
ORIGINAL ARTICLE

Application of a two-step cluster analysis and the Apriori
algorithm to classify the deformation states of two typical colluvial
landslides in the Three Gorges, China

Xueling Wu1,2 • F. Benjamin Zhan3 • Kaixiang Zhang1 • Qinglu Deng4

Received: 7 April 2015 / Accepted: 21 September 2015 / Published online: 6 January 2016

� Springer-Verlag Berlin Heidelberg 2015

Abstract Several extensive landslides have occurred in

the vicinity of the Three Gorges Reservoir since its initial

impoundment in June 2003. A reduction of the landslide

risk is essential for the safety and security of lives and

property in the region. This study analyses the deformation

states of two typical colluvial landslides (the Baijiabao and

Laoshewo landslides) using 6 years of monitoring data, a

two-step cluster analysis, and the Apriori algorithm. The

landslide displacement versus time curves exhibit step-like

patterns, and the landslide deformation is highly correlated

with fluctuations in the reservoir level and seasonal pre-

cipitation. To determine different types of landslide

deformation, the monthly displacement curves of the col-

luvial landslides are classified into three types using a two-

step cluster analysis: initial deformation, constant defor-

mation, and rapid deformation. Five driving factors were

selected as the antecedents for the Apriori algorithm to

obtain rules that describe the relationships between the

landslide deformation and the influential parameters. These

factors include the cumulative precipitation over the pre-

vious month, the maximum daily precipitation during the

current month, changes in the reservoir level over the

previous month, cumulative increases in the reservoir level

and the average reservoir level during the current month.

The analytical results were validated by comparing them

with observed landslide deformation characteristics using

three measurement standards: support, confidence and lift.

The results show that the combined method of a two-step

cluster analysis with the Apriori algorithm can effectively

model the landslide deformation states that are associated

with the Baijiabao and Laoshewo landslides. Moreover,

this method may serve as a potential reference for defor-

mation analyses of colluvial landslides in the Three

Gorges.
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Introduction

The Three Gorges Dam on the Yangtze River in western

Hubei Province, China, is the largest hydroelectricity

project in the world, and it has a designated maximum

reservoir level of 175 m. The geomorphology of the

Three Gorges is characterized by rugged topography with

hills that range in elevation from 800 to 2000 m. The

Yangtze River generally crosses the study area in the

NWW–SEE direction. The supracrustal Sinian-Jurassic

sedimentary cover is widespread in the region and is

mainly composed of marly limestone, mudstone, shale,

sandstone and siltstone, and these units are highly sus-

ceptible to landslides. In addition, the study area is

located on the NE flank of the Zigui syncline, which has a

NNE–SSW trending axis. The numerous fault zones that

follow the NE–SW orientation of the fold systems tend to
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form weaker zones of tectonically stressed rock with high

landslide susceptibility (Fourniadis et al. 2007; Wu et al.

2013). The reservoir is located in a subtropical monsoonal

climate, which typically experiences hot and humid

summers and cold and dry winters, and the annual aver-

age rainfall is 1006 mm. Because the environment is

topographically, geologically, and climatically conducive

to the formation of landslides, the Three Gorges Reservoir

suffers from frequent landslides that directly affect the

dam’s operations and navigability as well as the safety of

human lives and property.

Colluvial landslides are landslides that occur in Qua-

ternary deposits or in unconsolidated deposits from before

the Quaternary period, which are generally characterized

by a loose composition, high porosity and permeability,

and significant viscoplastic deformations (He et al. 2008).

Moreover, colluvial landslides are the most common form

of reservoir-induced landslides in the region; they account

for 52.82 % of the landslides in the Three Gorges and

present a substantial risk. The number of catastrophic

colluvial landslides is rapidly increasing because of the

high reservoir storage, long durations of water exposure,

reservoir level fluctuations and seasonal precipitation of

approximately 30 m. Several pre-existing colluvial land-

slides, including the Baijiabao, Laoshewo, Shuping,

Baishuihe, Xintan and Bazimen landslides, have recently

reactivated or begun deforming (Wang et al. 2008; Xia

et al. 2013). These landslides are located along both sides

of the Yangtze River and its tributaries. Reservoir-induced

colluvial landslides are closely related to fluctuations in the

reservoir level and seasonal precipitation (Miao et al. 2014;

Jiao et al. 2014). The intensity of rainfall events and the

paths of the centres of the rainstorms greatly influence the

occurrence of landslides. Rainfall, especially in the form of

rainstorms, is the dominant factor that is responsible for

inducing landslides (Zhou et al. 2002; Pradhan and Lee

2010; Liu et al. 2011; Lian et al. 2014). The infiltration of

rainfall reduces the shear strength at the slip surface by

increasing the pore water pressure, which results in greater

landslide displacement. Therefore, significantly increased

displacements often follow heavy rainfall events. Field

investigations in the Three Gorges region have shown that

continuous rainfall is a contributing factor to landslide

hazards. During continuous rainfall, the sloped surfaces

become partially saturated (Jian et al. 2014). Several

physical similarity models have been developed to analyse

changes in the seepage field and their effects on landslide

stability in relation to fluctuations in reservoir level (Van

Asch et al. 1996; Huang et al. 2014). Several factors that

are related to the reservoir level have been used to assess

landslide susceptibility and predict landslide displacements

(Zhang et al. 2005; Du et al. 2013; Ren et al. 2015; Wang

et al. 2014), including the cumulative displacement, the

maximum continuous drawdown, and the average reservoir

levels during the current month.

