weak spatial dependence, respectively

(Chang et al. 1998), while ratio between 25 and 50 %

indicates moderately high and from 50 to 75 % falls in

moderate spatial dependence.

NSR ¼ Co

Coþ Cs
� 100 ð7Þ
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where Co is the nugget and Cs is the partial sill.

Kriging and co-kriging are typical geostatistical pre-

diction methods used in the study. Ordinary kriging and co-

kriging do not require stationarity of the mean over the

entire domain. Ordinary kriging uses the local mean in the

estimation, whereas simple kriging uses the global mean;

thus, simple kriging would be biased if the local mean is

different from the global mean. Therefore, the ordinary

kriging and co-kriging were selected in this study.

Kriging It provides a theoretical weighted moving aver-

age of the input parameter over the distance between

sampling sites (lag distance). It is the prediction procedure

using known values and semivariogram to determine the

unknown values. Ordinary Kriging, a standard version of

kriging is computed as:

Zo ¼ k1Z1 þ k2Z2 þ � � � � � � þ knZn ð8Þ

where ki are the associated weights (Isaaks and Srivistava

1989).

Ordinary Co-kriging It is a geostatistical technique

developed to improve the estimation of a variable using the

information on other spatially correlated variables which

are generally more densely sampled. The variables are

called co-regionalized and are spatially dependent.

Zo ¼
X

aiZi þ
X

bjVj ð9Þ

where the ai (i = 1, 2,…, n) are the weights applied to the

z samples and the bj (j = 1, 2,…, m) are the weights

applied to the V samples.

Validation of spatial prediction of soil nutrients

in the landscape

Prediction accuracy is usually tested by comparing pre-

dicted values with measured values and applying some

measures of goodness of fit. In the study, 13 random

sample points excluded from the total data set were used

for validation. The predicted values at each validation point

were extracted using point extraction tool of ArcGIS.

Residuals were calculated and plotted in EXCEL spread-

sheet. To test the goodness of fit, root mean square error

(RMSE) was calculated.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼0

ðZi � Zi� Þ
s

ð10Þ

To estimate the improvement of spatial prediction of

one method relative to the other method, a relative

improvement (RI) (Pang et al. 2009) was used to measure.

The prediction accuracy of the x-geostatistical method over

the reference method was calculated as

RIx ¼ RMSEx � RMSEref=RMSErefð Þ � 100 ð11Þ

where RMSEx and RMSEref are RMSE value of the geo-

statistical predicted and reference methods, respectively.

The reference method taken in the study was ordinary

kriging (OK) method.

Results and discussion

The spatial distribution of soil nutrients in the landscape is

discussed as below.

Statistical relationship between terrain attributes

and soil nutrients

Topography is one of the most important soil-forming

factors in the hilly landscape and causes variability of soil

properties. It also affects infiltration and runoff potentials

of the landscape and plays a significant role in the redis-

tribution of soil nutrients through water across the land-

scape (Ovalles and Collins 1986; Kravchenko et al. 2002;

Creed et al. 2002). Soil C and N had shown a higher degree

of spatial correlation caused by intrinsic factors of the

topography that controls the movement and storage of

water, sediment and solutes (Sahrawat 2004).

The Pearson correlation analysis was performed to

identify the relationships between terrain attributes and

total soil carbon (TC), nitrogen (N) and phosphorus

(P) (Table 2). The elevation and slope terrain parameters

were observed with negative correlation whereas positive

correlation with UCA, TWI, SPI and STP terrain attributes.

Higher elevation and steeper slope area had lowest TC and

N and vice versa. Slope had significant negative correlation

with TC (r2 = -0.64) and N (r2 = -0.61). Similarly, Guo

et al. (2009) showed negative correlation of soil organic

matter with slope and elevation in a hilly area in South-

Western China. The upslope contributing area (UCA) ter-

rain attribute has been observed to have a positive

Table 2 Pearson correlations coefficient between terrain attributes

and soil nutrients

Terrain attributes TC TN P

Elevation -0.2 -0.17 –

Slope -0.64 -0.61 -0.40

UCA 0.38 0.39 0.29

TWI 0.71 0.67 0.66

SPI 0.41 0.43 0.28

STI 0.28 0.25 0.35

UCA Upslope contributing area, TWI terrain wetness index, SPI

stream power index, STI sediment transport index, TC total carbon,

TN total nitrogen, P available phosphorus
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correlation with TC (r2 = 0.38), N (r2 = 0.39) and P

(r2 = 0.29).

