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Abstract This study investigates the applicability of

multilayer perceptron (MLP), radial basis function (RBF)

and support vector machine (SVM) models for prediction

of river flow time series. Monthly river flow time series for

period of 1989–2011 of Safakhaneh, Santeh and Polanian

hydrometric stations from Zarrinehrud River located in

north-western Iran were used. To obtain the best input–

output mapping, different input combinations of antecedent

monthly river flow and a time index were evaluated. The

models results were compared using root mean square

errors and the correlation coefficient. A comparison of

models indicates that MLP and RBF models predicted

better than SVM model for monthly river flow time series.

Also the results showed that including a time index within

the inputs of the models increases their performance sig-

nificantly. In addition, the reliability of the models pre-

diction was calculated by an uncertainty estimation. The

results indicate that the uncertainty in the SVM model was

less than those in the RBF and MLP models for predicting

monthly river flow.

Keywords Multilayer perceptron � Radial basis function �
Prediction � Support vector machine � Uncertainty �
Zarrinehrud River

Introduction

River flow predicting is important for planning and man-

agement of river basins, assessment of risk and control of

floods and droughts, development of water resources,

production of hydroelectric energy, navigation planning

and allocation of water for agriculture (Bayazıt 1988;

Khatibi et al. 2012). The data-driven modeling is based on

extracting and reusing information that is included in the

hydrological data without directly taking into explanation

the physical rules that cause the river flow processes

(Samsudin et al. 2011). In recent years, artificial neural

networks and support vector machines have been widely

used in the modeling of various complex environmental

problems (Yilmaz and Kaynar 2011).

A neural network is an adaptable system that learns

relationships from the input and output data sets and then is

able to predict a previously unseen data set of similar

characteristics to the input set (Haykin 1999; ASCE Task

Committee 2000). Multilayer perceptron (MLP) and radial

basis function (RBF) are widely used neural network

architecture in literature for regression problems (Cohen

and Intrator 2002; Kenneth et al. 2001; Loh and Tim 2000).

From the literature, several researchers have used the MLP

and RBF techniques in river flow forecasting.

Jayawardena and Fernando (1995) used both MLP and

RBF methods for flood forecasting and compared their

performance with the statistical ARMAX model. The

results showed the two data driven models are better than

ARMAX model. Sudheer and Jain (2003) used MLP and

RBF methods in daily river flow estimation. The results

showed that the MLP results were similar to those of the

RBF. Kisi (2005) used auto-regressive and artificial neural

network models to estimate river flow for two rivers in

the USA, namely the Blackwater River and the Gila River

& Mohammad Ali Ghorbani

Ghorbani@tabrizu.ac.ir; m_ali_ghorbani@ymail.com

1 Department of Water Engineering, University of Tabriz,

Tabriz, Iran

2 Suleyman Demirel University, 32260 Isparta, Turkey

123

Environ Earth Sci (2016) 75:476

DOI 10.1007/s12665-015-5096-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-015-5096-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-015-5096-x&amp;domain=pdf


the Filyos Stream in Turkey. He indicated that the arti-

ficial neural network model has better results than the

auto-regressive model. Sahoo and Ray (2006) compared

the accuracy of the RBF and MLP models in prediction of

daily river flows of a Hawaiian river. The results showed

that the MLP and RBF results were similar. Kisi (2008)

investigated the capability of three different architectures

of ANN techniques for the estimation of monthly river

flow of two rivers in Turkey. He found that all methods

can be used successively for river flow prediction. Terzi

(2011) investigated multilinear regression, multilayer

perceptron, radial basis function network, decision table,

REP tree and KStar algorithms for monthly river flow for

Kızılırmak River in Turkey. The results indicated that the

multilinear regression model has better results than other

models. Terzi and Ergin (2014) used autoregressive (AR),

gene expression programming, radial basis function net-

work, feed-forward neural networks, and adaptive neural-

based fuzzy inference system (ANFIS) techniques to

predict monthly river flow for Kızılırmak River in Turkey.

