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Abstract Debris flows are among the most hazardous

phenomena in nature, requiring the preparation of suscep-

tibility models in order to cope with this severe threat. The

aim of this research was to verify whether a grid cell-based

susceptibility model was capable of predicting the debris-

flow initiation sites in the Giampilieri catchment (10 km2),

which was hit by a storm on the 1st October 2009, resulting

in more than one thousand landslides. This kind of event is

to be considered as recurrent in the area as attested by

historical data. Therefore, predictive models have been

prepared by using forward stepwise binary logistic

regression (BLR), a landslide inventory and a set of geo-

environmental attributes as predictors. In particular, the

effects produced in the quality of the predictive models by

changing the grid cell size (2, 4, 16 and 32 m) have been

explored in terms of predictive performance, robustness,

importance and role of the selected predictors. The results

generally attested for high predictive performances of the

2, 8 and 16 m model sets (AUROC[ 0.8), with the latter

producing slightly better predictions and the 32 m showing

the worst yet still acceptable performance and the lowest

robustness. As regards the predictors, although all the 4

sets of models share a common group (topographic attri-

butes, outcropping lithology and land use), the similarity

resulted higher between the 8 and 16 m sets. The research

demonstrates that no meaningful loss in the predictive

performance arises by adopting a coarser cell size for the

mapping unit. However, the largest adopted cell size

resulted in marginally worse model performance, with

AUROC slightly below 0.8 and error rates above 0.3.
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Introduction

Landslide susceptibility is the likelihood of a landslide

occurring in an area on the basis of its local terrain con-

ditions. It estimates ‘‘where’’ landslides are likely to occur

without considering either the magnitude of the expected

landslides or its temporal probability or time recurrence

(Guzzetti et al. 1999). Therefore, a susceptibility model

does not only reflect the present instability conditions but

also provides a predictive image of the future instability

conditions.

Landslide susceptibility modelling based on stochastic

methods requires a calibration landslide inventory and the

grid layers of a set of geo-environmental attributes, the

latter being assumed to directly or indirectly (as proxies)

represent those factors that control the slope failures in the

study area. By crossing the landslide inventory (the out-

come) and the layers of the geo-environmental variables

(the predictors), quantitative relationships can be esti-

mated, allowing us to predict and map the future stable/

unstable areas, on the basis of the principle stating that ‘‘the

past is the key to the future’’ (Carrara et al. 1995).

One of the main characterizing components of a sus-

ceptibility model is the appropriate selection of the map-

ping units. Mapping units are the basic functional spatial

elements in which a study area is partitioned and for which
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a susceptibility assessment method is able to produce a

prediction (stable/unstable). Mapping units should be

selected on the basis of a trade-off between spatial reso-

lution of input data, adequacy and needs of the final map

users (e.g. the scale of the susceptibility map). Among the

large set of mapping units has been proposed in scientific

literature (e.g. Carrara et al. 1995; Guzzetti et al. 1999;

Rotigliano et al. 2011), two main groups of mapping units

are mostly used: terrain units (morphological or hydro-

morphological units) and regular grid-arranged polygons

(typically square cells). Terrain units partitioning, which

aims at subdividing the study area into its morphodynam-

ically independent sub-systems (e.g. sub-basins or slope

units; Guzzetti et al. 1999; Van Den Eeckhaut et al. 2009;

Frattini et al. 2010; Rotigliano et al. 2012), can be per-

formed through expert subjective but time-consuming

mapping, unless automatic extraction procedures from a

Digital Elevation Model (DEM) are adopted; in that case

we have to accept the need to arbitrary blur or dissolve

some unavoidable aberrations. Moreover, the use of hydro-

morphological units normally conducts to under-exploit

high-resolution data such as those which can be locally

calculated from a DEM (Guzzetti 2005; Conoscenti et al.

2014). On the contrary, the partitioning of a study area into

regular square cells constitutes a simple objective and

totally automatic procedure, allowing the model to match

the parent spatial structure of a DEM, so that the maximum

exploitation of the resolution of all the derived primary and

secondary topographic attributes can be achieved. At the

same time, even in the case of very shallow landslides,

some causes of the failure initiation could be properly

defined in a larger and/or not-regularly shaped neighbour-

hood of a single small cell, so that a model could not

recognize the role of some important predictors, as these

could be significant only on a larger spatial scale. More-

over, the morphodynamic meaning of a grid cell, especially

for large sizes, is somewhat difficult to be directly linked to

the morphodynamic of the failure phenomena. However, it

is also a matter of processing time costs: high-resolution

grid cell partitioning typically produces a number of

mapping units which is two–three order of magnitude more

(typically, millions) than terrain partitioning (e.g. Van Den

Eeckhaut et al. 2009; Rotigliano et al. 2012), which weighs

down some of the spatial processing steps in a GIS (Geo-

graphic Information System), such us the multiple random

spatial extraction of subsets.

The role of the grid cell size in hydro-morphological

analysis has been largely faced by several authors (e.g.

Dietrich et al. 1995; Wilson et al. 2000; Kienzle 2004;

Goméz Gutiérrez 2015). In the framework of landslide

susceptibility stochastic models, indeed the topic can be

faced from a multi-perspective view. In fact, the grid cell

size can control: the cell value of the geo–environmental

attributes which are used as predictors (the independent

variables); the precision of the spatial coupling between

landslides (the dependent variable), mapping units and

predictors; and, when exploiting a post-event DEM, the

extent to which this is modified by the landslides or, on the

contrary, the landslides can be recognized from the mor-

phological features of the earth surface.

In the last 10 years, many studies have been focused on

the effects of grid cell in landslide modelling. Classens

et al. (2005) explored the effect of using different grid cells

(10, 25, 50 and 100 m) in computing some topographic

attributes to be included in landslide hazard models,

exploiting the approach from Montgomery and Dietrich

(1994). Legorreta-Paulin et al. (2010) investigated the

effect of the grid cell variation (1, 5, 10 and 30 m) on the

cartographic representation of shallow and deep landslides,

exploiting a synthetic landslide inventory and two different

techniques for modelling (SINMAP: Stability Index

MAPpin, and MLR: Multiple Logistic Regression). Lee

et al. (2004) compared landslide susceptibility calculated

by means of frequency ratio models, using 5, 10, 30, 100

and 200 m resolution data. Tian et al. (2008) applied

information model to determine the optimal grid cell size

for landslide (slide type) susceptibility assessment

depending on differently sized study areas; in particular,

they used eleven groups of different grid cell resolutions

(5–190 m) in nine study areas having extensions ranging

from 62 to 300 km2. Tarolli and Tarboton (2006) evaluated

the effects of grid cell size variations on landslide initiation

susceptibility modelling by means of SINMAP, and using

five different DEM resolutions (2, 5, 10, 20 and 50 m) in a

10 km2 affected by shallow landslides. Penna et al. (2014)

evaluated the predictive power of Quasi-Dynamic Shallow

Landslide Model (QD-SLaM) to simulate shallow landslide

locations in a small part of the Giampilieri catchment,

testing four DEM resolutions (2, 4, 10 and 20 m). Pala-

makumbure et al. (2015) analysed the role of the grid cell

size (2, 5, 10, 15, 20, 25, 30 and 40 m) in landslide sus-

ceptibility assessment by means of decision trees methods

of a 94 km2 area affected by 777 slides.

Although the topic has been widely explored, there are

some points which still need further investigations: for

example, the previously mentioned studies, only partially

focused on the variations of the selected predisposing

factors led by the changes in grid cell size, mainly focusing

on the global performance of the models. At the same time,

differently from the above-mentioned studies, the present

research has been focused on the effects for stochastic

susceptibility modelling for multiple debris-flows predic-

tion scenarios. Debris flows are worldwide diffused in

mountainous areas. They are defined as rapid shallow

landslides, triggered on steep slopes by any hydrological

phenomena capable to rapidly increase the pore pressure in
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the weathered mantle (e.g. Igwe et al. 2014; Vilimek et al.