Predicting active colluvial landslide deformation is

important for an early warning system because the extent

of these potential disasters can be minimized if the sliding

mechanism is understood and the potential triggers are

determined (Pradhan 2010a). The need for this type of

study in the Three Gorges has attracted the attention of the

Chinese government, engineers, and planners that are

involved in investigating landslide hazards, and monitoring

and countermeasure projects for disaster mitigation have

been developed for several typical landslides. To mitigate

future disasters, we applied a method that incorporates

6 years of monitoring data, a two-step cluster analysis, and

the Apriori algorithm to determine the states of deforma-

tion for the Baijiabao and Laoshewo landslides in the Three

Gorges Reservoir.

Landslide deformation analyses are considered to be a

critical initial step for landslide hazard mitigation and

management. Landslide displacement is a typical charac-

teristic of landslide deformation behaviour, and predictions

of this type of displacement can be expressed as the

probability of landslide deformation that is associated with

a set of geo-environmental conditions. However, because

of the complexity and random characteristics of landslide

displacement, generating reliable predictions of landslide

displacement is not easy. Therefore, several studies have

focused on predicting landslide displacements. There are

three basic types of predictive methods: deterministic

models, statistical models and computational intelligence

models (Li et al. 2012; Pradhan 2013). Deterministic

models use general creep theory, large-scale laboratory

experiments and field-monitored physical parameters and

are good tools for predicting landslide events (Helmstetter

et al. 2004; Mufundirwa et al. 2010). The early warning

criteria that were developed for the Yuhuangge colluvial

landslide based on comprehensive monitoring data and

landslide monitoring of the Three Gorges Reservoir area

provide an example of a deterministic model (Yin et al.

2010). These models have proven to be suitable for several

landslides and can provide an objective physical explana-

tion of the processes. Statistical models that utilize definite

equations have also been widely applied to predict land-

slides. These approaches are primarily valid for landslides

with similar deformation characteristics (Randall 2007;

Pradhan et al. 2011). In recent years, computational intel-

ligence methods have been successfully developed to

determine the underlying rules and features in uncertain,

nonlinear landslide systems (Pradhan et al. 2010; Liu et al.

2014). Artificial neural networks (ANNs) and support

vector machines (SVMs) are commonly used to explore the

complex nonlinear relationships between landslide dis-

placements and associated causal factors. However, these
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methods cannot extract information or provide association

rules for landslide deformation (Matı́as et al. 2010; Pradhan

2010b; Lv and Liu 2012; Chen and Zeng 2013; Zhu and Hu

2013; Li and Kong 2014; Niu et al. 2014). The Gauss

process can also be used to predict landslide displacements;

it was used to analyse a series of displacement monitoring

data for the New Wolong Temple landslide (Liu et al.

2012). Apriori algorithms are also widely employed to

determine association rules in nonlinear modelling prob-

lems and have been successfully applied to wind speed

forecasts and oral cancer operations (Tang et al. 2013; Guo

et al. 2014). An effective and reliable early warning and

assessment system for landslides requires deformation-re-

lated features, including the evolution mechanisms, major

driving factors, and specific thresholds. Here, the Apriori

algorithm is used to identify the deformation states of the

Baijiabao and Laoshewo landslides in the Three Gorges

Reservoir.

Correlating the movement of active landslides with

environmental factors is important for understanding the

complex characteristics of landslide deformation. The

Baijiabao and Laoshewo landslides were selected as typical

colluvial landslides in the Three Gorges Reservoir to

explore the relationships between deformation and the

major driving factors. The cumulative displacement versus

time and the macroscopic deformation characteristics are

analysed to extract the influential factors, and a two-step

cluster analysis is adopted to convert the continuous dis-

placement and conditioning factors into categorical vari-

ables. The deformation phases and influencing factors are

used as the consequents and antecedents, respectively, for

the Apriori algorithm to determine the association rules.

The analytical results are then validated through a com-

parison with known landslide deformation characteristics

using the three standards: support, confidence and lift. The

software packages ArcGIS 10, SPSS 21 (a statistical pro-

gramme), and MATLAB 2010b are used as analytical tools

to manage and manipulate the data.

Methods

The deformation of an active landslide involves dynamic

responses and a nonlinear evolution. A reliable deforma-

tion state analysis for colluvial landslides should be rep-

resented as association rules between the landslide

deformations and the major driving factors. In this study, a

hybrid method that involves a two-step cluster analysis and

the Apriori algorithm is used to classify the deformation

states of two typical colluvial landslides that are adjacent to

the Three Gorges Reservoir. Based on the deformation

characteristics of the landslides, the monthly displacements

are divided into three deformation phases using the two-

step cluster analysis, and the major influential factors are

used as antecedent variables in the Apriori algorithm to

determine the associations between these categorical fac-

tors and landslide deformation. Figure 1 presents a

flowchart of the processes that are involved in this research.