The results indicated that AR(2) model gave the best

performance among all data driven models. Awchi (2014)

compared the accuracy of feed-forward neural networks

(FFNN), generalized regression neural networks (GRNN),

the radial basis function neural networks (RBF) and

Multiple regression models for forecasting monthly river

flow of Upper and Lower Zab rivers in Northern Iraq. The

results showed that the ANNs performed better than the

MLR and also the FFNN was almost better than other

networks.

Support vector machine (SVM) proposed by Vapnik

(1995) is a powerful tool for modeling of hydrologic pro-

cesses, which are non-linear in nature (Bhagwat and Maity

2012). Many researchers have verified the SVM capability

for the modelling of river flow prediction.

Wang et al. (2008) developed monthly river flow pre-

diction model based on the genetic programming, ANFIS,

SVM and ARMA. The results showed the three data driven

models are better than ARMA model. Kisi and Cimen

(2011) also applied discrete wavelet transform and SVM

conjunction models for monthly river flow prediction. They

concluded that the wavelet support vector machine model

results were better than single SVM model. Kisi et al.

(2012) compared the accuracy of ANFIS, ANNs and SVM

for forecasting daily stream flows of two stations in north-

western Turkey. The results showed that the ANN and

ANFIS gave the best forecasts for the first and second

stations respectively. Kalteh (2013) used support vector

regression (SVR) and ANN methods coupled with wavelet

transform in monthly river flow prediction. The results

showed that both ANN and SVR models coupled with

wavelet transform are better than the single ANN and SVR

models.

All data-driven techniques such as MLP, RBF and SVM

models are sensitive to input parameters and this lead to

uncertainty in predicted values. So the reliability or

uncertainty information about river flow prediction is very

important for any application. Because information on

predict uncertainty helps users to feel more confident about

their decisions (Frick and Hegg 2011). Evaluation of pre-

dict uncertainty has been an active research subject in

water related problems (Montanari and Grossi 2008; Coc-

cia and Todini 2011; Noori et al. 2015).

The main objective of this study is to investigate the

applicability of two different well-known types of ANNs

including multilayer perceptron (MLP), radial basis neural

networks (RBF) and comparison with support vector

machine model to predict the monthly river flow in the

Zarrinehrud River for three hydrometric stations in north-

western Iran. The uncertainty involved in artificial intelli-

gence (AI) techniques for river flow prediction has rarely

been reported. The novelty of the study is that we have

used the reliability of three AI-based techniques, including

the MLP, RBF and SVM for predicting the monthly river

flow in natural rivers.

Methodology

Artificial neural networks (ANNs)

ANNs are parallel information processing systems con-

sisting of a set of neurons arranged in layers. These neurons

provide suitable conversion functions for weighted inputs.

ANNS can be used to solve problems that are hard for

conventional computers or human beings (Demuth and

Beale 2001). In this study, MLP and RBF methods are used

for the prediction of monthly river flow.

The MLP trained with the use of back propagation

learning algorithm. Figure 1a represents a three-layer

structure (MLP) that consists of (1) input layer, (2) hidden

layer and (3) output layer. The input layer accepts the data

and the hidden layer processes them and finally the output

layer displays the resultant outputs of the model. For more

information see Ghorbani et al. (2013).

The RBF is the most widely used architecture in ANN

and simpler than MLP neural network. The RBF has an

input, hidden and output layer. The hidden layer consists of

RBF activation function or h(x) as networks neuron. There

are different types of radial basis functions, but the most

widely used type is the Gaussian function.

Figure 1b shows the structure of an RBF neural net-

work. The basis functions in the hidden layer produce a

localized response to the input. That is, each hidden neuron

has a localized receptive field. For more information see

(Yu et al. 2011; Terzi 2011).
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Support vector machines (SVM)

The Support Vector Machines (SVM) is a computer algo-

rithm that learns by example to find the best function of

classifier/hyperplane to separate the two classes in the input

space. The SVM analyzed two kinds of data, i.e. linearly

and non-linearly separable data. The example of linearly

separated data is shown in Fig. 2. The best hyperplane

between two classes can be found by measuring the

hyperplane marginand finding out the maximum points.

