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Abstract The main purpose of this study is to produce

reliable susceptibility maps using GIS-based support vector

machine (SVM) models and compare their performances for

the Qianyang County of Baoji City, Shaanxi Province,

China. In this paper, with kernel classifiers of linear, poly-

nomial, radial basis function and sigmoid, the four various

types were applied in landslide susceptibility mapping. The

important input parameters for the landslide susceptibility

assessment were acquired from different sources. Firstly, 81

landslide sites were obtained by aerial photographs, earlier

reports and field surveys. Then, the landslide inventory was

randomly classified into two datasets: 70 % (56 landslides)

for training the models and 30 % (25 landslides) for vali-

dation purpose. Secondly, 15 landslide conditioning factors

were selected (i.e., slope angle, slope aspect, altitude, plan

curvature, profile curvature, distance to faults, distance to

rivers, distance to roads, NDVI, STI, SPI, TWI, geomor-

phology, rainfall, and lithology). Subsequently, with four

types of kernel function classifiers based on landslide con-

ditioning factors, landslide susceptibility parameters were

obtained using SVM models. Finally, the rationality of

landslide susceptibility maps was verified using the receiver

operating characteristics with both success rate curve and

prediction rate curve. The validation results showed that

success rates for the four SVMmodels were 83.15 % (RBF-

SVM), 82.72 % (PL-SVM), 81.77 % (LN-SVM), and

79.99 % (SIG-SVM). The prediction rates for the four SVM

models were 77.98 % (RBF-SVM), 77.50 % (PL-SVM),

77.07 % (LN-SVM), and 76.08 % (SIG-SVM), respec-

tively. The results showed that the RBF-SVMmodel had the

highest overall performance.

Keywords Landslide susceptibility mapping support

vector machine (SVM) � Geographic information system

(GIS) � China

Introduction

Landslides, causing extensive damages to residential

regions, economic losses, and human casualties all over the

world, are one of the most dangerous geo-hazards in hill

and mountain terrains because of the cliffy topography,

irrational application of land cover and harmful climatic

conditions for landslides (Solaimani et al. 2013; Sujatha

et al. 2012; Akgun et al. 2008). Globally, landslides cause

almost 1000 deaths per year and property damage of about

4 billion dollars (Lee and Pradhan 2007). There are fre-

quent landslides in China, which often result in many

casualties and great quality economic losses. It is reported

that more than 30,737 hazards associated with landslides

occurred in 2012, 2013 and 2014, which caused a total of

1256 people dead or missing, and a direct economic loss of

15.41 billion CNY (http://www.cigem.gov.cn). It is there-

fore necessary to evaluate the factors that affect instability,

study the hazard and forecast of the potential landslides to

reduce the damages caused by landslides and evolve

rational mitigation method (Sujatha et al. 2012).
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Currently, there have been many GIS-based methods

for assessing landslide susceptibility. Many studies have

used probabilistic methods such as the frequency ratio and

weight of evidence models (Solaimani et al. 2013; Lee

and Pradhan 2007; Regmi et al. 2014; Pradhan et al. 2010;

Choi et al. 2012; Vijith and Madhu 2008; Demir et al.

2013; Ozdemir and Altural 2013; Sujatha et al. 2014).

Among statistical models, the bivariate and multivariate

logistic regression models have also been used for land-

slide susceptibility mapping (Solaimani et al. 2013; Lee

and Pradhan 2007; Akgun 2012; Bai et al. 2010; Ozdemir

and Altural 2013; Pradhan and Lee 2010; Choi et al. 2012;

Devkota et al. 2013; Yilmaz 2010b; Park et al. 2013;

Raman and Punia 2012; Mihaela et al. 2011; Yalcin et al.