Two-step cluster analysis

Clustering is a widely used technique in data mining

applications for identifying patterns in datasets. The two-

step cluster analysis procedure is an exploratory tool that

was designed to reveal natural clusters within a dataset that

would otherwise not be apparent. A two-step cluster anal-

ysis has several advantages compared with the k-means and

balanced iterative reducing and clustering using hierarchies

(BIRCH) clustering methods, including its ability to man-

age categorical and continuous variables and automatically

select specific cluster numbers as well as its scalability

(Chiu et al. 2001). This method is highly effective at

identifying tolerant genotypes in biomedical studies

(Martı́nez et al. 2006; Babic et al. 2012). Two-step cluster

analysis is used to classify the monthly displacements and

the major conditioning factors into categorical attributes,

which are then used as the corresponding antecedents and

consequents of the Apriori algorithm.

The two-step cluster analysis is a scalable cluster anal-

ysis algorithm that was designed to manage large datasets,

such as time-series monitoring data of colluvial landslides.

The analysis is composed of two steps: (1) the monitoring

data are pre-clustered into many small sub-clusters, and (2)

the sub-clusters that result from the pre-clustering step are

Fig. 1 Methodological flowchart of the research process
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used as inputs and are clustered into the final number of

clusters. In both the pre-clustering and clustering steps, a

distance measurement determines how to calculate the

similarity between the two clusters. To manage both con-

tinuous and categorical variables, the log-likelihood func-

tion is used to derive the distance measurement. The

likelihood measurement places a probability distribution on

the variables, which are all assumed to be independent.

Continuous variables are assumed to be normally dis-

tributed, whereas categorical variables are assumed to be

multinomial.

Apriori algorithm

The association rule algorithm is commonly used to iden-

tify relationships between items or features that occur

synchronously in a database. The Apriori algorithm

(Agrawal and Srikant 1994) is widely used to mine fre-

quent item sets and learning association rules in a data-

mining field. It seeks to generate the desired rules from

large item sets and then uses these association rules as a

reference during the decision-making process. Hence, the

Apriori algorithm is employed in this study to explore the

correlation between the landslide deformation types and

the major environmental factors.

The problem for learning association rules can be

defined as follows. Let I ¼ fi1; i2; . . .; img be a set of lit-

erals called items and D be a set of transactions, where

each transaction T is a set of items such that T � I An

association rule is represented as an implication form

ðX � TÞ ) ðY � TÞ and X \ Y 6¼ ;. Various measures of

significance can be used to select effective rules from the

set of all possible rules. The best-known constraints are

minimum thresholds for the support and confidence. The

rule X ) Y holds in the transaction set with confidence c

if c % of the transactions in D contain both X and Y. The

rule X ) Y has support s in the transaction set D if s %

of the transactions in D contain X [ Y . In addition, lift

ðX ! YÞ, which is calculated as the confidence of the rule

divided by the support of the right-hand side, can be used

to evaluate the resulting rules. The lift represents the

probability ratio. If the lift is equal to 1, X and Y are

independent. The more the lift is above 1, the more likely

that X and Y will occur together in a transaction because

of a relationship between them and not because of a

random occurrence.

The Apriori algorithm is usually divided into two sep-

arate steps. First, minimum support is applied to find all of

the frequent item sets in a database. Second, these frequent

item sets and the minimum confidence constraint are used

to form rules. The Apriori algorithm uses a bottom-up

approach in which frequent subsets are extended one item

at a time, and groups of candidates are tested against the

data. The algorithm terminates when no further successful

extensions are found. The pseudocode of the Apriori

algorithm is as follows:

Procedure Apriori (T, minsupport) {// T is the database,

and minsupport is the minimum support

Case studies

Colluvial landslides in the Three Gorges Reservoir are

triggered by the combined effects of reservoir level fluc-

tuations and seasonal precipitation. The reservoir is located

in western Hubei Province, which experiences heavy

rainfall. The average annual precipitation is 1100 mm.

Rainfall is generally concentrated in the summer, and the

maximum daily precipitation is between 150 and 240 mm.

Several landslides have been reactivated because of the

high water level associated with the impoundment of the

reservoir. The Baijiabao and Laoshewo landslides (Fig. 2),

which are two typical colluvial landslides, are selected as

case studies to identify the association rules between

landslide deformation characteristics and the major driving

factors of the landslides.

Baijiabao landslide

Geological background

The Baijiabao landslide occurred in the village of

Xiangjiadian in Zigui County on the right bank of the

Xiangxi River (30�58059.900N, 110�45033.400E) approxi-

mately 2.5 km upstream from the Xiangxi estuary (Fig. 2).

Figure 3 shows a photograph of the Baijiabao landslide
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that was taken from the opposite bank of the Xiangxi

River. The landslide extends to the Xiangxi River, and the

elevation of the toe rupture surface varies between 125 and

135 m. The landslide’s upper boundary is defined by the

bedrock at an elevation of 265 m. The Triassic Badong

Formation underlies much of this landslide and is highly

susceptible to landslides. The sliding bed is primarily

composed of feldspar–quartz sandstone and mudstone, and

Quaternary deposits and soil are found only at the frontal

section of the sliding bed. The dip of the strata is

approximately 30�, and the dip direction is approximately

285�, which is typical of anaclinal slopes. The sliding mass

mainly consists of interbedded greyish-yellow to brownish-

yellow silty clay, fragmented rubble and debris soil. The

short tongue-shaped landslide covers an area of 0.22 km2

and has a maximum width of 500 m and a length of 550 m.