The margin is defined as the distance between hyperplane

and the closest pattern of each class, which is called sup-

port vector (Vapnik 1998).

For a given training data with N number of samples,

represented by x1; y1ð Þ; . . .; xN ; yNð Þ, where x is an input

vector and y is a corresponding output value, SVM esti-

mator (f) on regression can be represented by:

f xð Þ ¼ w � ; xð Þ þ b ð1Þ

where w is a weight vector, b is a bias, ‘‘.’’ denotes the dot

product and ; is a non-linear mapping function. A smaller

value of w indicates the flatness of equation (x), which can

be obtained using minimizing the Euclidean norm as

defined by w2. Vapnik (1995) introduced the following

convex optimization problem with an e-insensitivity loss

function to obtain the solution to Eq. (2):

minimize
1

2
w2þC

XN

K¼1

nþk þ n�k
� �

subject to

yk � w � ; xkð Þþ bð Þ� eþ nþk
�yk þ w � ; xkð Þþ bð Þ� eþ n�k k¼ 1;2; . . .;N

nþk ;n
�
k �0

8
><

>:

ð2Þ

where C is a positive trade off parameter that determines

the degree of the empirical error in the optimization

problem and determines the trade-off between the flatness

of the function and the amount to which deviations larger

than e are tolerated. Also n�k ; n
þ
k are slack variables rep-

resenting upper and lower constraints on the output system

over the error tolerance e (Misra et al. 2009). Lagrangian

multipliers and imposing the Karush–Kuhn–Tucker (KKT)

method used to solve the optimization of Eq. (2) in a dual

form. The inequality constraint converts into an equation

by the KKT method by adding or subtracting slack vari-

ables. Support vectors are the input vectors that have

nonzero Lagrangian multipliers under the KKT condition

(Yoon et al. 2011). Figure 3 shows a schematic diagram of

the SVM used in this study.

In natural processes almost the predictor variables (input

space) are non-linearly related to the predicted variable.

This limits a linear formulation of the problem as shown in

Fig. 1 Simple configuration of a MLP and; b RBF neural networks (Haykin 1999)

Fig. 2 A schematic figure of linearly separated data
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Eq. (2). This limitation is solved by mapping the input

space on to some higher dimensional space (feature space)

using a kernel function. The kernel function enables us to

implicitly work in a higher dimensional feature space.

Then Eq. (1) becomes the explicit function of Lagrangian

multipliers or ai and a�i as follows:

f x; ai; a
�
i

� �
¼

XN

i¼1

ai � a�i
� �

� K x; xið Þ þ b ð3Þ

where K(x, xi) is kernel function. The used kernel functions

including the linear, polynomial, radial basis and sigmoid

kernel functions. Because linear kernel is only appropriate

for linear problems, polynomial kernel has computational

difficulties and Sigmoid kernel function is not widely used

(Chang and Lin 2005), in this study the most common

kernel or RBF function is used as follows:

RBF: K x; xið Þ ¼ exp � 1

2c2
x� x2i

�� ��
� �

ð4Þ

In (4) c is the kernel parameter. The program of SVM was

constructed by using MATLAB (The Math Works Inc

2012).

Uncertainty analysis

In this study we used a method proposed by Abbaspour

et al.(2007) to uncertainty analyze the predicted river flow.

In this method, the percentage of measured data bracketed

by 95 percent of predicted uncertainties (95PPU) calcu-

lated by 2.5th (XL) and 97.5th (XU) percentiles of normal

distribution function obtained from n (for example, 1000)

times of the simulation results as follows:

Bracketed by 95PPU ¼ 1

k
Count jjXl

L �Xl
reg �Xl

U

� �
� 100

ð5Þ

where 95PPU represents 95 % prediction uncertainty; k is

the number of observed data points; l indicates the current

month, taking values from 1 to k l ¼ 1; k
� �

; Xl
L and Xl

U

represent the lower and the upper limit of the uncertainty

defined as 2.5 % and 97.5 % levels of the cumulative

distribution of output variables; Xl
reg is the registered values

in the current month l; j is increasing with one unit each

time when the registered variable for the current month l is

located between the uncertainty limits; the maximum value

of j is obtained when l = k. If all registered values are

within these limits, the maximum value of ‘‘Bracketed by

95PPU’’ is 100.