2011; Youssef et al. 2015b). In addition, some researchers

(Kayastha et al. 2013; Kanungo et al. 2011; Pourghasemi

et al. 2012a; Guettouche 2013; Akgun et al. 2012; Sharma

et al. 2013; Pradhan 2010, 2011, 2013; Ercanoglu and

Gokceoglu 2002, 2004; Oh and Pradhan 2011) have

produced the landslide susceptibility maps using the

deterministic models such as the analytic hierarchy pro-

cess (AHP) and fuzzy models. Other new techniques such

as fuzzy-logic, artificial neural network (ANN), and

neuro-fuzzy models (Park et al. 2013; Pradhan and

Buchroithner 2010; Pouydal et al. 2010; Chauhan et al.

2010; Sharma et al. 2013; Guettouche 2013; Choi et al.

2012; Vahidnia et al. 2010; Sezer et al. 2011) also have

been used to evaluate landslide susceptibility. In order to

determine the better model that is more accurate in

landslide susceptibility mapping in a study area, some

studies have used two or three models and compared their

accuracy, such as probability and statistical analyses,

probability and fuzzy-logic analyses, statistical and ANN

analyses, analytic hierarchy process, probability and sta-

tistical analyses, and probability, statistical, and ANN

analyses, etc. (Jaafari et al. 2014; Constantin et al. 2011;

Kanungo et al. 2011; Ozdemir and Altural 2013; Park

et al. 2013; Pourghasemi et al. 2013a; Pouydal et al. 2010;

Solaimani et al. 2013; Yalcin et al. 2011; Youssef et al.

2015a; Demir et al. 2013; Lee and Pradhan 2007; Akgun

2012; Devkota et al. 2013).

The main purpose of this study is to assess the suscep-

tibility of landslides for the Qianyang County of Baoji

City, Shanxi Province, China, using a geographical infor-

mation system (GIS). To achieve this aim, the support

vector machine (SVM) with four different kernel functions

were used to obtain the landslide susceptibility maps using

the ArcGIS 10.0 software.

The SVM means that they have relatively seldom been

used for landslide susceptibility mapping. Furthermore, the

comparison of different kernel classifiers is rational as

SVM could apply various types of kernel functions.

The study area

The study area is located in the City of Baoji, Shanxi

Province, China, covering a surface area of about

996.46 km2 between latitudes 106�5601500–107�2203100E
and longitudes 34�3403400–34�5605600N. The altitude

decreases from North to South and varies in the range from

752 to 1560 m. The climate of the study area is charac-

terized by the warm semi-arid to semi-humid monsoon; the

winter is dry and cold, but the summer is hot and rainy.

Based on China Meteorological Administration, the tem-

perature of this region varies between -20.6 �C in winter

and 40.5 �C in summer with a yearly average of 11.8 �C.
The mean relative humidity varies between 59 and 82 %.

The mean annual rainfall is around 627.4 mm, and the

rainy season is mainly from July to September with the

total rainfall accounting to half of the yearly rainfall. Wei

and Jing river systems are the main streams in this area and

their tributaries shape dentritic drainage systems because of

the topographical and geological trait of the area.

Data preparation

Landslide inventory map

Landslide inventory and mapping is the backbone of

landslide susceptibility studies, which can determine the

events affecting landslide development in the study region,

and the terrain instability factors involved (Guinau et al.

2005; van Westen et al. 2006; Youssef et al. 2015a, b). The

first step is to collect all of the available information and

data concerning landslides in the area whose liability and

accuracy affect the success of the used methodology (Er-

canoglu and Gokceoglu 2004; Melchiorre et al. 2011).

With collecting the data concerning landslides and study

satellite imagery and aerial photographs combining with

field surveys using a GPS device, landslide inventory maps

can be acquired (Pradhan and Kim 2014). Finally, 81

landslides were acquired by assessing aerial photos of 1:

50,000 scale coupled with field surveys in the study area

and subsequently digitized for further analysis. Then, it

was randomly divided into two parts (70/30), which were

used as training and validating purposes, respectively

(Fig. 1).