Borehole monitoring data indicate that the deeper sliding

mass has an average thickness of approximately 45 m and

an estimated volume of 9.9 9 106 m3, and the shallow

sliding mass has an average thickness of 30 m and an

estimated volume of 6.6 9 106 m3. The Baijiabao land-

slide was induced by precipitation and the high level of the

water that was impounded in the Three Gorges Reservoir,

and a series of surface deformations have been observed on

the ground.

Deformation characteristics

The Baijiabao landslide is one of the key monitored land-

slides in the study area. From June to July 2007, ground

cracking became increasingly severe; in particular, two

arc-shaped tension cracks developed at the head of the

landslide (Fig. 4a). These cracks were 160 m long and

10 cm deep, and the right crack was 1–3 cm wide, whereas

the left crack was 1–5 cm wide. Additional tension cracks

formed along the road in the middle part of the landslide

and severely damaged the road surface (Fig. 4b). Between

April and June 2008, a sudden drawdown in the reservoir

level accelerated the landslide deformation, and heavy

rainfall in July and August then caused relatively rapid

displacements. After 6 days of continuous rainfall in May

2009, cracks developed along the road in the right frontal

part of the landslide on May 27, 2009. A rapidly deforming

zone formed in the left frontal part of the landslide at an

elevation of 200 m on June 13, 2009. Figure 5a shows the

ground cracks along the road; they trend N20E and are

15 cm wide and 25 cm deep. Figure 5b shows the arcuate

collapse at an elevation of 160 m, which is 30 m long and

30 cm deep. In June 2011, ground cracks, particularly

cracks along Zixing Road, formed mainly in the middle

part of the landslide; they were triggered by a drawdown in

the reservoir level and heavy rainfall (Fig. 6). In June 2012,

tension cracks that were induced by heavy rainfall and a

drawdown in the reservoir level were observed mainly

along the northern and southern boundaries of the landslide

(Fig. 7).

Fig. 2 Location of the Three Gorges and the Baijiabao and

Laoshewo landslides in China: a map of China, b map showing the

location of the Baijiabao and Laoshewo landslides

Baijiabao Landslide

Xiangxi River NorthSouth

Fig. 3 Photograph of the Baijiabao landslide from the opposite bank

of the Xiangxi River
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Fig. 4 Tension cracks in the

upper and middle parts of the

landslide

Fig. 5 Ground cracks along the

road and the arcuate collapse in

the left frontal part of the

landslide

Fig. 6 Damage along Zixing

Road in the middle part of the

landslide

Fig. 7 Tension cracks along the

northern and southern

boundaries of the landslide

146 Page 6 of 16 Environ Earth Sci (2016) 75:146

123



Deformation state analysis

The deformation characteristics of the Baijiabao landslide

indicate that the tension cracks in the middle part of the

landslide are more common and severe than those in other

parts of the landslide. To analyse the factors that influence

the landslide and assess the landslide’s deformation ten-

dencies and types, a professional monitoring system was

established in November 2006. Figure 8 shows the

arrangement of four Global Positioning System (GPS)

monitoring points as well as the locations of Figs. 4, 5, 6

and 7. GPS monitoring points ZG323 and ZG326 were

installed in the middle part of the landslide, and the mon-

itoring results from points ZG323 and ZG326 are at least

qualitatively consistent with the observed ground defor-

mation, including the ground cracks. There are 74 groups

of displacement data for the period November 2006 to

December 2012. Each time step represents 1 month. Con-

sidering the completeness of the data for the monitoring

points and the deformation characteristics, the monitoring

data from these two points are used to analyse the defor-

mation behaviour of the Baijiabao landslide. Plots of the

cumulative displacement, monthly precipitation, and fluc-

tuations in the reservoir level versus time for monitoring

points ZG323 and ZG326 are shown in Fig. 9. The land-

slide deformation exhibits a step-like pattern during the

monitoring period; the abrupt increases in the landslide

displacement may have been triggered by intense rainfall

and fluctuations in the reservoir level, especially when the

reservoir level rose or fell suddenly.

The Baijiabao landslide is located along the right bank

of the Xiangxi River and represents a typical reservoir-

induced colluvial landslide. Figure 9 shows that the Three

Gorges Reservoir went through three impoundment phases

during the study period, including fluctuations in the

reservoir level between elevations of 145 and 156 m from

November 2006 to September 2008, 145 and 172 m from

October 2008 to September 2010, and 145 and 175 m from

October 2010 to December 2012. Reservoir level fluctua-

tions were the most important influencing factor from

Fig. 8 Contour map of the

Baijiabao landslide showing the

locations of the monitoring

points and the observed surficial

cracks. The locations of Figs. 4,

5, 6 and 7 are marked
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November 2006 to December 2012. The landslide defor-

mation was more severe during the increases and decreases

in the reservoir level and particularly when the reservoir

level dropped significantly over consecutive days.

Although monthly precipitation is not completely propor-

tional to the increase in cumulative displacement, precipi-

tation was the second most important triggering factor and

is positively correlated with the displacement rate, and the

peaks in the monthly rainfall coincide with the sharp

increases in the monthly displacement. Therefore, based on

the deformation characteristic and the dynamic response

relationship between the monthly displacement and reser-

voir level fluctuations and seasonal precipitation, the

monthly displacements at monitoring points ZG323 and

ZG326 are classified into three deformation phases using

two-step cluster analysis: initial, constant, and rapid

deformation phases (Table 6), and five factors that con-

tribute to landslide deformation are selected as input

variables to determine the deformation states of colluvial

landslides. These factors are the cumulative precipitation

over the previous month (CPPM), the maximum daily

precipitation during the current month (MDPM), the

change in reservoir level over the previous month (RLCM),

the cumulative increase in the reservoir level (CIRL) and

the average reservoir level during the current month

(ARLM). A two-step cluster analysis is adopted to classify

these five factors into categorical attributes. The corre-

sponding categorical results are listed in Tables 1, 2, 3, 4

and 5.