Also d-factor is used to evaluate the average width of

confidence interval band as Eq. (6) :

d-factor ¼ dX

rX
ð6Þ

dX ¼ 1

k

Xk

l¼1

XU � XLð Þl ð7Þ

where dX is the average distance between the upper and

lower bands and rX is the standard deviation of the

observed data. Ideally, we would like to bracket most of the

measured data (plus their uncertainties) within the 95PPU

band, while having the narrowest band amplitude (d-fac-

tor ? 0) (Azimi et al. 2013).

Study area, the used data and performance criteria

The monthly river flow time series between 1989 and

2011 years for Safakhaneh, Santeh and Polanian stations of

Zarrinehrud River were used in this study. Zarrinehru d

River is one of the largest rivers in north-western Iran and

drains to Urmia Lake. The drainage area and length of the

river are 12,025 km2 and 300 km. The location of the

Zarrinehrud River and three sites is shown in Fig. 4. The
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Fig. 3 A schematic structure of

SVM model (Yoon et al. 2011)
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measured data from January 1, 1989 to October 31, 2004

(190 records or 70 % of the whole data set) are used for

training and the data from November 1, 2004 to August 30,

2011 (82 records or 30 % of the whole data) are chosen for

testing (Fig. 5).

The statistical parameters of the Zarrinehrud River flow

data at three sites are given in Table 1. In Table 1, the

xmean, Sx, Cv, Csx, xmax, and xmin denote the mean, standard

deviation, variation coefficient, skewness, maximum and

minimum, respectively.

Two performance criteria are used in this study to assess

the goodness of fit of the models, which are correlation

coefficient (CC) and root mean square error (RMSE)

(further discussed by Ghorbani et al. 2013).

Results and discussion

Input selection

Selection of the input variables is one of the most important

problems when developing prediction models. Hence, cross

correlations analysis was performed between input and

output variables in order to determine the suitable time lag

and the number of input variables (Table 2) (Luk et al.

2000).

In this study, several input combinations of river flow

values were used. Here Qt, Qt-1, Qt-2, Qt-3 represents the

river flow values at time (t), (t - 1), (t - 2) and (t - 3).

The s is the month number between 1 and 12.

ANNs models

In this study, all data were first normalized and then divi-

ded into training and testing data sets. A typical MLP

model with a back-propagation algorithm is constructed for

predicting monthly river flow. The back-propagation

training algorithm is a supervised training mechanism and

is normally adopted in most of the engineering application.

The neurons in the input layer have no transfer function.

The logarithmic sigmoid transfer function was used in the

hidden layer and linear transfer function was employed

from the hidden layer to the output layer as an activation

function, because the linear function is known to be robust

for a continuous output variable. The network was trained

in 1000 epochs using the Levenberg–Marquardt learning

algorithm with a learning rate of 0.001 and a momentum

coefficient of 0.9. The optimal number of neuron in the

Fig. 4 The location of study sites in the Zarrinehrud River basin
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Fig. 5 Time series plot for the river flow data
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hidden layer was identified using a trial and error procedure

by varying the number of hidden neurons from 1 to 20, and

the structures of best networks are shown in Table 3. As

shown in Table 3, the performance criteria show that

ANN(3,5,1), ANN(4,2,1) and ANN(2,8,1) models perform

relatively better than the others combinations for the

Safakhaneh, Santeh and Polanian stations, respectively.

Here, the structure of the ANN(3,5,1) model denotes an

ANN model comprising three input, five hidden and one

output nodes. The results also showed that the models

including a time index increases their performance signif-

icantly. The decrease between RMSE values of the models

without a time index and the models including a time index

for testing set ranged from 15.6 to 17.4 %, 7 to 18.7 %, 7.3

to 14.6 % for Safakhaneh, Santeh and Polanian,

respectively.