2015).

In the present paper, the relationships between grid cell

size and predictive performances for debris-flows suscep-

tibility models are analysed. To cope with this topic, a

study was carried out for the Giampilieri catchment (Sicily,

southern Italy), which was hit on the 1st of October 2009

by a storm resulting in a Multiple Occurrence of Regional

Landslide Events (MORLE; Crozier 2005). For this area,

susceptibility models prepared exploiting different grid cell

sizes were compared in terms of inner structure (ranking

and coefficients of the selected independent variables) and

predictive performances (accuracy and robustness). The

models were derived by applying binary logistic regression

(BLR), based on a before-event DEM and calibrated with

the 2009 debris-flows inventory. The investigation is

focused in predicting debris-flow source areas, neglecting

the runout of the phenomena.

General framework

Setting of the study area

The study area (Fig. 1a) is located in the southernmost part

of the Messina Municipality territory, and corresponds to

the catchment of the Giampilieri stream. For the spatial

continuity, the small secondary hydrographic units, which

border the catchment mouth sectors on the coastal area,

were also included in the study area and referred to the

main hydrographic unit of the Giampilieri stream. The

whole study area extends for 10 km2 and includes inhab-

ited areas which are highly exposed to flood and debris-

flow hazard being located at the base of very steep slopes

(frequently crossing the secondary drainage lines). The

main part of the territory is occupied by terraced slopes no

longer cultivated and pasture, with wide natural areas with

chestnut woods limited to the central part of the catchment.

From a geological point of view, the area is located on

the Peloritani Mountain Belt (Fig. 1b), which is charac-

terized by the presence of Aquitanian S–SW verging

thrusts. The allochthonous pile is formed by several tec-

tono-stratigraphic units (Messina et al. 2004), three of

which constitute the geologic structure of the study area. In

particular, in the Giampilieri catchment, the outcropping

lithology mainly corresponds to paragneiss and mica

schists of the Aspromonte and Mela Units, and phyllites

and metarenites of the Mandanici Unit. These Units are

part of the eo-Varisician basement formed during the

Hercynian orogenesis, including also a Meso-Cenozoic

cover, which shows Alpine overprint resulting in cata-

clastic to mylonitic shear zones both in the basement and,

locally, in the cover layer (Messina et al. 2004). Starting

from the Pliocene, an NNE–SSW extensional tectonics

fragmented the Hercynian orogen (Ghisetti and Vezzani

2002; Fiannacca et al. 2008); this active phase is respon-

sible for the recent intense seismicity and uplifting in

northeastern Sicily (Lentini et al. 2000).

Both tectonics and regional uplifting are important for the

current geomorphological setting of the study area. Indeed,

favoured by the tectonically fracturing, the bedrock is very

effectively subjected to intense weathering processes, whilst

the high uplift rate and the proximity to the coast determine

a landscape which is marked by high ridges, limited by steep

slopes connecting to deeply incised main and secondary

stream valleys at the base. Very steep and small catchments

with a highly torrential hydrologic regime have developed

both on the eastern and western slopes of the Peloritani

Mountain Belt. Although these torrents are usually dry,

under strong raining events, due to the high mean steepness

of the slopes, the water flow rapidly increases determining

frequently floods at the coastal plain sector and causing

damage to the infrastructure (especially roads) that are

located in the proximities of the river banks.

The climate in the region is a typically Mediterranean

Csa (Köppen 1923), with a dry season from April to

August and a wet season from September to March with an

average yearly rainfall of nearly 900 mm. Locally the

weather is influenced by the physiography of the area, the

Messina Strait dividing into two parts the Calabria-

Peloritani Arc: the Aspromonte and the Peloritani chains

situated in Calabria and Sicily, respectively. In fact, both

the Ionian and the Tyrrhenian sides of Sicily are exposed to

the formation of cumulonimbi because of the complicated

orography and the proximity to the warm water of

Mediterranean sea (Melani et al. 2013).

The 2009 multiple debris-flows event

The Giampilieri area became sadly known on the 1st

October 2009 when thousands of landslides occurred,

causing 36 fatalities and hundreds of million euros of

damage (Protezione Civile Nazionale 2009). Seven-hun-

dred people were displaced from their territory and still

now the poor economy of the villages involved is strongly

affected by the event. In particular, on the 1st October

2009, an area of around 50 km2 was hit by a cumulative

rainfall event of approximately 160 mm in 6 h which fol-

lowed two previous rainfalls events on 16th September

(76 mm) and 23rd–24th September (190 mm). These last

two rains resulted in the complete saturation of the soil

(Aronica et al. 2012), so that in the 1st October 2009,

thousands of debris flows were triggered in the whole

50 km2 area within less than five hours resulting in a

Mediterranean Multiple Occurrence Regional Landslide

Event (MORLE; Crozier 2005).
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Due to the high water content, as well as the steepness

of the slopes and drainage network, a huge number of

failures, which mainly activated as shallow landslides,

propagated downslope in form of debris flows or ava-

lanches (Varnes 1978; Hutchinson 1988; Hungr et al.

2001, 2014). Once the drainage network was reached, the

debris moved downstream onto the main Giampilieri

valley, in some cases destroying the roads and the houses

of those urbanized areas whose limits intersected the

drainage axes.

It is worth to notice that the 2009 storm-triggered

landslide event has to be considered as one of the strongest

in a time series of similar events which have been recorded

during the last century (see Cama et al. 2015 and references

Fig. 1 a Location of the study

area; b Geological setting of the

Giampilieri catchment

(modified from Lentini et al.

2007)
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therein) in the Giampilieri area. Therefore, given the high

recurrence of such events, debris flow susceptibility maps

are among the mandatory tools in this sector of Sicily.

Materials

In light of the main topic of the research, high-resolution

source data were required for the controlling factors. In

particular, a source DEM with 2 m cell size and 0.17 m of

vertical accuracy released by ARTA from a LIDAR pre-

event coverage dated to 2007 was exploited for calculating

all the topographic variables. At the same time, the avail-

able 1:50.000 geological map (Fig. 1; Lentini et al. 2007)

and the Corine land use map were detailed up to a 1:10.000

scale by means of both field surveys and orthophotos

analysis.

The landslide inventory (Fig. 2) was prepared by inte-

grating field and remote survey in the framework of pre-

vious researches carried out in the same area (Lombardo

et al. 2014, 2015). Soon after the event (5–6 October 2009),

a field survey (Agnesi et al. 2009) was carried out for

immediate and detailed landslide recognition, aimed at

classifying the phenomena and deriving geomorphological

landslide models. The systematic debris-flow event

inventory (Guzzetti et al. 2012) was then obtained by

comparing pre- and post-event high-resolution images.