Three deformation phases and five categorical factors

are used as the consequents and antecedents, respectively,

for the Apriori algorithm to determine the association rules

between the landslide deformation and these driving

factors. For the training models, 80 % of the dataset is

randomly selected as training samples, and the remaining

20 % is used for validation testing. The Apriori algorithm

with the optimal parameters is trained and used to deter-

mine the association rules for points ZG323 and ZG326.

The values of the minimum antecedent support (%) and the

Fig. 9 Cumulative displacements for points ZG323 and ZG326 between 2006 and 2012; the monthly precipitation and fluctuations in the level

of the Three Gorges Reservoir are also shown

Table 1 Results of the two-step cluster procedure performed on the

cumulative precipitation over the previous month

Clusters Cumulative precipitation (mm)

Low 1.3–81.3

Moderate 84.5–170.4

High 177.2–311.0

Table 2 Results of the two-step cluster procedure performed on the

maximum daily precipitation during the current month

Clusters Maximum daily precipitation (mm)

Very low 0.8–9.3

Low 10.1–33.3

Moderate 34.3–64.0

High 66.1–136.8

Table 3 Results of the two-step cluster procedure performed on the

changes in reservoir level over the previous month

Clusters Reservoir level change rate (m/day)

Slow 0.001–0.090

Ordinary 0.103–0.319

Fast 0.381–0.621
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minimum rule confidence (%) are set to 1.0 and 75,

respectively. The representative association rules for the

three deformation phases at GPS monitoring points ZG323

and ZG326 are shown in Tables 7 and 8, respectively.

To illustrate the meanings of these rules, three of the

rules at different deformation states are provided as

examples. IF ARLM is low (from 144.24 to 151.07 m),

RLCM is fast (from 0.381 to 0.621 m/day), and MDPM is

moderate (from 34.3 to 64.0 mm), THEN the landslide is in

a state of rapid deformation with support, confidence and

lift of 8.00, 100 and 1.39, respectively. This rule suggests

that the moderate MDPM supplements and increases the

groundwater level, ARLM is low, and the reservoir level is

increasing rapidly, but the groundwater level of the land-

slide is still higher than the reservoir level, which causes

dynamic water pressure and accelerates the landslide

deformation. IF MDPM is moderate (from 34.3 to

64.0 mm), CPPM is moderate (from 84.5 to 170.4 mm),

RLCM is normal (from 0.103 to 0.319 m/day), and CIRL is

slow (from 0.00 to 5.00 m), THEN the landslide is in a

state of constant deformation with support, confidence and

lift of 4.00, 100 and 3.13, respectively. This rule suggests

that the rate that precipitation increases the groundwater

level is slower than in the rapid deformation stage, so the

difference between the reservoir level and the groundwater

level decreases, the dynamic water pressure of the landslide

decreases, and the rate of deformation is slower than in the

rapid deformation stage. IF MDPM is very low (from 0.8 to

9.3 mm), CPPM is low (from 1.3 to 81.3 mm), ARLM is

moderate (from 151.93 to 163.00 m), and CIRL is slow

(from 0.00 to 5.00 m), THEN the landslide is in a state of

initial deformation with support, confidence and lift of

5.33, 100 and 1.39, respectively. This rule suggests that the

precipitation is very low and supplements the groundwater

level only slightly, and the reservoir is at a medium level

and is equal to or higher than the groundwater level, which

generates hydrostatic pressure and slows the landslide

deformation.

Laoshewo landslide

Geological background

The Laoshewo landslide is located in the village of

Huangjincun in Zigui County on the right bank of the

Table 4 Results of the two-step cluster procedure performed on the

cumulative increase in the reservoir level during the current month

Clusters Cumulative increments (m)

Slow 0.00–5.00

Ordinary 5.80–13.90

Fast 14.20–22.38

Table 5 Results of the two-step cluster procedure performed on the

average reservoir level during the current month

Cluster Average reservoir level (m)

Low 144.24–151.07

Moderate 151.93–163.00

High 163.57–174.73

Table 7 Association rules for the landslide deformation types at GPS monitoring point ZG323

Consequent Antecedent Support

(%)

Confidence

(%)

Lift

Rapid deformation CPPM = high, RLCM = fast and CIRL = ordinary 6.67 80 2.50

Rapid deformation CPPM = high, MDPM = moderate and ARLM = low 12.00 78 1.58

Rapid deformation MDPM = moderate, ARLM = low, RLCM = fast and CIRL = slow 5.33 75 4.33

Constant deformation MDPM = moderate, CPPM = moderate, RLCM = ordinary and CIRL = slow 4.00 100 3.13

Constant deformation MDPM = moderate, CPPM = moderate, RLCM = ordinary and ARLM = moderate 5.33 75 2.34

Constant deformation MDPM = moderate. CIRL = slow, RLCM = ordinary and ARLM = moderate 5.33 75 2.34