Landslide conditioning factors

With the purpose of applying the SVM model in the study

area, 15 landslide conditioning factors, including slope

angle, slope aspect, altitude, plan curvature, profile curva-

ture, distance to faults, distance to rivers, distance to roads,
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NDVI, STI, SPI, TWI, geomorphology, rainfall, and

lithology were used. All of the data were converted into

raster format with a pixel size of 50 9 50 m. These con-

ditioning factors were classified into four groups: topo-

graphic factors (i.e., slope angle, slope aspect, altitude, plan

curvature, profile curvature, STI, SPI, TWI), distance

related factors (i.e., distance to roads, distance to rivers,

and distance to faults), ground conditions (i.e., geomor-

phology, NDVI, and lithology) and triggering factors (i.e.,

rainfall) (Akgun et al. 2012; Melchiorre et al. 2011).

Topographic factors including slope angle, slope aspect,

altitude, plan curvature, profile curvature, STI, SPI, TWI

were mainly produced from the DEM of the study area.

The slope angle, directly related to landslide incidence, is

frequently applied in landslide susceptibility studies (He

et al. 2012; Dai and Lee 2001). Slope angles in the study

area ranged from 0� to 38�, and were reclassified into five

classes, i.e., 0�–7�, 7�–14�, 14�–21�, 21�–28�, and 28�–38�
(Fig. 2a). Aspect, describing the direction of slope, is also

an important factor for landslide susceptibility analysis, as

aspect controls the formation of the landslide such as

lineaments, rainfalls, wind effects, and exposure to sun-

shine (Yalcin and Bulut 2007; Pourghasemi et al. 2012a;

He et al. 2012). Aspect in the study area was classified into

nine categories: flat (-1), north (337.5�–360�, 0�–22.5�),
northeast (22.5�–67.5�), east (67.5�–112.5�), southeast

(112.5�–157.5�), south (157.5�–202.5�), southwest

(202.5�–247.5�), west (247.5�–292.5�), and northwest

(292.5�–337.5�) (Fig. 2b). Altitude or elevation, controlled
by several geologic and geomorphologic processes, is also

frequently used in landslide susceptibility mapping (Pour-

ghasemi et al. 2012b; Pradhan and Kim 2014). Elevation

values in the study area ranged from 720 to 1560 m, and

five categories of elevations were identified, i.e., 720–850,

850–1000, 1000–1150, 1150–1300, and 1300–1560 m

(Fig. 2c). The plan curvature influences the convergence

and divergence of flow across a surface. The profile cur-

vature, the vertical plane parallel to the slope direction,

affects the acceleration and deceleration of down slope

flows, and as a result, influences erosion and deposition (He

et al. 2012; Kritikos and Davies 2014; Kannan et al. 2013).

In this study, plan curvature and profile curvature were

calculated in GIS software of Arc GIS 10.0; and they were

divided into three classes: \-0.05, -0.05 to 0.05, and

[0.05, respectively (Fig. 2d, e). The sediment transport

index (STI) reflects the process of erosion and deposition

(Devkota et al. 2013). In the study, STI was classified into

four classes:\3, 3–9, 9–15, and[15 (Fig. 2f). The stream

power index (SPI), describing erosion capability of water

flow, is also considered as a factor influencing the stability

in the study region (Regmi et al. 2014; Conforti et al.

2011). The SPI map was grouped into four different classes:

\5, 5–10, 10–40, and [40 (Fig. 2g). The topographic

wetness index (TWI) describes the effect of topography on

the location and size of saturated source areas of runoff

generation, and was considered as another contributing

factor (Pourghasemi et al. 2013b; Pradhan and Kim 2014).

The TWI values of this area were arranged in four classes:

\7, 7–10, 10–13, and[13, respectively (Fig. 2h).