Debris flow is a specific type of landslide, whose defi-

nition (Hungr et al. 2014) is: ‘‘Very rapid to extremely rapid

surging flow of saturated debris in a steep channel. Strong

entrainment of material and water from the flow path’’. In a

debris flow, it is possible to distinguish initiation (source

area), transport and deposition zone. Debris-flow phenom-

ena have to be more clearly distinguished depending on the

dynamic that drives the failures, as well as the kinematic of

the propagation phase. In particular, on a morphodynamic

basis, two types of debris flow can be recognized: chan-

nelized debris flows and debris avalanches (Varnes 1978;

Hutchinson 1988; Hungr et al. 2001, 2014). However, in the

present research, we did not distinguish between the two

types under the hypothesis that the relationships between

the predictors and the two types of phenomena do not

meaningfully differ in the determination of the source

mechanisms. In fact, the main task of this research was to

produce a map which indicates where a future shallow

landslide capable of propagating onto the slope, potentially

channelling and reaching the drainage axes, was more likely

to activate. For this reason, our inventory is quite different,

Fig. 2 1st of October 2009

landslide inventory: a map

showing the whole LIP

inventory; b magnification of a

representative sector with LIPs

and landslide polygons
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both in terms of classification and mapping criteria, from

similar archives, which have been recently delivered for the

same area (Mondini et al. 2011; Ardizzone et al. 2012; Del

Ventisette et al. 2012; De Guidi and Scudero 2013). In

particular, as shown in Fig. 2a, we decided to separately

map each of the source areas even in the case of multiple

converging phenomena obtaining an inventory which con-

sists of 1118 single source areas for the Giampilieri basin

(Fig. 2; Lombardo et al. 2014). As presented in the Fig. 3,

the dimensions of the source areas are characterized by a

prevalence of small phenomena, with an average perimeter

and area respectively of 87 m and 0.383 km2, with a very

elongated shape (length/width ratio centred approximately

on 6.60). For each of the source areas, a landslide identifi-

cation point (LIP) was derived as the highest point along the

border of the landslide polygon (Costanzo et al. 2012a,

2014), assuming that it individuates the sector of the slope

where the geo-environmental conditions which lead to the

past slope failure could be detected.

Methods

Applying a stochastic approach to assess landslide sus-

ceptibility requires the adoption of a statistical technique to

analyse the relationships between a set of predictors, cor-

responding to the geo-environmental attributes which

control the landslide phenomena, and a dependent variable

which is represented by the presence/absence of slope

failures. In particular, expert choices are to be taken

regarding the selection of suitable statistical techniques,

potential predictors, diagnostic areas, mapping units and

validation procedures.

In the wide range of stochastic methods which are

proposed in the scientific literature (Carrara et al. 1995),

BLR results as one of the most adopted (e.g. Guzzetti et al.

2005; Lombardo et al. 2014, 2015), in light also of its

suitability in handling nominal and continuous predictors

with no need of any variable transformation, so that the

final models can be easily interpreted in terms of

geomorphology.

As regards the selection of the predictors (e.g. Costanzo

et al. 2012a, 2014), geomorphological criteria must be

adopted in defining a set of spatial geo-environmental

attributes, which can directly or indirectly (as proxies)

express the potential landslide controlling factors. Once a

set of potential predictors is prepared, some statistical

methods assess the importance of each of the variables and

restrict the selection to a parsimonious subset of perform-

ing ones (e.g. forward/backward stepwise selection or

principal components analysis).

The diagnostic areas (Süzen and Doyuran 2004; Roti-

gliano et al. 2011; Costanzo et al. 2012a, 2014) are land-

slide or landslide-related areas on a slope, showing the

same geo-environmental conditions of those portions

where the known landslides activated. Under the assump-

tion that ‘‘the past is the key to the future’’, a predictive

model capable of identifying the spatial distribution of the

diagnostic areas is also skilled in depicting a prediction

image (the susceptibility map) of the sites where the future

landslides will activate. Therefore, the diagnostic areas are

the core of the whole stochastic approach as they furnish

the constraints for the multivariate relationship between the

predictors and the unstable status of the outcome which

will drive the regression algorithm in the calibration of the

model.

Fig. 3 Morphometric characteristics of the mapped landslides: a area, b perimeter, c Length, d width
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The mapping units (Carrara et al. 1991, 1995, 1999;

Guzzetti et al. 1999) are the focus of this research, being

introduced in ‘‘Introduction’’ section and further discussed

in the following.

Finally, validation procedures (Carrara et al. 2003;

Chung and Fabbri 2003; Guzzetti et al. 2006; Frattini et al.

2010; Rossi et al. 2010; Petschko et al. 2014) constitute a

mandatory component of a susceptibility assessment

method. In particular, the quality of the models has to be

assessed in terms of accuracy and precision in the predicted

probabilities for both the known and unknown positive and

negative cases, as well as of the geomorphological ade-

quacy of the inner structure of the model itself, which is

given by the importance and role of the selected predictors.

Binary logistic regression

BLR analysis is a multivariate statistical technique, based

on a frequentist approach that is used to investigate and

model the response of a binary outcome in relation to

changes in a set of independent variables (Hosmer and

Lemeshow 2000). BLR proved to be an extremely useful

technique in modelling landslide susceptibility (Atkinson

and Massari 1998; Dai and Lee 2002, 2003; Ohlmacher

and Davis 2003; Süzen and Doyuran 2004; Bai et al.

2010; Yalcin et al. 2011; Costanzo et al. 2014; Lombardo

et al. 2014, 2015; Cama et al. 2015) also in comparative

studies, in which its model performance has been evalu-

ated with respect to those of other statistical methods

(Guzzetti et al. 2005; Mathew et al. 2008; Rossi et al.

2010; Akgün 2012; Vorpahl et al. 2012; Felicı́simo et al.

2012; Conoscenti et al. 2015; Lombardo et al. 2014,

2015).

BLR linearizes the relationship between p predictors and

the probability p of an outcome x, by defining the latter in

terms of a logit function g, which corresponds to the fol-

lowing transformation:

g xð Þ ¼ ln
p xð Þ

1� p xð Þ

� �
¼ aþ b1x1 þ b2x2 þ � � � þ bpxp;

where p(x) is the conditional probability of the outcome

(i.e. the event occurs) given the x condition, a is the con-

stant term or intercept, the x’s are the input predictors and

the b’s their coefficients. The fitting of the logistic

regression model, which is performed by adopting maxi-

mum likelihood (L) estimators, allows us to estimate the

best intercept and bp coefficients.
Once a BLR model is regressed to match the calibration

dataset, its prediction image (Chung and Fabbri 2003) can

be directly calculated by combining all the layers of the

independent variables, assigning their regressed coeffi-

cients to compute the logit and finally exponentiating and

rearranging for p(x), obtaining

p xð Þ ¼ eaþb1x1þb2x2þ���þbpxp

1þ eaþb1x1þb2x2þ���þbpxp
¼ eg xð Þ

1þ eg xð Þ :

Based on the maximum likelihood function, the global

fitting of the regressed model on the data domain is measured

and tested for significance, exploiting the statistic -2LL

(negative log-likelihood), which has a v2 distribution. The

model fitting is also evaluated by exploiting two pseudo-R2

statistics: theMcFaddenR2 and theNagelkerkeR2. The first is

defined as 1 - (LMODEL/LINTERCEPT) being confined between

0 and 1. As a rule of thumb (McFadden 1978), values between

0.2 and 0.4 attest for excellent fit. NagelkerkeR2 is a corrected

pseudo-R2 statistics, ranging from 0 to 1 (1991).

One of the main advantages in adopting BLR is that this

method can accept among the predictors entries of all types

(either continuous, dichotomous or polychotomous), sim-

ply requiring the designing (Hosmer and Lemeshow 2000)

for each nominal variable of a group of binary-derived

variables, one for each class. At the same time, the inter-

pretation of binary probabilities for the outcome and linear

coefficients for the predictors is very straightforward also

in geomorphological terms: the odds ratios (OR), which are

calculated by exponentiating the b’s, express the associa-

tion between each predictors and the outcome, indicating

how much more likely (or unlikely) it is for the outcome to

be positive (unstable cell) when a unit change of a predictor

occurs. Negatively correlated variables will produce neg-

ative b’s and ORs limited between 0 and 1; positively

correlated variables will result in positive b’s and ORs

greater than 1 (Hosmer and Lemeshow 2000). Moreover,

by applying stepwise forward selection procedure, only the

predictors resulting in a significant increasing of the neg-

ative log-likelihood function will be included in the final

model. The result is the list of restricted variables that can

be submitted to the final BLR, each having its order of

importance (i.e. ranking).