Secondary terrain attributes showed cumulative effect of

slope gradient and shape that affect the spatial distribution

of soil nutrients. It showed that nutrient distribution was

largely influenced by erosion and water distribution in the

hilly landscape. Among the terrain indices, TWI showed

highest correlation coefficient for TC (r2 = 0.71), N

(r2 = 0.67) and P (r2 = 0.66) followed by WPI and STI. A

highly significant positive correlation between TWI and

TC, N and available P was observed whereas negative

correlation with slope parameter. Empirically, under nat-

ural conditions, Manning et al. (2001) showed a negative

correlation of soil moisture with elevation and high soil

carbon accumulation in low lying areas. Mueller and Pierce

(2003) showed that topographical wetness index (TWI)

reflects the redistribution of water over landscape and is the

most appropriate secondary variable in determining SOC

distribution. Several researchers reported a strong rela-

tionship between terrain attributes and soil C at a field scale

(Moore et al. 1993; Yoo et al. 2006).

Spatial prediction of soil nutrients

Descriptive statistics of total samples (113 Nos.) revealed

that the total carbon in surface soil varies in the range of

0.22–2.66 % with a mean value of 1.23 % and SD of 0.61.

The total nitrogen (N) was found to vary in the range of

0.03–0.37 % with a mean value of 0.17 % and SD of 0.09.

P in the soil ranged from 3.21 to 79.48 ppm with mean

value of 32.21 and SD of 17.17. The data showed skewness

of 0.31 for TC, 0.14 for TN and 1.12 for P. Skewness

indicates departure of data from normality, and a value of

\1 denotes normal distribution of the data. A logarithmic

transformation was considered where the coefficient of

skewness is greater than one (Webster and Oliver 2001).

Therefore, a logarithmic transformation was performed for

P to make the data Gaussian in nature.

Ordinary kriging: semivariogram of soil nutrients

In the study, isotropic variogram was computed for soil

TC, N and P as no significant differences in spatial

dependency were observed by anisotropic semivariogram.

A spherical theoretical covariance model suitable for spa-

tial fields was fitted to experimentally derived covariance

values for minimum RMSE value. The semivariogram

model with the smallest residual sum of squares was

selected as the best fitting model. The semivariogram

model parameters for TC, N and P were computed with the

fitted model (Table 3). The range of the semivariogram for

TC was larger than N and P. The range describes the dis-

tance at which values of one variable become spatially

independent of another (Kerry and Oliver 2007). It is used

to know the soil sampling interval for future survey. Sill

indicates the lag distance between measurements at which

one value for a variable does not influence neighboring

values.

The variogram for TC, N and P showed lowest nugget

variance for TC followed by N and P. The large nugget

value for P compared to TN and TC showed more varia-

tions of its value over small distances. The small nugget

value exhibits adequate sampling density to reveal the

spatial structure. The range for all three nutrients varies

from 278 to 301 m. It supported appropriate soil sampling

distance of 200 m for establishing spatial autocorrelation

for these soil nutrients in the watershed. It validates a good

spatial structure of interpolated soil nutrients maps in the

study (Goovaerts 1997).

The nugget to sill ratio (NSR) was assumed to be the

criterion to classify spatial dependence of soil properties.

Ratio lesser than 25 % and higher than 75 % corresponds

to strong and weak spatial dependence, respectively

(Chang et al. 1998), while ratio between 25 and 50 %

indicates moderately high and from 50 to 75 % falls in

moderate spatial dependence. The NSR (%) values for

kriging semivariogram were 65, 69 and 70 % for TC, TN

and available P, respectively, revealing its moderate spatial

dependence. Zhang et al. (2012) reported moderate spatial

correlation for soil organic matter based on C0/sill ratio.

