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Abstract Blasting operations usually produce significant

environmental problems which may cause severe damage

to the nearby areas. Air-overpressure (AOp) is one of the

most important environmental impacts of blasting opera-

tions which needs to be predicted and subsequently con-

trolled to minimize the potential risk of damage. In order to

solve AOp problem in Hulu Langat granite quarry site,

Malaysia, three non-linear methods namely empirical,

artificial neural network (ANN) and a hybrid model of

genetic algorithm (GA)–ANN were developed in this

study. To do this, 76 blasting operations were investigated

and relevant blasting parameters were measured in the site.

The most influential parameters on AOp namely maximum

charge per delay and the distance from the blast-face were

considered as model inputs or predictors. Using the five

randomly selected datasets and considering the modeling

procedure of each method, 15 models were constructed for

all predictive techniques. Several performance indices

including coefficient of determination (R2), root mean

square error and variance account for were utilized to

check the performance capacity of the predictive methods.

Considering these performance indices and using simple

ranking method, the best models for AOp prediction were

selected. It was found that the GA–ANN technique can

provide higher performance capacity in predicting AOp

compared to other predictive methods. This is due to the

fact that the GA–ANN model can optimize the weights and

biases of the network connection for training by ANN. In

this study, GA–ANN is introduced as superior model for

solving AOp problem in Hulu Langat site.

Keywords Quarry blasting � Air-overpressure � Empirical

model � Artificial neural network � Genetic algorithm

Introduction

Blasting refers to the controlled use of explosives for the

purpose of breaking down, excavation, or removal of rock.

This is the most commonly used technique for rock frag-

mentation in civil and mining engineering applications, e.g.

quarry operations, road and dam constructions, etc. How-

ever, blasting has a number of negative side effects on the

environment, such as air-overpressure (AOp), ground

vibration, flyrock, back-break, and so on (Khandelwal and

Kankar 2011; Rezaei et al. 2011; Jahed Armaghani et al.

2015a, b; Shirani Faradonbeh et al. 2015; Hasanipanah

et al. 2015), especially if blasting operations are carried out

near to residential buildings, factories, etc. or they are not

designed appropriately (Kuzu 2008; Chen et al. 2015).

AOp resulting from blasting is an undesirable side effect of

the use of explosives. This undesirable environmental

impact of blasting affects structures and can produce

damage when quarrying, which may result in conflict

between the quarry management and those who are affec-

ted (Konya and Walter 1990; Hopler 1998; Chen et al.

2015).

Several empirical equations have been developed to

predict AOp induced by blasting operation (Siskind et al.
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1980; Hustrulid 1999; Kuzu et al. 2009; Hajihassani et al.

2014). As a result, these methods are not accurate enough,

whereas prediction of AOp values with high degree of

accuracy is important to estimate the blasting safety area

(Hajihassani et al. 2014). Furthermore, they need to be

updated when new blasting parameters are available. Apart

from the empirical equations, the use of artificial intelli-

gence (AI) techniques such as artificial neural network

(ANN) as quick solutions for engineering problems has

recently received attention in field of geotechnical engi-

neering (Khandelwal and Singh 2007; Ceryan et al. 2013;

Isik and Ozden 2013; Monjezi et al. 2013; Jahed Arma-

ghani et al. 2014; Maiti and Tiwari 2014; Momeni et al.

2015a; Ghoraba et al. 2015; Hajihassani et al. 2015; Gor-

dan et al. 2015; Jahed Armaghani et al. 2015b, c). Although

ANNs can solve complex engineering problems, they have

a number of disadvantages; for example, slow learning rate

and getting trapped in local minima (Jadav and Panchal

2012; Momeni et al. 2014). As a result, ANN performance

can be considerably improved by the use of optimization

algorithms such as genetic algorithm (GA) (Bornholdt and

Graudenz 1992; Saemi et al. 2007). This study is aimed to

solve AOp problem in Hulu Langat quarry site using

empirical and intelligent systems namely ANN and hybrid

GA–ANN (also called neuro-genetic technique).

Air-overpressure and its prediction methods

The explosion occurs by the shock wave of chemical

reaction when the reactive gases pressure reaches the sonic

velocity (Baker et al. 1983). The gas pressure velocity

quickly rises as the explosive detonation occurs within the

blast-hole. Suddenly, surrounding rocks are loaded by the

blast-hole pressure, which produces a compressive shock

pulse and moves away quickly from the blast-hole. Mainly,

the pressure in blasting is indicated by shock and gas

mechanisms (Bhandari 1997; Roy 2005).