The question of whether BLR should be performed

either on balanced or on unbalanced datasets of positive

(landslides) and negative (not landslides) cases (Atkinson

and Massari 1998; Süzen and Doyuran 2004; Nefeslioglu

et al. 2008; Van Den Eeckhaut et al. 2009; Bai et al. 2010;

Frattini et al. 2010) has recently been debated (e.g. Goméz

Gutiérrez et al. 2009; Heckmann et al. 2014). In this

research, balanced datasets were prepared, including an

equal number of positives (inside the diagnostic area) and

negatives (outside the landslide polygons).

An open source software was used (TANAGRA:

Rakotomalala 2005) to perform the forward stepwise BLR.

Controlling factors and diagnostic areas

The potential controlling factors were defined in light also

of their availability and quality, based on the expected
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failure mechanisms that were inferred from field and

remote landslide surveys and bi-variate analysis of the

landslide inventory and the factor maps. Due to the limited

spatial extension of the catchment, as well as to the low

density of the rain gauges network in this area (Fig. 1), it

was not possible to include any rainfall-related predictors

among the tested ones. In fact, the spatial variation of such

a predictor would be very low and almost heavily con-

trolled by the adopted interpolation algorithm (Minder

et al. 2009). In particular, we chose eleven potential con-

trolling factors to apply the BLR multivariate analysis: nine

topographic variables, the outcropping lithology (GEO)

and the land use (USE). The nine selected topographic

variables are height (HGT), slope (SLO), plan (PLC) and

profile (PRC) curvatures, aspect (ASP), topographic wet-

ness index (TWI), stream power index (SPI), flow accu-

mulation (FLA) and landform classification (LCL). The

Figs. 4 and 5 show the continuous and the discrete

variables.

The elevation of the topographic surface is commonly

considered as a good proxy variable for rainfall (Coe et al.

2004; Lombardo et al. 2014). Moreover, it was selected

among the most important variable in previous debris-flow

susceptibility studies in the same Giampilieri catchment

(e.g. Lombardo et al. 2014, 2015; Cama et al. 2015). The

steepness of a cell is the maximum first derivative of the

height and was calculated applying the spatial analyst tool

in ArcGis 9.3. Slope is expected to be among the most

important predictor for gravitational process, as it is

directly linked to the shear strength acting onto the

potential shallow failure surface, being very important in

determining the static equilibrium of each cell. In fact, the

topographic surface slope is a proxy for the real steepness

of the failure surface, which is buried and frequently not-

Fig. 4 Maps of the continuous variables in the Giampilieri catchment: a height; b slope; c plan curvature; d profile curvature; e topographic

wetness index; f stream power index; g flow accumulation
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parallel to it. However, particularly for shallow slide/flow

failures, the two surfaces (topographic and rupture) do not

diverge so much and the slope angle can be considered as a

highly reliable proxy. Slope steepness also controls the

overland and subsurface flow velocity and runoff rate. The

topographic curvatures control the divergence and con-

vergence, both of surface runoff and shallow gravitational

stresses (Ohlmacher 2007). In this study, the profile cur-

vature and the plan curvature were used, which were cal-

culated in the parallel and perpendicular directions of the

maximum slope, respectively. The curvatures were calcu-

lated using the spatial analyst tool on a cell-by-cell basis

for the four cell sizes. The aspect is an important factor

which controls solar insolation, evapotranspiration, flora

and fauna distribution and abundance. Being the erosional

processes related with the chemical physical weathering

operated by water, temperature and vegetation, it is very

important to consider this factor for the determination of

landslide susceptibility. Besides, the aspect frequently

assumes a role of proxy variable for the attitude of the rock

layers. Wetness and stream power indexes are widely used

in landslide susceptibility modelling to express the poten-

tial water infiltration volumes and erosion power on slopes,

respectively (Wilson and Gallant 2000). TWI is defined as

ln(As/tanb), where As is the local upslope area draining

through a certain point per unit contour length and b is the

local slope angle. It describes the extension and distribution

of the saturation zones assuming steady-state conditions

and uniform soil properties. SPI, which is calculated as

(As*tanb), expresses on a topographic basis the expected

runoff energy, predicting net erosion in areas of profile

convexity and tangential concavity (flow acceleration and

convergence zones) and net deposition in areas of profile

concavity (zones of decreasing flow velocity). Both the two

attributes were calculated using the terrain analysis tool in

Arcview 3.2. FLA directly furnishes for each cell the

number of cells feeding its runoff, so that it plays a role in

all the hydrological process and related geomorphic con-

sequences. Landform classification was automatically cal-

culated using the Topography tool (Tagil and Jenness

2008) in ArcGis 9.3. This tool allows us to calculate the

Topographic Position Index (TPI), which is necessary to

classify the landforms of a landscape. In particular, TPI

compares the elevation of each cell in a DEM to the mean

elevation of a specified neighbourhood. Negative TPI

values represent locations that are lower than their sur-

roundings (valleys) and vice versa. TPI values near zero are

either flat areas (where the slope is near zero) or areas of

constant slope (where the slope of the point is significantly

greater than zero). The landform classification is derived

Fig. 5 Maps of the discrete

variables in the Giampilieri

catchment: a aspect; b landform

classification; c outcropping

lithology; d land use. See

Table 1 for legend

abbreviations
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for each cell of a DEM by combining the TPIs computed at

two different scales (Weiss 2001). In the Giampilieri

catchment, considering the valley/ridge main geometric

features, the best classification was calculated with a small

area TPI of 50 m and a large area TPI of 250 m.

The outcropping lithology is here exploited as a proxy

for the type of regolithic cover and, as a consequence, for

its lithotechnical properties. Weathering processes (type

and extent) are in fact heavily controlled by the parent rock

and its fracturing condition, particularly in an area where

variable grade metamorphic rocks outcrop. At the same

time, possible anthropogenic effects on the site stability

conditions are linked to the variable USE.

With the conversion of the nominal predictors (ASP,

LCL, LIT and USE) into binary variables, a total number of

39 predictors for each of the four pixel size models were

obtained (Table 1).

Starting from the source layers of the predictors, four

different grid cell multivariate layers were prepared, hav-

ing cell size of 2, 8, 16 and 32 m, corresponding to an

interval ranging from the finest DEM resolution to three

times the mean width of the mapped landslides (Fig. 3).

Each cell was assigned the values from the source layers of

the predictors: the majority class inside the cell, for nom-

inal attributes, and the new value obtained by applying a

bi-linear interpolation resampling method, for the contin-

uous topographic attributes. We hereafter refer to these

layers and the related models with the codes: 2, 8, 16 and

32 m.

In this study, in defining the diagnostic areas, we con-

sidered the debris slides and debris flows as local phe-

nomena, whose initiation has to be linked to the geo-

environmental conditions in the small neighbourhood of

the initiation area, rather than to the general conditions of

the whole affected slope units. For this reason, we adopted

the LIP presence/absence within the cell as the spatial

criterion to set its stable/unstable status.