Co-kriging method for spatial prediction of soil nutrients

The incorporation of terrain variables into a regression

kriging model is a suitable method for increasing the

accuracy of prediction of these soil properties (Sumfleth

and Duttmann 2008). Terrain indices i.e. terrain wetness

index (TWI) and slope were found to be most correlated

with soil nutrients (TC and TN) and TWI with available P.

The terrain indices can be used as secondary variable to

characterize the spatial trend of primary variables (soil

nutrients) to generate interpolated map using ordinary

kriging. Co-kriging was applied to soil variables having

Table 3 Model parameters of isotropic spherical semivariograms

calculated for selected soil properties

Parameter TC TN P

Variogram model Spherical Spherical Spherical

Nugget variance (Co) 0.59 (%) 0.63 (%) 0.95 ppm

Structural variance (Cs) 0.32 (%) 0.28 (%) 0.41 ppm

Total sill (Co ? Cs) 0.91 (%) 0.91 (%) 1.36 ppm

Range (m) 301.1 289.6 278.1

Nugget–sill ratio (NSR) (%) 64.8 (%) 69.2 (%) 69.8 ppm

Spatial dependence class Moderate Moderate Moderate

TC Total carbon, TN total nitrogen, P available phosphorus
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significant correlations with terrain attributes. The semi-

variogram model parameters using terrain parameters as

co-variables for TC, N and P were computed with the fitted

model (Table 4). Use of terrain parameters as co-variables

in fitting semivariogram model has lowered the model

parameters values significantly for all the nutrients show-

ing significant improvement of spatial predictability of soil

TC, N and P in the landscape. The nugget effect (variance)

has reduced to very small (0.19–0.21) and the values for all

the nutrients were very close. NSR has reduced to 44.28,

49.41 and 30.72 % for TC, N and available P and has been

categorized as moderately high spatial dependency. The

NDVI value of the forest area was taken as co-variable

along with TWI for co-kriging and that had improved the

correlation coefficient for TC (r2 = 0.62) but was not

observed in case of N and P. Reduction of the RMSE

values to large extent for all three nutrients was also

noticed.

Remote sensing, in combination with multivariate geo-

statistical methods, has the potential to improve the pre-

diction of soil properties at landscape scale. The

normalized difference vegetation index (NDVI) had been

widely used for evaluating the spatial pattern of vegetation

type and its productivity (Gamon et al. 1993). Yan-li et al.

(2013) examined directly the soil parameters with the

NDVI. Fabiyi et al. (2013) investigated the correlation

between soil fertility and NDVI using geospatial tech-

niques in the south-western Nigeria. Rivero et al. (2009)

predicted soil total phosphorus (TP) using remotely sensed

data and ancillary landscape properties as supporting

variables. Sahrawat (2004) also observed spatial distribu-

tion of total C, N contents in relation to the NDVI.

Therefore, NDVI has been used as secondary variable

along with terrain parameters in analyzing spatial distri-

bution of soil nutrients in the natural vegetation cover

(forest land) area of the watershed.

Validation and improvement of different

geostatistical prediction methods

Coefficient of determination (r2) and root mean square

error (RMSE) for geostatistical prediction methods

(Table 5) showed that the ordinary kriging had the lowest

coefficient of determination and highest RMSE values as

compared to co-kriging with slope, TWI and

TWI ? NDVI. As ordinary kriging considers only primary

soil variable whereas co-kriging takes into account the

secondary variables that helped in improving spatial pre-

diction (López-Granados et al. 2005; McBratney et al.

2000; Odeh and McBratney 2000). Among the primary and

secondary terrain attributes, TWI showed highest correla-

tion with soil nutrients (Table 2). Thus, TWI along with

NDVI was used as co-variables in co-kriging that has

improved the correlation coefficient for TC (r2 = 0.62), N

(r2 = 0.58) and available P (r2 = 0.53). RMSE computed

was lowest with co-variables of TWI ? NDVI for TC

(0.17), N (0.067) and available P (7.15) followed by TWI

and slope parameter. Higher RMSE for available P was

observed in comparison to TC and N using all the methods

due to large variation of available P in the soil. The min-

imum RMSE indicated to the high correlation of soil

nutrients with TWI ? NDVI parameter. Ordinary kriging

had high RMSE for P showed low correlation, whereas the

correlation was improved by integrating TWI and

TWI ? NDVI as co-variables. Spatial map for total car-

bon, nitrogen and available phosphorus generated using co-

kriging with TWI and TWI ? NDVI is shown in Fig. 3a–c.