Faults are responsible for triggering a large number of

landslides due to the tectonic breaks that usually decrease

the rock strength (Devkota et al. 2013). Therefore, the

distance to faults was also a necessary parameter in the

susceptibility analysis. In the study area, the distance to

faults map was reclassified into five divisions, such as

0–2000, 2000–4000, 4000–6000, 6000–8000, and

[8000 m, respectively (Fig. 2i).

The distance to rivers, controlling the stability of a

slope, is another important factor for landslide suscep-

tibility analysis. On the basis of rivers and streams, a

map of proximity to drainage was generated using Arc-

GIS 10.0 and was divided into five categories, such as

0–200, 200–400, 400–600, 600–800, and [800 m

(Fig. 4j).

Fig. 1 Location of the study area
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Fig. 2 Landslide conditioning

factors of the study area: a slope
angle, b slope aspect,

c elevation, d plan curvature,

e profile curvature, f STI, g SPI,

h TWI, i distance to faults,

g distance to rivers, k distance

to roads, l geomorphology,

m NDVI, n rainfall, and

o lithology
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Fig. 2 continued
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The distance to roads is an important anthropogenic

factor influencing landslides occurrence. In the present

study, the distance to roads was calculated and reclassified

the resultant map into five classes: 0–1000, 1000–2000,

2000–3000, 3000–4000, and [4000 m, respectively

(Fig. 2k).

Geomorphology is an important factor which is closely

related to landslide occurrence (Kannan et al. 2013). Four

geomorphologic units of the study area can be identified,

i.e., mountain areas, loess ridge and hill areas, loess

tableland areas and plain areas (Fig. 2l).

The NDVI is also considered as a conditioning factor

related to landslide occurrence. In general, the higher the

value of NDVI is, the larger the area that is covered by

vegetation (He et al. 2012). In this study, the NDVI map

was obtained from Landsat satellite image and reclassified

into five classes, i.e., -0.31 to 0.08, 0.08 to 0.26, 0.26 to

0.40, 0.40 to 0.53, and 0.53 to 0.71, respectively

(Fig. 2m).

The rainfall, closely associated with landslide initiation,

is one of the main parameters in landslide susceptibility

mapping. The annual rainfall of the study area was clas-

sified into five classes:\600, 600–650, 650–700, 700–750,

and[750 mm/year, respectively (Fig. 2n).

Lithology is one of the most common determinant fac-

tors in most landslide stability studies. The geological map

of the study area is compiled from existing geological maps

and publications in Arc GIS 10.0. The lithological units of

the study area are shown in Table 1, and the general geo-

logical setting of the area is shown on the source map

(Fig. 2o).

Support vector machines

Support vector machine (SVM), a supervised learning

method, is established on the basis of statistical learning

theory. With the purpose to search an optimal separating

Fig. 2 continued
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hyperplane, the theory changed original import space into a

dimensional feature space (Vapnick 1998; Xu et al. 2012;

Bui et al. 2015).

For example, consider a training dataset of instance-

label pairs (xi, yi), where i = 1, 2,…, n, xi is an input vector

that includes 15 landslide conditioning factors, yi [
{1, -1} is its corresponding two output classes, i.e.,

landslide and non-landslide, n is the number of training

samples. The aim of SVM is to search an n-dimensional

hyperplane differentiating the two types by their maximum

gap. Its mathematical expression is as follows (Yao et al.

2008; Xu et al. 2012; Tehrany et al. 2015):

1=2 wk k2 ð1Þ
yi w� xið Þ þ bð Þ� 1 ð2Þ

where kwk is the norm of the normal of the hyperplane, b is

a constant. Introducing the Lagrangian multiplier (ki), the
cost function can be defined as:

L ¼ 1=2 wk k2�
Xn

i¼1

ki yi w� xið Þ þ bð Þ � 1ð Þ ð3Þ

For non-separable case, introducing slack variables ni
(Vapnik 1995), Eq. (2) can be modified as:

yi w� xið Þ þ bð Þ� 1� ni ð4Þ

then, introducing v(0, 1) to express misclassification

(Schölkopf et al. 2000; Wu et al. 2014), Eq. (1) can be

defined as:

L ¼ 1

2
wk k2� 1

vn

Xn

i¼1

ni ð5Þ

Besides that, a kernel function K (xi, xj) is applied to

account for nonlinear decision boundary (Vapnik 1995). In

the study, the following four types of kernel function were

applied to examine the efficiency of each kernel function in

landslide susceptibility mapping (Xu et al. 2012; Pour-

ghasemi et al. 2013b):

Linear: K xi; xj
� �

¼ xTi � xj ð6Þ

Polynomial: K xi; xj
� �

¼ c� xTi � xj þ r
� �d

; c[ 0 ð7Þ

Sigmoid: K xi; xj
� �

¼ tanh c� xTi � xj þ r
� �

ð8Þ

Radial basis function: K xi; xj
� �

¼ �c xi � xj
� �� �

; c[ 0 ð9Þ

where d, r, and c are parameters of the kernel functions

(Pourghasemi et al. 2013b).

Results and discussion

The results of spatial relationship between landslides and

conditioning factors using frequency ratio are shown in

Table 2. In Table 2, landslides were most abundant in the

class 14�–21�, indicating the highest probability of land-

slide occurrence in this group, followed by slope category

21�–28�. For the slope aspect, the frequency ratio was

highest for north-facing slopes (FR value of 1.67) and

lowest for flat slopes (0.0). For the elevation, the frequency

ratio was highest for the class 720–850 m. In the case of

plan curvature, the frequency ratio was 1.16 for class

-0.05 to 0.05, indicating a very high probability of land-

slide occurrence. Similarly, for the profile curvature in the

class[0.05, the frequency ratio was 1.44, which indicates a

high probability of landslide occurrence. In the case of STI,

SPI and TWI most of the landslides occurred in the class

[15, [40 and 10–13, respectively. The relationship

between landslides and their distance to faults, rivers and

roads shows that when distance to a fault, river or road

line increases, the probability of landslide occurrence

Table 1 Description of

geological units of the study

area

No. Code Formation Lithology Geological age

1 Q4 – Sand, gravel, silty clay Quaternary

2 Q3 – Loess Quaternary

3 Q2 – Loess Quaternary

4 Q1 – Loess Quaternary

5 N2 – Glutenite, sandstone, siltstone Neogene

6 K1Lh Luohandong Sandstone, siltstone, mudstone Early Cretaceous

K1h Huanhehuachi Sandstone, siltstone, mudstone Early Cretaceous

K1L Luohe Glutenite, sandstone Early Cretaceous

K1y Yijun Glutenite Early Cretaceous

7 J3f Fenfanghe Glutenite, sandstone, siltstone Late Jurassic

J2z Zhiluo Glutenite, siltstone, shale Middle Jurassic

8 P1 – Sandstone, shale Early Permian

9 O1–2 – Limestone, dolomite Early–Middle Ordovician
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Table 2 Spatial relationship between each landslide conditioning factor and landslide using frequency ratio model