Figure 6 shows the comparative plots between the

results obtained from the MLP model and the the observed

monthly river flow for testing data set. From Fig. 6, it can

be observed that the values of the monthly river flow are

generally predicted close to the observed value. Table 3

Table 1 The monthly

statistical parameters of river

flow data

Site Data set Number of data xmean Sx Cv Csx xmax xmin

Safakhaneh Training 190 8.7 14.4 1.7 2.8 88.1 0.0

Testing 82 6.0 9.3 1.6 2.3 46.6 0.0

Total 272 7.8 13.1 1.7 2.9 88.1 0.0

Santeh Training 190 8.6 14.3 1.7 2.7 89.4 0.0

Testing 82 7.9 12.7 1.6 2.5 61.1 0.0

Total 272 8.4 13.8 1.6 2.6 89.4 0.0

Polanian Training 190 16.1 25.3 1.6 2.6 150.7 0.0

Testing 82 21.6 40.0 1.9 2.9 213.2 0.0

Total 272 17.7 30.5 1.7 3.0 213.2 0.0

Table 2 Cross correlations analysis between input and output

variables

Station Q(t - 1) Q(t - 2) Q(t - 3)

Q(t) Safakhaneh 0.638 0.170 -0.053

Santeh 0.614 0.131 -0.101

Polanian 0.663 0.218 -0.041

Table 3 Performance of MLP

model for monthly river flow

prediction

Station Input combination Output Structure Training Testing

CC RMSE (m3/s) CC RMSE (m3/s)

Safakhaneh (1) Qt-1 Qt (1,6,1) 0.68 10.54 0.67 7.11

(2) Qt-1, s Qt (2,4,1) 0.85 7.48 0.83 6.00

(3) Qt-1, Qt-2 Qt (2,11,1) 0.81 8.33 0.80 6.55
a(4) Qt-1, Qt-2, s Qt (3,5,1) 0.87 7.30 0.83 5.41

(5) Qt-1, Qt-2, Qt-3 Qt (3,5,1) 0.78 8.91 0.74 6.70

(6) Qt-1, Qt-2, Qt-3, s Qt (4,4,1) 0.87 7.05 0.85 5.58

Santeh (1) Qt-1 Qt (1,3,1) 0.68 10.46 0.64 10.25

(2) Qt-1, s Qt (2,4,1) 0.84 7.96 0.76 8.33

(3) Qt-1, Qt-2 Qt (2,3,1) 0.77 9.02 0.68 9.59

(4) Qt-1, Qt-2, s Qt (3,20,1) 0.85 7.48 0.75 8.92

(5) Qt-1, Qt-2, Qt-3 Qt (3,5,1) 0.80 8.98 0.70 9.25
a(6) Qt-1, Qt-2, Qt-3, s Qt (4,2,1) 0.81 8.34 0.77 8.25

Polanian (1) Qt-1 Qt (1,11,1) 0.62 20.73 0.78 25.97
a(2) Qt-1, s Qt (2,8,1) 0.85 13.33 0.84 22.18

(3) Qt-1, Qt-2 Qt (2,9,1) 0.79 15.31 0.81 24.21

(4) Qt-1, Qt-2, s Qt (3,4,1) 0.74 16.83 0.80 25.41

(5) Qt-1, Qt-2, Qt-3 Qt (3,6,1) 0.61 20.40 0.73 28.33

(6) Qt-1, Qt-2, Qt-3, s Qt (4,17,1) 0.88 12.27 0.78 26.25

a The results in bold show the selected model
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and Fig. 6 prove that the MLP model is able to predict

monthly river flow, perfectly. The values bracketed by

95PPU indicate that about 79, 68 and 70 % of the data

were bracketed by the 95PPU for Safakhaneh, Santeh and

Polanian, respectively. Also the d-factor had a value of

1.194, 0.977 and 0.75 for Safakhaneh, Santeh and Polanian

station, respectively. The values bracketed by 95PPU and

d-factor values for all station indicating small prediction

uncertainties.