Constant deformation CPPM = moderate, RLCM = slow, MDPM = low and CIRL = slow 5.33 75 2.34

Initial deformation ARLM = high, RLCM = ordinary, MDPM = low, CIRL = slow and MDPM = low 9.33 86 1.74

Initial deformation MDPM = very low, ARLM = moderate and RLCM = slow 8.00 83 1.69

Initial deformation MDPM = very low, ARLM = moderate and CIRL = slow 5.33 75 1.52

Initial deformation MDPM = very low, ARLM = moderate, RLCM = slow and CIRL = slow 5.33 75 1.52

Table 6 Results of the two-step cluster procedure performed on the

monthly cumulative displacements

Deformation phases Monthly displacement (mm)

ZG323 ZG326

Initial deformation \5.02 \8.13

Constant deformation 5.03–14.84 8.14–19.08

Rapid deformation [14.85 [19.09
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Yangtze River (30�59030.200N, 110�35027.400E) 47 km

upstream of the Three Gorges Dam (Fig. 2). As shown in

Fig. 10, the armchair-shaped landslide covers an area of

1.2 9 104 m2 and has an estimated length of 320 m in the

north–south direction and an estimated width of 400 m in

the east–west direction. The landslide extends to the

Yangtze River, the elevation of the upper rupture surface is

approximately 270 m, and the eastern and western

boundaries are defined by bedrock. The deeper sliding

mass has an average thickness of approximately 25 m and

an estimated volume of 3.0 9 106 m3. The landslide’s

slope gradient varies between 35� and 45�, and the main

slip direction is approximately 342�. The sliding body is

the contact zone between the bedrock and the colluvial soil

and is mainly composed of gravel soils. The sliding bed is

composed of thick clay, argillaceous siltstone, and fine

siltstone layers. Deformation behaviour is mainly observed

in the middle part of the landslide.

Deformation characteristics

The Laoshewo landslide is an active colluvial landslide and

is a key monitored landslide in the study area. From April

to June 2007, many ground cracks that were associated

with fluctuations in the reservoir level and rainfall formed

on the ground surface. A crack formed and expanded in the

middle-upper part of the landslide, and it reached a width

of 12 cm, a length of 50 m, and a visible depth of 15 cm

(Fig. 11a). A 20-m-long and 3-m-wide section collapsed in

the middle part of the landslide and blocked the rural road

(Fig. 11b). A series of ground cracks gradually developed

in 2009, and the ground clearly settled in several places,

particularly in the middle-rear section. Figure 12a shows 2-

to 10-mm-wide tension cracks in the upper eastern flank of

the landslide. Figure 12b shows a local slope collapse,

which was primarily triggered by rainfall, along the road in

the middle part of the landslide. This collapse has a total

volume of 1–5 m3. During June 2012, the pre-existing

cracks gradually expanded, and additional cracks appeared

at the toe of the landslide. These new cracks had a dip

direction of 230�, lengths of 1–2 m, and widths of 3–6 mm

(Fig. 13a). An additional crack formed along the village

road on the left part of the landslide; this crack had a dip

direction from 115� to 135�, a length of 20 m, and a width

of 1–3 cm (Fig. 13b).

Deformation state analysis

The macroscopic deformation characteristics of the

Laoshewo landslide indicate that the deformation in the

upper middle part of the eastern active block is much

greater than the deformation in the frontal part. In the

western active block, the deformation in the lower frontal

part is more significant than in the upper rear part.

Table 8 Association rules for the landslide deformation types at GPS monitoring point ZG326

Consequent Antecedent Support (%) Confidence (%) Lift

Rapid deformation CPPM = high, MDPM = moderate and ARLM = low 8.00 100 1.39

Rapid deformation CPPM = high, ARLM = low and RLCM = ordinary 13.33 100 1.39

Rapid deformation CPPM = high, RLCM = fast and CIRL = slow 9.33 100 1.39

Rapid deformation ARLM = low, RLCM = fast and MDPM = moderate 8.00 100 1.39

Constant deformation ARLM = low, RLCM = ordinary and CIRL = slow 76.00 79 1.10

Constant deformation ARLM = low, RLCM = slow and MDPM = low 42.67 78 1.09

Constant deformation ARLM = low, CPPM = moderate, RLCM = slow and MDPM = low 40.00 77 1.06

Constant deformation ARLM = low, CPPM = moderate, MDPM = low and CIRL = slow 5.33 75 5.63

Initial deformation MDPM = very low, ARLM = moderate and RLCM = slow 5.33 100 1.39

Initial deformation MDPM = very low, ARLM = moderate, CPPM = low and CIRL = slow 5.33 100 1.39

Initial deformation RLCM = slow, CPPM = low and MDPM = low 18.67 100 1.39

Initial deformation CPPM = low, MDPM = low and CIRL = slow 28.00 100 1.39

Fig. 10 Photograph of the Laoshewo landslide from the opposite

bank of the Yangtze River
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Figure 14 shows two monitoring profiles and four moni-

toring points that were installed on the landslide in October

2006 as well as the locations of Figs. 11, 12 and 13. GPS

monitoring points ZG265 and ZG268 are located in the

upper middle part of the eastern active block and in the

lower frontal part of the western active block, respectively,

and the monitoring results from these points are at least

qualitatively consistent with the observed ground defor-

mation, including ground cracks. There are 75 groups of

displacement data for the period October 2006 to Decem-

ber 2012. Because of the completeness of the data of the

monitoring points and the deformation characteristics, the

monitoring data from these two points are used to analyse

the deformation behaviour of the Laoshewo landslide.