Model validation

In order to compare the quality of the four models obtained

by using the four cell sizes, quantitative and rigorous val-

idation procedures were applied. In fact, any evaluation of

the skill and the reliability of a predictive model should

consider both its accuracy and robustness (see Carrara

et al. 2003; Guzzetti et al. 2006; Frattini et al. 2010; Rossi

et al. 2010; Petschko et al. 2014; Lombardo et al. 2014,

2015; Cama et al. 2015). The accuracy is the degree to

which the result of the model conforms with the observed

cases and is evaluated by comparing the prediction image

to the status (stable/unstable) of each mapping unit. To

evaluate the accuracy, at least two datasets are needed: a

calibration dataset is used to constrain the maximum

Table 1 List of the adopted predictors

Variable Description

Outcropping lithology (LIT) (nominal)

1 LIT_B2 Eluvium–colluvium

2 LIT_BB Recent alluvial deposits

3 LIT_FDNa Muscovite marbles

4 LIT_FDNb Phyllites to meta-arenites

5 LIT_GN2-5 Terraced marine deposits

6 LIT_MLEa Paragneiss to mica shists

7 LIT_MLEc Two micas marbles

8 LIT_PMAa Muscovite

9 LIT_PMAd Silicate marbles

10 LIT_PMPa Aplitic pegmatites

11 LIT_SPDb Clays with sandy levels

Soil use (USE) (nominal)

1 USE_111 Continuous urban fabric

2 USE_221 Non-irrigated arable area

3 USE_223 Olive groves

4 USE_226 Mixed groves

5 USE_312 Coniferous

6 USE_321 Shrubland

7 USE_322 Grassland

8 USE_323 Sparsely vegetated areas

9 USE_331 Erosion scars, badlands, rock outcrops

Aspect (ASP) (nominal)

1 ASP_N North

2 ASP_NE North-east

3 ASP_E East

4 ASP_SE South-east

5 ASP_S South

6 ASP_SW South-west

7 ASP_W West

8 ASP_NW North-west

9 ASP_FLAT Flat

Landform classification (LCL) (nominal)

1 LCL_CANY Canyons

2 LCL_MDRG Midslope drainage

3 LCL_UPDRN Upland drainage

4 LCL_USHP U-shaped valleys

5 LCL_PLAINS Plains

6 LCL_OPEN Open slopes

7 LCL_UPPSL Upper slope

8 LCL_LOCRDG Local ridge

9 LCL_MRDG Midslope ridge

10 LCL_MNTPS Mountain tops

Variable Units

Topographic factors (continuous)

1 Height m

2 SLO Degrees

3 FLA m2
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likelihood estimator when regressing the model through

BLR; a validation dataset constitutes the target we want to

match (i.e. the future debris-flows source areas) and is

made by positive and negative cases which are unknown to

the model during the calibration step. Probabilities below

and above the threshold values of 0.5 identify negative and

positive predictions, respectively, which for a perfect

model would match stable and unstable cells. In particular,

we refer to goodness of fit and prediction skill, when

considering the accuracy of the model in predicting the

known (calibration) and the unknown (validation) cases,

respectively. In the first case, the statistical procedure

consists in a classification of known cases, while in the

second case, a real prediction of unknown cases is per-

formed. Therefore, the goodness of fit gives an overesti-

mation of the real predictive performance of the model; in

fact, it gives a measurement of how the model fits the same

known cases that have been adopted to optimize its coef-

ficients. For this reason, the availability of an independent

validation set of positive and negative cases is mandatory

for assessing the prediction skill in a validation test.

Among the different methods which can be followed to

prepare calibration and validation datasets, in this study, a

random partition procedure (Chung and Fabbri 2003;

Conoscenti et al. 2008) was adopted dividing each dataset

in balanced stable and unstable cases subsets: 75 % was

used to calibrate the models, whilst the 25 % left was used

to validate them.

Two different measures of the accuracy were then

considered to estimate goodness of fit and prediction skill.

A first method is based on classic contingency

tables which compare classified/predicted to known/un-

known stable and unstable cases, by considering a 0.5 cut-

off value for p(x). A partition in true positive (TP) and

negatives (TN), and false positive (FP: Error Type I) and

negatives (FN: Type II error) arises in this way and,

together with the model error rate (TP ? TN)/(FP ? FN),

single estimates of sensitivity or hit rate (TP/(TP ? FN))

and 1—specificity (FP/(TP ? FN)), it is possible to

compute a large number of other metrics which can attest

for the accuracy of the model. According to Frattini et al.

(2010), we can define this accuracy assessment as a cut-

off dependent accuracy estimation. Conversely, a cut-off

independent metric for accuracy is based on the ROC

(Receiver operating characteristic) plots, showing the

trade-off between sensitivity and 1-specificity. These

curves allow the interpreter to have an overall estimate of

the goodness of fit and prediction skill of the models by

using the Area Under the ROC curve (AUROC) as a

metrics of its accuracy. ROC curves analysis gives a more

complete estimate of the accuracy of the model, as it

condenses an infinite number of contingency tables,

enabling an estimation of the auto-consistency and lin-

earity of the classification/prediction function in the

domain of the two types of errors. Threshold AUROC

values of 0.7, 0.8 and 0.9 identify acceptable, excellent

and outstanding predictions (Hosmer and Lemeshow

2000).

Since the results of a susceptibility assessment can be

strongly sample dependent, it is also necessary to evaluate

the robustness of the model (Guzzetti et al. 2006; Guns and

Vanacker 2012; Heckmann et al. 2014, Lombardo et al.

2014, 2015; Cama et al. 2015), referring to the stability of

the model outputs (both for accuracy and predictors

importance) with respect to changes in the dataset exploi-

ted for its calibration. In particular, two main sources of

variation are identified: the extraction of the negative cases

which balance the positives in a dataset; the splitting into

calibration and validation subsets of the dataset. The ro-

bustness of the predictive results was evaluated on a total

number of 80 repetitions for each of the four adopted grid

cell size. Eight replicates were first obtained, each

including the same positives and a different set of equal

number of negative cells, the latter randomly selected

outside the landslide polygons. Besides, each replicate was

randomly split for 10 times into calibration and validation

subsets, respectively, containing 75 and 25 % of balanced

(positive/negative) cases.

As larger cells can include more than one LIP, the

number of positive cases changed depending on the cell

size. In particular, the unstable cells were 1121, 1092, 982

and 786 cells for the 2, 8, 16 and 32 m model sets,

respectively. At the same time, the fraction of the area

which was included in a single dataset (landslide and no-

landslide samples) increases with the cell size, being

0.40 % of the total catchment area for the model set 2 m,

6.29 % for 8 m, 20.01 % for 16 m and 72.4 % for 32 m.

Thanks to the availability of 80 estimations of the pre-

dicted probability of each cell, an analysis of the precision

of the method was also performed in the spatial domain.

Therefore, to complete the comparison of the four different

model sets, assuming the 80 replicates as being repetitions

of the logit regressions, four susceptibility and error maps

were prepared by plotting for each pixel the mean proba-

bility and its dispersion, the latter being expressed by a two

Table 1 continued

Variable Units

4 TWI None

5 SPI None

6 PROF_CONC Rad/100 m

7 PROF_CONV Rad/100 m

8 PROF_CONC Rad/100 m

9 PROF_CONV Rad/100 m
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standard deviations interval (Guzzetti et al. 2006; Rossi

et al. 2010).

The whole validation procedure allowed us to estimate the

quality of the predictive models according to the four-level

validation scheme proposed by Guzzetti et al. (2006): (1)

investigating the role of the thematic information in the pro-

duction of the susceptibilitymodel; (2) determining themodel

sensitivity and robustness to variations in the input data; (3)

determining the error associated with the susceptibility pre-

diction obtained for each mapping unit; (4) testing the model

prediction against independent landslide information.

Results

In order to compare the effects of the different grid cell

sizes, summary representations of their predictive results as

obtained from their 80 replicates have been arranged by

considering both the performance of the models (accuracy,

errors and robustness) and their inner structure (selected

predictors, frequency of selection m, ranking R and b
coefficients). Figure 6 shows the goodness of fit that was

achieved for the four model sets. Among the possible

indexes (Guzzetti et al. 2006; Frattini et al. 2010), the

calibration model error rate, the AUC of the calibration

ROC curves and two pseudo-R2 (McFadden 1978;

Nagelkerke 1991) were adopted. A general view of the

results attests for a good performance of all the model sets,

with low error rates, high pseudo R2 and excellent

AUROCs.