For the all stations, to find the best results of RBF, trial

and error procedure is used to approve a suitable hidden

neurons number (HN) and spread value (r) is selected by

normalization method for each combination. The training

and testing of RBF network were done using the same data

sets applied in the MLP network. The best HN ranged from

3 to 40 and best spread value (r) is from 4 to 83 for the all

combinations. The effect of changing the number of hidden

neurons and spread value on the CC and RMSE for each

combination is presented in Table 4.

The performance criteria show that RBF(HN:6, r:19),

RBF(HN:36, r:22) and RBF(HN:14, r:83) structure per-

forms relatively better than the other combinations for the
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Safakhaneh, Santeh and Polanian stations, respectively.

Here, the RBF(HN:6, r:19) structure denotes an RBF

model comprising six hidden neurons number and spread

value equal to 19.

Table 4 shows that the decrease in RMSE values of

testing set due to including a time index within the inputs

of the models is ranged from 4.4 to 17.2 %, 2.6 to 18.6 %

and 2.3 to 18.2 % for Safakhaneh, Santeh and Polanian,

respectively. In other words, adding a time index within the

inputs of the RBF model increases their performance

significantly.

Figure 7 shows the comparative plots of the results of

RBF model and the observed monthly river flow for

testing data set. From Fig. 7 and Table 4, it can be

observed that predicted and observed river flow was

reasonably good.

Table 4 Performance of RBF model for monthly river flow prediction

Station Input combination Output Structure Training Testing

CC RMSE (m3/s) CC RMSE (m3/s)

Safakhaneh (1) Qt-1 Qt HN: 3; r: 9

BF: Gaussian

0.65 10.83 0.72 6.69

a(2) Qt-1, s Qt HN: 6; r: 19

BF: Gaussian

0.76 9.28 0.82 5.54

(3) Qt-1, Qt-2 Qt HN: 9; r: 23

BF: Gaussian

0.78 9.03 0.75 6.76

(4) Qt-1, Qt-2, s Qt HN: 16; r: 42.2

BF: Gaussian

0.83 8.05 0.82 6.01

(5) Qt-1, Qt-2, Qt-3 Qt HN: 15; r: 7

BF: Gaussian

0.88 6.85 0.75 6.30

(6) Qt-1, Qt-2, Qt-3, s Qt HN: 20; r: 51

BF: Gaussian

0.83 7.91 0.81 6.02

Santeh (1) Qt-1 Qt HN: 3; r: 50.8

BF: Gaussian

0.69 10.32 0.64 10.06

a(2) Qt-1, s Qt HN: 36; r: 22

BF: Gaussian

0.92 5.50 0.80 8.19

(3) Qt-1, Qt-2 Qt HN: 16; r: 4

BF: Gaussian

0.91 5.76 0.68 9.98

(4) Qt-1, Qt-2, s Qt HN: 5; r: 27.8

BF: Gaussian

0.77 8.99 0.70 9.26

(5) Qt-1, Qt-2, Qt-3 Qt HN: 11; r: 6

BF: Gaussian

0.88 6.63 0.70 9.62

(6) Qt-1, Qt-2, Qt-3, s Qt HN: 8; r: 72.6

BF: Gaussian

0.78 8.92 0.71 9.37

Polanian (1) Qt-1 Qt HN: 13; r: 34

BF: Gaussian

0.67 18.70 0.80 24.77

a(2) Qt-1, s Qt HN: 14; r: 83

BF: Gaussian

0.74 16.92 0.87 20.27

(3) Qt-1, Qt-2 Qt HN: 15; r: 57

BF: Gaussian

0.81 14.68 0.80 24.70

(4) Qt-1, Qt-2, s Qt HN: 14; r: 75.8

BF: Gaussian

0.81 14.84 0.81 24.12

(5) Qt-1, Qt-2, Qt-3 Qt HN: 35; r: 56

BF: Gaussian

0.86 12.57 0.82 23.62

(6) Qt-1, Qt-2, Qt-3, s Qt HN: 40; r: 53

BF: Gaussian

0.89 11.44 0.83 22.99

HN hidden neurons, r spread value, BF basic function
a The results in bold show the selected model
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The values bracketed by 95PPU indicate that about 3, 25

and 14 % of the data were bracketed by the 95PPU for

Safakhaneh, Santeh and Polanian, respectively. Also the d-

factor had a value of 0.019, 0.54 and 0.3 for Safakhaneh,

Santeh and Polanian station, respectively.