Factors Class No. of

landslide

Percentage of

landslide

No. of pixelsi n

domain

Percentage of

domain

Frequency

ratio

Slope angle (�) 0 to 7 17 30.36 130,540 32.51 0.93

7 to 14 19 33.93 142,908 35.59 0.95

14 to 21 17 30.36 105,127 26.18 1.16

21 to 28 3 5.36 21,767 5.42 0.99

28 to 38 0 0.00 1191 0.30 0.00

Slope aspect Flat 0 0.00 24,750 6.16 0.00

N 9 16.07 38,630 9.62 1.67

NE 7 12.50 41,060 10.23 1.22

E 8 14.29 45,023 11.21 1.27

SE 6 10.71 53,668 13.37 0.80

S 4 7.14 39,222 9.77 0.73

SW 9 16.07 52,826 13.16 1.22

W 3 5.36 53,388 13.30 0.40

NW 10 17.86 52,966 13.19 1.35

Elevation (m) 720 to 850 23 41.07 47,992 11.95 3.44

850 to 1000 26 46.43 100,242 24.96 1.86

1000 to 1150 4 7.14 91,991 22.91 0.31

1150 to 1300 2 3.57 102,322 25.48 0.14

1300 to 1560 1 1.79 58,986 14.69 0.12

Plan curvature \-0.05 16 28.57 109,181 27.19 1.05

-0.05 to 0.05 28 50.00 172,650 43 1.16

[0.05 12 21.43 119,702 29.81 0.72

Profile curvature \-0.05 15 26.79 122,427 30.49 0.88

-0.05 to 0.05 15 26.79 149,516 37.24 0.72

[0.05 26 46.43 129,590 32.27 1.44

STI \3 7 12.50 98,781 24.60 0.51

3 to 9 16 28.57 107,663 26.81 1.07

9 to 15 9 16.07 80,233 19.98 0.80

[15 24 42.86 114,856 28.60 1.50

TWI \7 31 55.36 220,876 55.01 1.01

7 to 10 15 26.79 120,942 30.12 0.89

10 to 13 6 10.71 25,225 6.28 1.71

[13 4 7.14 34,490 8.59 0.83

SPI \5 3 5.36 59,426 14.80 0.36

5 to 10 3 5.36 43,551 10.85 0.49

10 to 40 18 32.14 138,723 34.55 0.93

[40 32 57.14 159,833 39.81 1.44

Distance to faults

(m)

0 to 2000 29 51.79 107,371 26.72 1.94

2000 to 4000 9 16.07 56,616 14.09 1.14

4000 to 6000 8 14.29 43,323 10.78 1.33

6000 to 8000 5 8.93 31,701 7.89 1.13

[8000 5 8.93 162,839 40.52 0.22

Distance to rivers

(m)

0 to 200 26 46.43 89,465 22.26 2.09

200 to 400 8 14.29 72,371 18.01 0.79

400 to 600 5 8.93 56,804 14.14 0.63

600 to 800 4 7.14 45,418 11.30 0.63

[800 13 23.21 137,792 34.29 0.68
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decreases. The frequency ratio between landslide occur-

rence and geomorphology showed that the loess table land

areas had the highest value 2.52 and mountain areas had

the lowest value (0.12). The frequency ratio for the NDVI

was high between 0.08 and 0.26, which indicates a very

high probability of landslide occurrence. As shown in

Table 1, it can be observed that as rainfall increases, the

landslide frequency generally increases.

In this study, the SVM model with four types of kernel

classifiers such as linear (LN), polynomial degree of 2

(PL), sigmoid (SIG), and radial basis function (RBF) were

trained using the ENVI5.1 software. The probability of

landslide occurrence falls in the range between 0 and 1.

The results were then exported into the ArcGIS 10.0 soft-

ware for visualization. Finally, the LSI of the produced

maps was grouped into five classes (very low, low, mod-

erate, high, and very high) using the natural break method.

The four landslide susceptibility maps are shown in Fig. 3.

Validation and comparison of susceptibility maps

Validation is an absolutely essential component in the

development of landslide susceptibility and determination

of its quality (Pourghasemi et al. 2012c). Landslide sus-

ceptibility maps are meaningless without validation

(Chung and Fabbri 2003). In the study, the receiver oper-

ating characteristics (ROC) curve was used to assess the

overall performance of the four used models, because the

ROC curve is helpful for representing the quality of

deterministic and probabilistic forecast systems (Akgun

et al. 2012; Youssef et al. 2015a, b). The ROC curve plots

the false positive rate on the X-axis and true positive rate

on the Y-axis, which shows the trade-off between the two

rates (Pradhan 2013). The area under the curve (AUC)

represents the quality of the probabilistic model to reliably

predict the occurrence or non-occurrence of landslides

(Youssef et al. 2015a, b). The success rate was obtained

Table 2 continued

Factors Class No. of

landslide

Percentage of

landslide

No. of pixelsi n

domain

Percentage of

domain

Frequency

ratio

Distance to roads

(m)