Figure 6 allows us to easily compare the quality of the

different model sets in terms of mean and dispersion of the

performance indexes. A coherent loss of performance

affects the set 32 m, whilst the 2, 8 and 16 m sets showed

the same lower error rates and highest AUROCs and

pseudo-R2. The standard deviations of all the indexes of

performance highlighted that the robustness decreases for

models sets with coarser resolution, the 32 m models

having standard deviations for all the four indexes that are

twice that of 2 m.

As regards the prediction skill, Table 2 summarizes the

AUCs of the calibration ROC curves, together with the

difference between calibration and validation AUROCs,

whose amplitude or negative sign is an indicator of

potential overfitting, and the validation model error rate.

Coherently with what observed for the model fitting, all the

predictive models performed with high accuracy and

robustness, with the 32 m model showing the lowest but

acceptable prediction skill (AUROC = 0.794) and higher

(0.32) total error rate. Among the three best performing

models (AUROC[ 0.83), the 16 m showed the lowest

total error rate (0.23).

Fig. 6 Comparison of the goodness of fit indexes of the debris

susceptibility models in Giampilieri catchment: a model error rate;

b training-AUROC; Nagelkerke (c) and Mc Fadden (d) pseudo R2.

Navy blue and red colours indicate points and axis legend for mean

values and standard deviation, respectively
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To compare also in the spatial domain the results

through the 80 model runs performed for each of the four

different model sets, the final susceptibility (Fig. 7) and

model error maps (Fig. 8) were prepared. At a low-scale

analysis, the four susceptibility maps showed a general

coherence, producing in the catchment a very susceptible

lower south-eastern sector, an intermediate susceptibility

middle sector and an almost unsusceptible uphill north-

western zone. At the same time, in the framework of a

general valley-symmetry of the susceptibility distribution,

in the high susceptible sector centred around the Giampi-

lieri village, an asymmetric distribution can be observed

with the steeper and shorter slopes in the external left flank

resulting as more susceptible than the longest less steep

ones, in the right flank. The asymmetry becomes more

evident if increasing the cell size from 2 to 16 m, whilst,

passing from 16 to 32 m, the map is symmetrical again.

Focusing on the highly susceptible sector, 8 and 16 m

maps highlight a more discriminated distribution of the

susceptibility function, whilst 2 and 32 m tend to give

prevalence to the highest and the middle–high suscepti-

bility classes, respectively. Taking also into consideration

the error maps, a high precision in the susceptibility esti-

mates arose for all the four model sets, with some limited

coastal sectors where the error is slightly higher. A loss in

precision was also observed, with changing degree

depending on the cell size, along the deeply incised valleys.

Two enclaves of high model errors are located for the 2 m

Table 2 Accuracy and robustness in the prediction skill for the four

model sets (2, 8, 16 and 32 m): mean value (l) and standard deviation
(r) calculated through the 80 replicates are represented for validation

AUROC, difference between calibration and validation AUROCs and

model error rate

Model set (m) Prediction skill index Robustness

l r

2 Validation AUROC 0.835 0.016

AUROC difference* 0.008 0.008

Total error rate 0.273 0.038

8 Validation AUROC 0.831 0.011

AUROC difference 0.008 0.021

Total error rate 0.262 0.029

16 Validation AUROC 0.835 0.019

AUROC difference 0.010 0.021

Total error rate 0.230 0.024

32 Validation AUROC 0.794 0.016

AUROC difference 0.014 0.021

Total error rate 0.320 0.074

* Calibration AURO–validation AUROC

Fig. 7 Debris-flow susceptibility maps calculated as mean values through the 80 replicates for each model set: a 2 m set; b 8 m set; c 16 m set;

d 32 m set
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map in the south-eastern high susceptible sector, where

very poorly represented lithologies outcrop (see Fig. 1):

clays with sandy levels of the Spadafora Unit (LIT_SPDb)

and Quaternary deposits (LIT_PMAd).

More details can be explored from the analysis of the

inner structure of the models, which was carried out in

terms of the selected predictors (Table 3). A first set of

predictors (red labels), including elevation (HEIGHT),

grassland land use (USE_322), paragneiss to micashists

lithology (LIT_MLEa) and recent alluvial deposits

(LIT_bb), was selected more than 60 times (m[ 60), with

very high and stable ranks, in all the model sets. The

coefficients are coherent, negative and stable for

(HEIGHT), (LIT_MLEa) and (LIT_bb), positive for

(USE_322). A second set (navy blue labels) included high

rank predictors very frequently selected (m[ 60 in at least

two model sets), but with some differences for one of the

model sets. Among these, steepness (SLO) was systemat-

ically selected with positive coefficients and high and

stable ranks, for all the 80 repetitions in the 2, 8 and 16 m

model sets and 50 times in the 32 m. The urban fabric land

use (USE_111) was selected with negative coefficients in

the model sets 2, 8 and 16 m, with quite stable medium

ranks, but never selected in the 32 m set. A third set (green

labels) included predictors which were quite frequently

selected (20\ m\ 60) with medium–low ranks, at least in

three model sets: South, South-West and North–East slope

aspect (ASP_S/SW/NE), silicate marbles lithology (LIT_P-

MAd) and olive grove land use (USE_223). South and

South-West aspects increase the probability for a new

debris flow and, coherently, North-East aspect, for 2, 8 and

16 m, decreases it. Both silicate marbles lithology and

olive grove land use showed negative coefficients.

It is worth to note that the FDNb class is not reported in

Table 3, as it was set as the reference category in the

conversion of the nominal LIT variable. Therefore, as all

the other LIT-classes were included in the model with

negative coefficients, FDNb has to be considered as a

factor positively correlated with debris flows.

Among the selected predictors, the plan concavity

(PLAN_CONC) was selected 40 times in the 16 m and 45

in the 32 m sets, while the profile concavity (PROF_-

CONC) was selected 40 times in the 8 m and 76 times in

the 16 m sets. The types of topographic curvatures which

were included in the models change depending on the size

of the mapping unit: no curvature for 2 m, concavity of

profile curvature (PROF_CONC) for 8 m, concavity of

profile and plan curvatures (PROF_CONC and PLAN_-

CONC) for 16 m, concavity of plan curvature (PLAN_-

CONC) for 32 m. Both profile and planar convexities are

responsible for higher stability of the mapped cells, whilst

concavities always result in an increase of susceptibility.

Fig. 8 Debris-flow error maps calculated as standard deviation through the 80 replicates for each model set: a 2 m set; b 8 m set; c 16 m set;

d 32 m model set
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The topographic wetness index, quite surprisingly, is

selected for 24 times only in the 32 m model set, with high

ranks and negative coefficients. The model sets 2 and 16 m

commonly share the class U-shaped valley (LCL_USHP) of

the landform classification among the predictors which

were selected at least 20 out of the 80 repetitions.

In order to depict in a summarized way the coherence

between the four model sets, taking also into account the

stability in the regressed coefficients, box plots were pre-

pared of the odd ratios values obtained for each selected

predictor (Fig. 9) through the replicates. The general

coherence between the model sets is largely evident. The

odds ratios of the same predictor but selected in different

model sets resulted as being very similar, except for the

poorly selected factors.

Discussion

The results which were achieved in this research generally

attested for a high suitability of any of the grid cell-based

susceptibility models. These results confirm that the

causative factors for debris-flow initiations can be defined

on the basis of the local cell conditions, so that, once a

landslide inventory has been prepared correctly, a simple

and automatic derivation of mapping units and diagnostic

areas (LIPs and square cells, respectively) leads to high-

quality predictive models (Costanzo et al. 2012b; Lom-

bardo et al. 2014, 2015; Cama et al. 2015). In this research,

all the indexes of predictive performance showed high

scores and good robustness, with smoothed variations

through 80 repetitions. Besides, the difference between the

calibration and validation AUROCs was systematically

positive and negligible, indicating no signs of overfitting.