Figure 15 shows plots of the cumulative displacements,

monthly precipitation, and fluctuations in the reservoir

level versus time at monitoring points ZG265 and ZG268.

The landslide deformation exhibits a step-like pattern

during the monitoring period, and the abrupt increases may

have been triggered by changes in the reservoir level and

rainfall.

The Laoshewo landslide is a typical reservoir-induced

colluvial landslide. Figure 15 shows that the Three Gorges

Reservoir went through three impoundment phases during

the study period, including reservoir level fluctuations

between elevations of 145 and 156 m from October 2006

Fig. 11 Cracked and collapsed

sections of the middle-upper

and middle parts of the landslide

Fig. 12 Tension cracks and

local slope collapse in the upper

and middle parts of the landslide

Fig. 13 Ground cracks at the

toe and left sides of the

landslide
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to September 2008, 145 and 172 m from October 2008 to

September 2010, and 145 and 175 m from October 2010 to

December 2012. After the first impoundment phase, GPS

monitoring point ZG268 was covered by the Yangtze

River. Reservoir level fluctuations were the most important

influencing factor in each year from October 2006 to

Fig. 11a

Fig. 11b

Fig. 12a

Fig. 12b

Fig. 13a

Fig. 13b

Fig. 14 Contour map of the

Laoshewo landslide showing

the locations of the monitoring

points and observed surficial

cracks as well as the locations of

Figs. 11, 12 and 13

Fig. 15 Cumulative displacements at ZG265 and ZG268 between 2006 and 2012 and the monthly precipitation and reservoir level in the Three

Gorges Reservoir

146 Page 12 of 16 Environ Earth Sci (2016) 75:146

123



August 2009. During the first three fluctuations of the

reservoir level, the landslide displacement increased during

changes in the reservoir level and particularly when the

reservoir level decreased. Precipitation was another

important factor that influenced landslide deformation

during this period. The loading of the landslide decreased

after the first three large displacements, and the landslide

was relatively stable from September 2009 to December

2012. Although the fluctuations in reservoir level and

monthly precipitation are not completely proportional to

the increase in cumulative displacement, a positive corre-

lation was observed between the reservoir level fluctua-

tions and landslide deformation, and the peaks in the

monthly rainfall coincide with the sharp increases in the

monthly displacement. The two-step cluster analysis is

applied to group the monthly displacements of monitoring

points ZG265 and ZG268 into three types: initial defor-

mation, constant deformation, and rapid deformation

(Table 9). The three deformation phases and five categor-

ical factors are used as the consequents and antecedents,

respectively, in the Apriori algorithm to determine the

association rules between the landslide deformation and

these driving factors. The Apriori algorithm with the

optimal parameters is trained and used to determine the

association rules for points ZG265 and ZG268. The values

of the minimum antecedent support (%) and the minimum

Table 9 Results of the two-step cluster procedure performed on the

monthly cumulative displacements

Deformation phases Monthly displacement (mm)

ZG265 ZG268

Initial deformation \7.98 \4.38

Constant deformation 7.99–23.58 4.39–31.01

Rapid deformation [23.59 [31.02

Table 10 Association rules for the landslide deformation types at GPS monitoring point ZG265

Consequent Antecedent Support

(%)

Confidence

(%)

Lift

Rapid deformation MDPM = high, ARLM = low, RLCM = ordinary and CIRL = slow 5.33 100 5.00

Rapid deformation CPPM = high, ARLM = low, RLCM = ordinary and CIRL = slow 4.00 100 5.00

Rapid deformation ARLM = low, RLCM = ordinary and CIRL = ordinary 9.33 86 4.29

Rapid deformation MDPM = moderate, CPPM = moderate, ARLM = low and CIRL = slow 5.33 75 3.75

Constant deformation CIRL = ordinary, MDPM = moderate and RLCM = ordinary 6.67 80 1.22

Constant deformation MDPM = moderate, ARLM = low and CIRL = slow 6.67 80 1.22

Constant deformation CIRL = ordinary, ARLM = low and RLCM = ordinary 18.67 79 1.20

Constant deformation MDPM = moderate, CPPM = moderate, ARLM = low and CIRL = slow 18.67 79 1.20

Initial deformation CPPM = moderate, ARLM = moderate and CIRL = slow 40.00 77 1.17

Initial deformation ARLM = high, MDPM = low, RLCM = slow, CPPM = low and CIRL = slow 6.67 100 1.53

Initial deformation MDPM = low, CPPM = low and CIRL = slow 28.00 86 1.31

Initial deformation MDPM = very low, ARLM = moderate, RLCM = slow, CPPM = low

and CIRL = slow

8.00 83 1.28

Table 11 Association rules for the landslide deformation types at GPS monitoring point ZG268

Consequent Antecedent Support

(%)

Confidence

(%)

Lift

Rapid deformation MDPM = high, ARLM = low, RLCM = slow and CPPM = high 4.00 100 2.03

Rapid deformation MDPM = high, ARLM = low, RLCM = ordinary and CIRL = slow 4.00 100 2.03

Rapid deformation MDPM = moderate, RLCM = fast and CPPM = high 4.00 100 2.03

Constant deformation MDPM = moderate, ARLM = moderate and CIRL = slow 4.00 100 2.03