0 to 1000 30 53.57 147,594 36.73 1.46

1000 to 2000 8 14.29 96,043 23.90 0.60

2000 to 3000 13 23.21 71,336 17.75 1.31

3000 to 4000 5 8.93 47,452 11.81 0.76

[4000 0 0.00 39,425 9.81 0.00

Geomorphology Mountain areas 3 5.36 180,810 45.00 0.12

Loess ridge and hill

areas

23 41.07 129,203 32.15 1.28

Loess tableland areas 22 39.29 62,630 15.59 2.52

Plain areas 8 14.29 29,173 7.26 1.97

NDVI -0.31 to 0.08 1 1.79 10,985 2.73 0.65

0.08 to 0.26 13 23.21 44,999 11.20 2.07

0.26 to 0.40 21 37.50 81,702 20.34 1.84

0.40 to 0.53 15 26.79 107,741 26.82 1.00

0.53 to 0.71 6 10.71 156,351 38.91 0.28

Rainfall \600 mm/year 0 0.00 33,234 8.27 0.00

600 to 650 mm/year 9 16.07 184,811 45.99 0.35

650 to 700 mm/year 24 42.86 84,360 20.99 2.04

700 to 750 mm/year 19 33.93 85,366 21.25 1.60

[750 mm/year 4 7.14 14,045 3.50 2.04

Lithology 1 2 3.57 17,667 4.41 0.81

2 17 30.36 68,524 17.11 1.77

3 22 39.29 44,002 10.99 3.58

4 2 3.57 57,235 14.29 0.25

5 1 1.79 1260 0.31 5.68

6 7 12.50 182,987 45.68 0.27

7 2 3.57 8518 2.13 1.68

8 1 1.79 2853 0.71 2.51

9 2 3.57 17,509 4.37 0.82
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using the training dataset. As shown in Fig. 4a, the RBF-

SVM model represented the highest value of success rate

(83.15 %), followed by the PL-SVM model (82.72 %),

LN-SVM model (81.77 %) and the SIG-SVM (79.99 %).

The prediction capability of the four landslide suscep-

tibility maps was obtained using the validation dataset. The

result is shown in Fig. 4b. It can be observed that the RBF-

SVM model had the highest prediction rate (77.98 %).

Moreover, the prediction rates were 77.07, 77.50 and

76.08 % for LN-SVM model, PL-SVM model, and SIG-

SVM model, respectively.

Discussion and conclusions

The preparation of landslide susceptibility maps is a crucial

step that can help planners, local administrations, and

decision makers in disaster planning. Accuracy of the

landslide susceptibility maps is important for reducing the

losses of life and property (Kavzoglu et al. 2014). Landslide

susceptibility can be assessed using different methods and

many research papers were published in order to solve the

deficiencies and difficulties in the landslide susceptibility

mapping (Yilmaz 2010a). The main objective of this

research is to produce landslide susceptibility maps for the

Qianyang County, China, using SVM based on four types of

kernel classifiers such as linear, polynomial, sigmoid and

radial basis function.

As the first step, a reliable landslide inventory map is

necessary for landslide susceptibility mapping. In the

study, 70 % of landslides were used for training the models

and the others were used for validation purpose.

Secondly, 15 landslide conditioning factors such as

slope angle, slope aspect, altitude, plan curvature, profile

curvature, distance to faults, distance to rivers, distance to

roads, NDVI, STI, SPI, TWI, geomorphology, rainfall, and

lithology were constructed and used for producing land-

slide susceptibility maps.