SVM model

There are two main steps for developing a SVM: (a) the

selection of the kernel function, and (b) the identification of

the specific parameters of the kernel function, i.e. C and e.
Many studies on the use of SVM in hydrological modeling

have demonstrated the favorable performance of the radial

basis function (Khan and Coulibaly 2006; Lin et al. 2006;

Liong and Sivapragasam 2002; Yu et al. 2006). Therefore,

in this study the RBF kernel with parameters (C, e, c) is
used as the kernel function for river flow modeling and the

accuracy of a SVM model is dependent to identify the

parameters. To obtain a suitable value of these parameters

(C, e, c), the RMSE was used to optimize parameters. The

results of the RBF kernel based for each data combination

in terms of CC and RMSE are given in Table 5. For each

combination of inputs, the values of kernel parameters (C,

e, c) that provide the minimum RMSE were used.

Of the developed models, the model of input combina-

tion (6) with kernel parameters (13.14, 0.1, 7.31) for the
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Fig. 7 Comparative plots of observed and predicted monthly river flow by RBF model for testing period (2004–2011): a Safakhaneh, b Santeh,

c Polanian
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Safakhaneh station, the model of input combination (2)

with kernel parameters (3.17, 0.2, 2.37) for the Santeh

station and the model of input combination (4) with kernel

parameters (10.56, 1.3, 6.49) shows better performance

than the other combinations.

Table 5 shows that the decrease in RMSE values for

testing duration due to including a time index within the

inputs of the models ranged from 3.8 to 21.8 %, 6 to

15.5 % and 7.8 to 27.6 % for Safakhaneh, Santeh and

Polanian, respectively.

Figure 8 shows the comparative plots of the results

obtained from the SVM model the observed monthly river

flow for testing data set. From Fig. 8 and Table 5, it can be

observed a relatively good match between the observed and

predicted river flow especially for low values. The values

bracketed by 95PPU indicate that about 4, 3 and 6 % of the

data were bracketed by the 95PPU for Safakhaneh, Santeh

and Polanian, respectively. Also the d-factor had a value of

0.02, 0.013 and 0.027 for Safakhaneh, Santeh and Polanian

station, respectively.

The results have in general smaller prediction uncer-

tainties as indicated by smaller d-factors.

Comparison of ANNs (MLP, RBF) and SVM models

The performances of modelling river flow time series are

compared using the three techniques of MLP, RBF and

SVM. The values of performance measures are given in

Table 6, which indicates that the performance of each

model on river flow prediction is acceptable and these

approaches are applicable for modeling river flow time

series data.

The arithmetic mean of CC values of three stations for

MLP, RBF and SVM models are 0.813, 0.830 and 0.790,

respectively. Also, MLP, RBF and SVM models of three

stations have an arithmetic mean of RMSE values of

11.947, 11.333, 13.840 m3/s, respectively. As a result of

the comparison of CC and RMSE values of the monthly

river flow models, it was obtained that the results of the

RBF and MLP models are better than SVM model. Also,

RBF model is slightly better than MLP model in prediction

of monthly river flow. This study shows that the way for-

ward is to understand the performance of the individual

models and use as many models as possible to gather more

evidence for the selected models.

Table 5 Performance of SVM model for monthly river flow prediction

Station Input combination Output Structure* Training Testing

CC RMSE (m3/s) CC RMSE (m3/s)

Safakhaneh (1) Qt-1 Qt C: 3710.37, e: 0.1, c: 21,795.36 0.95 4.97 0.62 8.90

(2) Qt-1, s Qt C: 1.67, e: 0.3, c: 36.21 0.93 5.42 0.79 7.72

(3) Qt-1, Qt-2 Qt C: 16.47, e: 1.5, c: 16.38 0.84 7.73 0.71 8.07

(4) Qt-1, Qt-2, s Qt C: 1.93, e: 0.1, c: 8.41 0.93 5.41 0.79 7.76

(5) Qt-1, Qt-2, Qt-3 Qt C: 76.47, e: 1.3, c: 24.27 0.76 9.28 0.63 7.83
a(6) Qt-1, Qt-2, Qt-3, s Qt C: 13.14, e: 0.1, c: 7.31 0.85 7.50 0.81 6.12