Constant deformation CIRL = ordinary, ARLM = moderate and MDPM = low 4.00 100 2.03

Constant deformation RLCM = ordinary, CPPM = moderate and MDPM = low 4.00 100 2.03

Constant deformation MDPM = moderate, CPPM = moderate, ARLM = low and CIRL = slow 5.33 75 1.52

Initial deformation MDPM = very low, ARLM = high and RLCM = slow 8.00 83 1.95

Initial deformation MDPM = very low, ARLM = high, RLCM = slow and CIRL = slow 8.00 83 1.95

Initial deformation MDPM = very low, ARLM = high, RLCM = slow, CPPM = low and CIRL = slow 8.00 83 1.95

Initial deformation CPPM = low, RLCM = ordinary, ARLM = moderate and CIRL = slow 5.33 75 1.76
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rule confidence (%) are set to 1.0 and 75, respectively. The

representative association rules for the three deformation

phases of GPS monitoring points ZG265 and ZG268 are

shown in Tables 10 and 11, respectively.

To illustrate the meanings of these rules, three of the

rules at different deformation states are provided as

examples. IF MDPM is high (from 66.1 to 136.8 mm),

the ARLM is low (from 144.24 to 151.07 m), RLCM is

normal (from 0.103 to 0.319 m/day), and CIRL is slow

(from 0 to 5.00 m), THEN the landslide is in a state of

rapid deformation with support, confidence and lift of

5.33, 100 and 5.00, respectively. This rule suggests that

the reservoir level is low, precipitation greatly recharges

and increases the groundwater level, and the difference

between the reservoir level increases further, which

increases the dynamic water pressure and accelerates the

landslide deformation. IF MDPM is low (from 10.1 to

33.3 mm), ARLM is moderate (from 151.93 to

163.00 m), and CIRL is normal (from 5.80 to 13.90 m),

THEN the landslide is in a state of constant deformation

with support, confidence and lift of 4.00, 100 and 2.03,

respectively. This rule suggests that the reservoir is at a

medium level and fluctuates slowly, the precipitation is

low, and the difference between the groundwater level

and the reservoir level is not clear; therefore, the dynamic

water pressure decreases, and the deformation slows. IF

MDPM is very low (from 0.8 to 9.3 mm), ARLM is high

(from 163.57 to 174.73 m), RLCM is slow (from 0.001 to

0.090 m/day), and CIRL is slow (from 0.00 to 5.00 m),

THEN the landslide is in a state of initial deformation

with support, confidence and lift of 8.00, 83 and 1.95,

respectively. This rule suggests that the reservoir level is

high, precipitation is low and contributes little to the

groundwater, the difference between the reservoir level

and the groundwater level decreases, and the former is

equal to or higher than the latter, so hydrostatic pressure

will form and decrease the deformation.

Conclusions

The Baijiabao and Laoshewo landslides are two typical

active colluvial landslides in the Three Gorges, and the

potential risks that are posed by this type of landslide are

substantial. Therefore, determining the deformation states

is an important task for landslide early warning systems.

This paper presents an approach for analysing the defor-

mation states of two typical colluvial landslides using

6 years of time-series monitoring data, a two-step cluster

analysis, and the Apriori algorithm.

The observed ground deformations demonstrate that

tension cracks and collapses occur in association with

heavy rainfall and sharp increases or decreases in the

reservoir level. The cumulative displacement versus time

curves exhibit step-like increasing patterns, and the sharp

increases in the curves are caused by fluctuations in the

reservoir level and changes in precipitation during the rainy

season. A two-step cluster analysis indicates that the

landslide deformation process can be divided into initial,

constant, and rapid deformation phases, which correspond

to a decreasing rate, steady rate, and increasing rate of

deformation with time, respectively. The association rules

for landslide deformation are obtained using the three

deformation phases and five reservoir level and rainfall

factors as consequents and antecedents in the Apriori

algorithm. The support, confidence and lift measurement

standards are applied to select reliable and representative

knowledge rules, and the analytical results are generally

consistent with the observed ground deformations. The

results suggest that the deformations of the Baijiabao and

Laoshewo landslides are mainly influenced by fluctuations

in the reservoir level followed by rainfall. Due to the poor

permeability of the frontal sections of the sliding beds,

when the reservoir level drops below the groundwater

level, dynamic water pressure will form and accelerate the

landslide deformation. Simultaneously, increases in rainfall

will raise the groundwater level, which will further increase

the dynamic water pressure and accelerate landslide

deformation. The Laoshewo landslide is a colluvial bed-

ding landslide, and its groundwater discharge is higher than

that of the Baijiabao landslide. Therefore, at the same

reservoir level, rainfall has a smaller effect on the Laosh-

ewo landslide than on the Baijiabao landslide.

The association rules that were extracted from these

two typical colluvial landslides may serve as useful ref-

erences for assessing the level of deformation of similar

colluvial landslides in the region, and the combined

method of a two-step cluster analysis with the Apriori

algorithm that was proposed in this study can be applied

to analyse the deformation conditions of other types of

landslides with clear response factors. Nevertheless,

fluctuations in the reservoir level and rainfall are the only

important inducing factors for analyses of the deformation

and evolution of colluvial landslides. Future work will

consider interior factors that indicate landslide

mechanisms.
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