Fig. 3 Landslide susceptibility

maps: a the LN-SVM model;

b the PL-SVM model; c the

SIG-SVM model; d the RBF-

SVM model
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Finally, five landslide susceptibility classes, i.e., very

low, low, moderate, high, and very high susceptible for

landsliding, were derived with natural break method. The

spatial performances of the obtained landslide susceptibil-

ity maps were compared using ROC curves.

The validation results showed that the landslide sus-

ceptibility map generated by RBF-SVM model had the

highest prediction rate (77.98 %), followed by the PL-

SVM model (77.50 %), the LN-SVM (77.07 %), and the

SIG-SVM (76.08 %). Success rate curves gave similar

results, with RBF-SVM model the highest AUC value

(83.15 %), followed by the PL-SVM model (82.72 %), the

LN-SVM model (81.77 %), and the SIG-SVM model

(79.99 %).

SVM model has been used in many literatures. Brenning

(2005) obtained sufficiently smooth prediction surfaces for

creating susceptibility map by using SVM. Yao et al.

(2008) used the SVM in landslide susceptibility mapping,

they found that SVM was a useful tool in landslide sus-

ceptibility assessment, and they found that the SVM had

better prediction efficiency than LR. Marjanović et al.

(2011) commented on the strengths and weaknesses of the

SVM model, and indicated that SVM models do not need

any feature selection technique as opposed to some other

methods such as decision trees. Xu et al. (2012) found that

the radial basis and polynomial kernel functions were

suitable for modeling any input training data. San (2014)

used SVM to generate medium scale landslide suscepti-

bility maps; they also found that SVM presented high

classification accuracy.

The results of the present study show that the SVM,

based on four types of kernel classifiers, have been applied

successfully to the production of landslide susceptibility

maps. The landslide susceptibility maps provide valuable

information on the slope stability in the study area, which

could be of benefit to infrastructure planning, land use,

engineering and hazard mitigation design.
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Bai SB, Wang J, Lü GN, Zhou PG, Hou SS, Xu SN (2010) GIS-based

logistic regression for landslide susceptibility mapping of the

Zhongxian segment in the Three Gorges area, China. Geomor-

phology 115(1):23–31

Brenning A (2005) Spatial prediction models for landslide hazards:

review, comparison and evaluation. Nat Hazards Earth Syst Sci

5(6):853–862

Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I (2015) Spatial

prediction models for shallow landslide hazards: a comparative

assessment of the efficacy of support vector machines, artificial

neural networks, kernel logistic regression, and logistic model

tree. Landslides. doi:10.1007/s10346-015-0557-6

Chauhan S, Sharma M, Arora M, Gupta N (2010) Landslide

susceptibility zonation through ratings derived from artificial

neural network. Int J Appl Earth Obs Geoinf 12:340–350

Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide

susceptibility maps obtained from frequency ratio, logistic

regression, and artificial neural network models using ASTER

images and GIS. Eng Geol 124:12–23

Chung CJF, Fabbri AG (2003) Validation of spatial prediction models

for landslide hazard mapping. Nat Hazards 30(3):451–472

Fig. 4 a Success rate and b prediction rate for the LN-SVM, the PL-

SVM, the SIG-SVM, and the RBF-SVM models

Environ Earth Sci (2016) 75:474 Page 11 of 13 474

123

http://dx.doi.org/10.1007/s10346-015-0557-6


Conforti M, Aucelli PP, Robustelli G, Scarciglia F (2011) Geomor-

phology and GIS analysis for mapping gully erosion suscepti-

bility in the Turbolo stream catchment (Northern Calabria, Italy).

Nat Hazards 56(3):881–898

Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011)

Landslide susceptibility assessment using the bivariate statistical

analysis and the index of entropy in the Sibiciu Basin (Romania).

Environ Earth Sci 63(2):397–406

Dai FC, Lee CF (2001) Terrain-based mapping of landslide suscep-

tibility using a geographical information system: a case study.

Can Geotech J 38(5):911–923

Demir G, Aytekin M, Akgün A, İkizler SB, Tatar O (2013) A
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