Santeh (1) Qt-1 Qt C: 2.43, e: 0.3, c: 3.72 0.71 10.05 0.63 10.29
a(2) Qt-1, s Qt C: 3.17, e: 0.2, c: 2.37 0.87 6.96 0.78 8.69

(3) Qt-1, Qt-2 Qt C: 5.71, e: 0.4, c: 53 0.83 7.91 0.67 11.63

(4) Qt-1, Qt-2, s Qt C: 12.13, e: 2, c: 123.36 0.89 6.30 0.76 10.35

(5) Qt-1, Qt-2, Qt-3 Qt C: 7.52, e: 0.2, c: 46.87 0.83 7.84 0.67 10.86

(6) Qt-1, Qt-2, Qt-3, s Qt C: 39.26, e: 0.1, c: 1160.8 0.89 6.50 0.76 10.21

Polanian (1) Qt-1 Qt C: 955.10, e: 1.2, c: 5002.7 0.64 19.14 0.66 31.40

(2) Qt-1, s Qt C: 6.41, e: 0.8, c: 6.03 0.84 13.57 0.77 26.88

(3) Qt-1, Qt-2 Qt C: 100.02, e: 1.7, c: 5461.86 0.77 15.95 0.63 36.90
a(4) Qt-1, Qt-2, s Qt C: 10.56, e: 1.3, c: 6.49 0.84 13.74 0.78 26.71

(5) Qt-1, Qt-2, Qt-3 Qt C: 36.56, e: 2, c: 363.71 0.79 15.38 0.71 29.19

(6) Qt-1, Qt-2, Qt-3, s Qt C: 11.19, e: 1.0, c: 6.94 0.85 13.43 0.78 26.89

* C: Magnitude of penalty term, e: width/deviation of the error margin, c: Gaussian radial basis function parameter
a The results in bold show the selected model
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Fig. 8 Comparative plots of observed and predicted monthly river flow by SVM model for testing period (2004–2011): a Safakhaneh, b Santeh,

c Polanian

Table 6 Comparison of ANNs (MLP, RBF) and SVM models for monthly river flow prediction for testing period

Model Safakhaneh Santeh Polanian Arithmetic mean of performance criteria

CC RMSE (m3/s) CC RMSE (m3/s) CC RMSE (m3/s) CC RMSE (m3/s)

MLP 0.83 5.41 0.77 8.25 0.84 22.18 0.813 11.947

RBF 0.82 5.54 0.80 8.19 0.87 20.27 0.830 11.333

SVM 0.81 6.12 0.78 8.69 0.78 26.71 0.790 13.840
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Conclusion

The performances of three modelling techniques are

reported by this study to provide evidence for suit-

able techniques for predicting monthly river flow values.

The studied techniques comprise: Artificial Neural Net-

works (MLP, RBF) and Support Vector Machines (SVM).

Monthly river flow time series of three stations, i.e.

Safakhaneh, Santeh and Polanian from Zarrinehrud River

over a period of 23 years (1989–2011) were used in this

study. The artificial intelligence models have advantages of

being able to analyze and generalize relationships between

parameters into the model, but it can be difficult or

impossible using all parameters by developed models for

the rivers having different climatical/topographical char-

acteristics. Therefore, cross correlations analysis for vari-

ous monthly river flow lags was used to find out the

number of past observations to provide effective inputs to

the models.

The study shows that the MLP, RBF and SVM models

can be successfully applied to the tasks of prediction of

monthly river flow. Although it is shown that the MLP,

RBF models performs better than SVM and including a

time index within the inputs increases their performance

significantly.

In addition, the reliability of the models prediction was

calculated by an uncertainty estimation. The results indi-

cate that the uncertainty in the SVM model was less than

those in the MLP and RBF models for predicting monthly

river flow.
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