From a geomorphological perspective, taking into con-

sideration the commonly shared and more frequently

selected predictors, debris flows in the Giampilieri catch-

ment are connected to highly steep slopes, characterized by

phyllites (FDNb) outcropping, grassland land use and

South and South-West aspect (Fig. 7). In fact, phyllites

resulted as deeply weathered on the field, while grassland

use actually corresponds to old abandoned crops distributed

over the head sectors of the slopes, where no more main-

tained terraces potentially act as areas of high infiltration;

Table 3 Frequency of selection (m), ranks (R), coefficients (b) and mean odd ratios (OR), for the predictors selected at least 10 times, for the four

model sets (2, 8, 16 and 32 m) through the 80 replicates (l: mean; r: standard deviation)
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slope aspect could be connected with the attitude of the

strata or to the combination of the FDNb outcropping in the

shorter and steeper slopes of the left flank in the middle-

coastal sector of the catchment. The role of the altitude,

which resulted in a negative correlation with susceptibility,

is to be interpreted as a combined effect of the main

characteristics of the 2009 calibration event and of the

characteristics of the weathered mantle. In fact, on the one

Fig. 9 Comparison of the odd ratios for the selected predictors in debris-flow susceptibility models in Giampilieri catchment. Red outlines

indicate variables which have been selected less than thirty times
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hand, the 1st October 2009 the storm hit with higher

intensity the middle–coastal sector of the catchment and

debris flows triggered from the head of its low–middle

altitude slopes (Lombardo et al. 2014). On the other hand,

negatively correlated lithologies such as the paragneiss and

mica shists of the Mela Unit (MLEa) largely outcrop in the

inner high altitude sector of the catchment.

On a comparative basis, small but measurable differ-

ences in the predictive performance of the models were

detected, depending on the adopted grid cell size. In fact,

the three finer cell-based models resulted in better perfor-

mances than 32 m, with the 16 m showing the best cou-

pling between AUROC and error rate. This could be related

to the typical dimensions of the debris flows in the

Giampilieri catchment and to the optimal selection of the

diagnostic areas. In particular, a 16 m cell resulted as more

suitable in encompassing the whole source sector of the

landslide area, where instability conditions arise, triggering

the detachment phase of the debris flows. With a near 10 m

mean width of the mapped phenomena (Fig. 3), 2 and 8 m

model seem to pick little more local conditions, whilst a

32 m cell reflects a too large slope spatial domain.

The best performance of the 16 m model set is evident if

looking at the validation model error rate, which is based

on a 0.5 cut-off for positive/negative discrimination, sug-

gesting that the optimization of the cell size resulted in an

increase of the prediction skill for the unknown cases.

If the focus of the comparison between the results is set

on what is here called the ‘‘inner structure’’ of the models

(in this referring to the set of selected predictors, each

characterized by its rank, regression coefficient and odd

ratio), larger differences between the model sets are high-

lighted. In particular, together with a group of main pre-

dictors which have been selected with similar coefficients

and high to medium ranks in all the four model sets, a

secondary group of predictors has been identified which

was selectively extracted by the different model sets. In

general, the closest the cell sizes, the more similar the

selected secondary predictors. For example, it is very worth

to notice how the type of the selected curvatures changed

with the grid size: the 16 m model set is the one which

mostly exploited these predictors, jointly including in the

model the plan and the profile concavities in 40 and 76 out

of 80 repetitions, respectively; at the opposite, any of the

topographic curvatures was selected for more than five

times by the 2 m model sets, suggesting that in the study

area, debris flows are evidently controlled by topographic

curvatures defined in a space larger than 2 m.

By overlooking the general pattern of the controlling

factors (Figs. 4, 5) and the prediction images that have

been obtained from the four model sets, clear differences

arise both for the susceptibility and the error spatial dis-

tributions (Figs. 7, 8). In fact, while the general pattern of

the susceptibility depends on the main predictors (red

labels, in Table 3), the small scale effects are the results of

the secondary predictors: navy blue and green labelled and

topographic curvatures in Table 3. On the other hand, the

error maps generally highlighted very small standard

deviations, but with different spatial distribution for the

four model sets.

The comparison between the findings of this research to

those obtained by other authors has to be limited case by

case to the specific common parts of the experiment design.

In fact, many elements could affect the relationships

between grid resolution and performance of the suscepti-

bility models: the adopted approach (stochastic/determin-

istic), the diagnostic areas (whole landslide polygon/source

areas/LIP), landslide typology and geomorphological fea-

tures of the study area. Besides, the adopted methods for

the quantitative estimation of the model performance are

unfortunately not standardized, so that different metrics are

to be compared. In particular, the results of this research

are comparable with the findings of Lee et al. (2004),

which having tested 5, 10, 30, 100 and 200 m cell sizes,

concluded that 5, 10 and 30 m spatial resolutions showed

similar best accuracies in the success rate curves, inter-

preting this results as the effect of the different scales of the

input data (1:5000–1:50,000). Unfortunately, no data on

prediction skill and robustness of the models, as well as on

the role of the predictors, are discussed by the authors. In

the present research, the tested grid cell sizes were limited

to 16 times the resolution of the source DEM (2 m), whilst

the scale of the source data for outcropping lithology and

land use was 1:10,000. Moreover, Lee et al. (2004) did not

describe their landslide inventory which makes it more

difficult to compare the two researches.

More similarly to our research, Tian et al. (2008) based

their modelling on a 5 m resolution source DEM and a set

of 1:10,000 thematic maps conclude that the spatial reso-

lution of the models affects their accuracy and that ‘‘the

tendency to use smaller and smaller grid cells appears

unjustified’’. These authors investigated also the influence

of the resolution on the predictor importance, concluding

that the DEM-derived factors are those which produce

differences in the predictive performance. In particular,

they deduced that the optimal size for the grid cell reso-

lution depends on the dimension of the study area,

obtaining their optimal model with 90 m grid cell resolu-

tion in an area of 135 km2. However, no information is

given on the type of landslides which have been studied

and no validation of prediction skill and robustness per-

formed. Similarly to what is here obtained, Palamakum-

bure et al. (2015) found that the topographic predictors are

differently exploited by the model, if using different cell

sizes; in particular, their best performing model resulted

the one based on 10 m cells, although the authors recognize
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that no standard size for optimal resolution can generally

be defined. It is worth to notice that Palamakure et al.

(2015) worked with larger landslides ([20,000 m2) and a

different typology (slides).

By taking into consideration the results of tests carried

out in deterministic or process based susceptibility

assessments, it is interesting to highlight that also in these

cases, very similar conclusions are derived: the finer

available resolution for the grid cell sizes does not corre-

sponds to the higher performing models. Tarolli and Tar-

borton (2006) conclude that a 10 m pixel resolution is

optimal for applying SINMAP to modelling shallow

landslides. Penna et al. (2014) demonstrated that the opti-

mal grid cell resolution for the identification of potential

instability in terrain stability mapping is not the finer one

(2 m) and investigated the direct modifications of the

parameters of the QD-SLaM model induced by the grid

size changings. In particular, these authors found better

performances for 4 and 10 m cell sizes, concluding, in

accordance with our findings that ‘‘higher DTM resolution

does not necessarily mean better model performance’’.

Unfortunately, although they worked on the same Giam-

pilieri catchment, we could qualitatively verify the general

agreement with our susceptibility pattern only for the very

limited square sectors for which a susceptibility map is

there presented: for the head of the slopes in the left side of

the valley it is possible to verify, the prevalence of the high

classes and of the middle–high classes if using the 2 m or

the 20 m cell size, respectively.