However, ordinary kriging had higher RMSE than co-

kriging which showed improved prediction highlighting the

benefit of residual kriging. The co-kriging with

Table 4 Model parameters of isotropic spherical semivariograms

calculated for selected soil properties using co-variables

Parameter TC TN P

Variogram model Spherical Spherical Spherical

Nugget variance (Co) 0.19 (%) 0.21 (%) 0.20 ppm

Structural variance (Cs) 0.239 (%) 0.284 (%) 0.451 ppm

Total sill (Co ? Cs) 0.429 (%) 0.599 (%) 0.651 ppm

Range (m) 229.1 256.6 238.1

Nugget–sill ratio 44.28 (%) 49.41 (%) 30.72 ppm

Spatial dependence class Mod. high Mod. high Mod. high

TC Total carbon, TN total nitrogen, P available phosphorus

Table 5 Prediction results of

selected method using RMSE

and coefficient of determination

as comparison criterion

Geostatistical methods TC TN P

R2 RMSE R2 RMSE R2 RMSE

Ordinary Kriging 0.45 0.43 0.40 0.101 0.44 10.22

Co-kriging (Slope) 0.51 0.24 0.52 0.083 – –

Co-kriging (TWI) 0.57 0.19 0.58 0.079 0.52 9.76

Co-kriging (TWI ? NDVI) 0.62 0.17 0.58 0.067 0.53 7.15

TC Total carbon, TN total nitrogen, P available phosphorus
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High : 2.66339

Low : 0.223001
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Fig. 3 Spatial prediction of soil nutrients by ordinary and co-kriging with TWI ? NDVI, respectively, for total carbon (a1, a2) , total nitrogen
(b1, b2) and available phosphorus (c1, c2)
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TWI ? NDVI, TWI and slope as co-variables had

improved the performance with respect to the ordinary

kriging by 60.46, 55.81, 44.18 % for TC and 33.63, 21.78,

17.82 % for N, respectively. The prediction accuracy for P

was improved with co-variable of TWI ? NDVI and TWI

by 30.03 and 4.50 %, respectively. It clearly showed that

integrating NDVI as co-variables has significantly

improved the accuracy for TC followed by N and P. TWI

alone as co-variable has improved the performance by

55.81, 21.78 and 4.50 % for TC, N and P, respectively,

relative to the ordinary kriging.

Conclusions

Topography significantly influences the distribution of soil

nutrients in the watershed characterized by hilly topog-

raphy in the Himalayan landscape. Terrain attributes

(primary and secondary) and geostatistical methods were

attempted to improve spatial prediction of soil nutrients.

Ordinary kriging with primary variable had shown poor

correlation resulting in high RMSE. Terrain parameters

such as terrain wetness index (TWI) and slope were found

most correlated with soil nutrients (TC and TN) and TWI

with available P. Among the terrain indices, TWI showed

highest correlation coefficient for TC (r2 = 0.71), N

(r2 = 0.67) and P (r2 = 0.66) followed by WPI and STI.

Secondary terrain parameters had shown high correlation

with soil nutrients. Therefore, they were used as co-

variable in kriging which had markedly improved the

spatial prediction of soil nutrients in the watershed. Co-

kriging with the use of TWI and spectral Indices (NDVI)

as secondary variables showed the lowest RMSE and

highest coefficient of determination. The Co-kriging with

TWI ? NDVI, TWI and slope as co-variables has

improved the performance with respect to the ordinary

kriging by 60.46, 55.81, 44.18 % for TC and 33.63,

21.78, 17.82 % for N, respectively. Hence, it can be used

as the best prediction method for mapping TC, TN and

available P in the watershed of hilly topography. The

results showed that the incorporation of ancillary terrain

variables can distinctly improve the prediction of soil

properties. The spatial prediction of soil nutrients has

necessitated the need to identify critical area for sustain-

able management in the watershed. Spatially explicit data

of soil nutrients are required for improved assessment of

soil nutrient loss modeling at landscape and watershed

scale.
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