On the basis of our results, it is worth to notice that the

higher resolution model (2 m) did not produce a signifi-

cantly higher predictive performance. This suggests the use

of coarser DEMs is not limiting the quality of the sus-

ceptibility models, unless a threshold value for the grid cell

size is reached. In this case, even the 32 m model set

showed good predictive performances. However, attention

must be paid to the circumstance that in this research, the

topographic variables were derived for all the tested cell

sizes from the same high-resolution (2 m) source DEM, by

applying a bi-linear interpolation resampling method. For

example, a 16 m DEM could have been derived also by

digitizing the contour lines of a 1:10,000 topographic map

and we cannot exclude that the combined effect of a

coarser cell size and a less precise DEM would have driven

to different results.

Conclusions

Debris flows are among the most hazardous phenomena in

nature, which typically take the form of widespread or

regional multiple events triggered by intense driving inputs

such as a storm. In order to face this natural threat,

landslide susceptibility assessment by means of stochastic

models can provide useful tools for risk mitigation, civil

defence and land use planning. The shallowness of the

failure zone of the debris flows, together with the high

controlling role which topography plays in their propaga-

tion phase, suggests the use of high-resolution DEM to

cope with their modelling. However, being aware that no

general rules can be achieved as each study area could give

a different response, efforts are required to explore the

relationships between the accuracy and the robustness of

these susceptibility models and the adopted grid cell sizes.

In line with other studies our research demonstrated, for a

multiple debris-flow study case, that using the smallest grid

cell size as mapping units does not always ensure the best

performance in terms of prediction skill. This suggests the

possibility to obtain high performing models even in the

case of lack of high-resolution data, provided that the

source data are adequate to the adopted cell size.

In this research, in particular, the inner structure of the

models and its influence on the accuracy and precision of

the susceptibility map have been explored for differently

sized grid cells stochastic models. Although only small

differences in the accuracy and precision of the models

were detected, the role of some of the predictors, which

were included in the susceptibility models, changed

depending on the grid cell size. This effect was clearly

detectable for the topographic variables, as these are the

ones which more rapidly vary in space. On a geomorpho-

logical perspective, the geo-environmental attributes which

control the slope failures demonstrated to change their role

with the spatial scale to which the landslide phenomena

were stochastically modelled. In this sense, from our test, it

also comes as recommendable the opportunity to consider

in the same models predictors defined at different cell

sizes, in the perspective of finding the richer best per-

forming model rather than the single optimal cell size.

In conclusion, the relationships between the grid cell

size and the quality of a landslide susceptibility model

strictly depend on the type of landslides, the selected

diagnostic areas, the geomorphological and topographical

features of the study area and the quality of the source data.

For this reason, the optimization of the cell size must be

evaluated case by case by performing tests such as the ones

proposed in this research, without expecting any decrease

in the predictive performance of coarser grid-based models.
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Gómez Gutiérrez A, Conoscenti C, Angileri SE et al (2015) Using

Topographical attributes to model the spatial distribution of

gullying from two Mediterranean basins: advantages and limi-

tations. Nat Hazards. doi:10.1007/s11069-015-1703-0

Environ Earth Sci (2016) 75:238 Page 19 of 21 238

123

http://dx.doi.org/10.1007/s10346-011-0283-7
http://dx.doi.org/10.1080/17445647.2012.694271
http://dx.doi.org/10.5194/nhess-12-1295-2012
http://dx.doi.org/10.5194/nhess-12-1295-2012
http://dx.doi.org/10.1016/S0098-3004(97)00117-9
http://dx.doi.org/10.1016/j.geomorph.2009.09.025
http://dx.doi.org/10.5194/nhess-15-1785-2015
http://dx.doi.org/10.1002/esp.3290160505
http://dx.doi.org/10.1023/A:1008097111310
http://dx.doi.org/10.1002/esp.545
http://dx.doi.org/10.1023/B:NHAZ.0000007172.62651.2b
http://dx.doi.org/10.1002/esp.1155
http://dx.doi.org/10.1002/esp.1155
http://dx.doi.org/10.1016/j.geomorph.2006.10.039
http://dx.doi.org/10.1016/j.geomorph.2006.10.039
http://dx.doi.org/10.1016/j.geomorph.2013.08.021
http://dx.doi.org/10.1016/j.geomorph.2014.09.020
http://dx.doi.org/10.5194/nhess-12-327-2012
http://dx.doi.org/10.5194/nhess-12-327-2012
http://dx.doi.org/10.1007/s11069-011-9870-0
http://dx.doi.org/10.1007/s11069-011-9870-0
http://dx.doi.org/10.1007/s10346-013-0415-3
http://dx.doi.org/10.1007/s10346-005-0019-7
http://dx.doi.org/10.1016/S0169-555X(01)00087-3
http://dx.doi.org/10.1002/esp.456
http://dx.doi.org/10.5194/nhess-13-949-2013
http://dx.doi.org/10.5194/nhess-13-949-2013
http://dx.doi.org/10.5194/nhess-12-2907-2012
http://dx.doi.org/10.1002/hyp.3360090311
http://dx.doi.org/10.1002/hyp.3360090311
http://dx.doi.org/10.1007/s10346-012-0320-1
http://dx.doi.org/10.1093/petrology/egn035
http://dx.doi.org/10.1016/j.enggeo.2009.12.004
http://dx.doi.org/10.1016/S0040-1951(01)00254-2
http://dx.doi.org/10.1016/j.ecolmodel.2009.06.020
http://dx.doi.org/10.1007/s11069-015-1703-0


Guns M, Vanacker V (2012) Logistic regression applied to natural

hazards: rare event logistic regression with replications. Nat

Hazards Earth Syst Sci 12:1937–1947. doi:10.5194/nhess-12-

1937-2012

Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide

hazard evaluation: a review of current techniques and their

application in a multi-scale study, Central Italy. Geomorphology

31:181–216. doi:10.1016/S0169-555X(99)00078-1

Guzzetti F, Reichenbach P, Cardinali M et al (2005) Probabilistic

landslide hazard assessment at the basin scale. Geomorphology

72:272–299. doi:10.1016/j.geomorph.2005.06.00

Guzzetti F, Reichenbach P, Ardizzone F et al (2006) Estimating the

quality of landslide susceptibility models. Geomorphology

81:166–184. doi:10.1016/j.geomorph.2006.04.007

Guzzetti F, Mondini AC, Cardinali M et al (2012) Landslide

inventory maps: new tools for an old problem. Earth-Sci Rev

112:42–66. doi:10.1016/j.earscirev.2012.02.001

Heckmann T, Gegg K, GeggBecht M A, Becht M (2014) Sample size

matters: investigating the effect of sample size on a logistic

regression susceptibility model for debris flows. Nat Hazards

Earth Syst Sci 14:259–278. doi:10.5194/nhess-14-259-2014

Hosmer DW, Lemeshow S (2000) Applied logistic regression. Ser

Probab Stat 2:375. doi:10.1198/tech.2002.s650

Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the

classification of landslides of the flow type. Environ Eng Geosci

7:221–238. doi:10.2113/gseegeosci.7.3.221

Hungr O, McDougall S, Bovis M (2005) Entrainment of material by

debris flows. Debris-flow Hazards and Related Phenomena.

Springer, Berlin, pp 135–158

Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of

landslide types, an update. Landslides 11:167–194. doi:10.1007/

s10346-013-0436-y

Hutchinson JN (1988) General report: morphological and geotechni-

cal parameters of landslides in relation to geology and hydro-

geology. Landslides 26:3–35

Igwe O, Mode W, Nnebedum O et al (2014) The analysis of rainfall-

induced slope failures at Iva Valley area of Enugu State, Nigeria.

Environ Earth Sci 71:2465–2480. doi:10.1007/s12665-014-

4009-8

Kienzle S (2004) The effect of DEM raster resolution on first order,

second order and compound terrain derivatives. Trans GIS

8:83–111. doi:10.1111/j.1467-9671.2004.00169.x
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