AOp is produced by large shock waves from explosion

point to the free surface. It is refracted horizontally by

density variations in the atmosphere. AOp has two atmo-

spheric pressure waves: an audible high frequency sound

and sub-audible low frequency (Bhandari 1997). Human

ear can detect the minimum sound frequency of 20 Hz, and

below this frequency is not hearable. However, sound of

more than 20 Hz frequency may cause a concussion for

human ear (Kuzu et al. 2009). AOp is measured in Pascal

(or in dB) because physically it is a pressure (Kuzu et al.

2009).

In cases where the energy of AOp waves goes above the

atmospheric pressure (194.1 dB), surrounding structures

may be to some extent damaged (Glasstone and Dolan

1997). The average level and higher spectral frequencies in

AOp tend to be higher due to explosions, whereas the AOp

amplitude reduces by 6 dB for every doubling of distance

from recipient to blast (Stachura et al. 1984). The attenu-

ation range becomes smaller, -3.1 to -10 dB, depending

on the differences between the source spectra and propa-

gation conditions. The AOp degree of damage possibility

for structures is 180 dB, general window breakage is

171 dB, and occasional window breakage is 151 dB (Kuzu

et al. 2009). According to Siskind et al. (1980), as reported

by the United States Bureau of Mines (USBM), a value of

134 dB is recommended for AOp limitation. Therefore,

many attempts have been made to control AOp values

(Kuzu et al. 2009; Rodrı́guez et al. 2010).

Many factors affect AOp like maximum charge per

delay, burden and spacing, detonator accuracy, stemming,

charge depth, weak strata, overcharging, atmospheric

conditions, and conditions arisen from secondary blasting

(Siskind et al. 1980; Dowding 2000; Rodrı́guez et al.

2010). Richards (2010) stated that in open pit blasting,

there is a direction of maximum AOp which is close to the

perpendicular line to the bench. Though, blasting-induced

AOp cannot be easily predicted since, in different cases,

the same blast design may generate different results.

Several empirical models have been proposed to predict

AOp using its influential parameters. The use of the cube-

root scaled distance (SD) factor is a common-used tech-

nique to predict AOp resulting from blasting. The rela-

tionship between the SD and the two parameters namely

explosive charge weight per delay and distance from the

blast-face is formulated as below:

SD ¼ DW�0:33 ð1Þ

in which D denotes the distance (m or ft) and W is the

explosive charge weight (kg or lb) and SD is the scaled

distance factor (m kg-0.33 or ft lb-0.33). A site-specific

AOp attenuation formula can be developed when statistical

analysis techniques (i.e., least squares regression analysis)

are applied to the representative AOp data (White and

Farnfield 1993; Cengiz 2008). The generalized predictor

equation for the prediction of AOp is given as follows

(Siskind et al. 1980):

AOp ¼ HðSDÞ�b ð2Þ

where AOp is air-overpressure, H and b are the site factors.

The site factor values, H and b, for some blasting condi-

tions are tabulated in Table 1. AOp which is obtained using

the parameters in Table 1, is expressed in terms of Pa or

dB.

Using both rock material and free air properties, some

numerical models introduced and linked to Autodyn2D in

the study conducted by Wu and Hao (2005) to make a

simulation of AOp and ground shock induced by surface
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explosions. A semi-empirical method was developed by

Rodrı́guez et al. (2007) to predict AOp generated by

blasting works outside a tunnel. The performance of their

method was evaluated with several tests and it was shown

capable of being used under various conditions. Kuzu et al.

(2009) introduced an empirical equation for predicting

AOp. They considered two critical parameters of AOp, i.e.,

the weight of explosive materials and the distance from the

blast-face to monitoring point in their model. They ana-

lyzed 98 AOp readings recorded from the quarry blasting

operations in different conditions and concluded that their

proposed equation could predict AOp with a reasonable

accuracy. Using the data recorded from two quarries,

Segarra et al. (2010) proposed a new AOp predictive

equation. The AOp measurements and blasting data were

extracted from a total of 122 records of 40 rock blasting

operations with low to very low strength. After all, they

achieved an empirical equation with 32 % accuracy.

In addition to the above-mentioned empirical methods,

numerous studies have been predicted AOp using soft

computing techniques. Khandelwal and Singh (2005) pro-

posed an ANN model using distance from the blast-face to

monitoring point for the prediction of AOp. They com-

pared the performance of ANN with that of the multi-

variate regression analysis (MVRA) and USBM predictor

and proved the superiority of their proposed model over

MVRA and USBM in terms of estimation accuracy. Con-

sidering the distance from the blast-face to the monitoring

point and the maximum charge per delay, Mohamed (2011)

applied ANN and a fuzzy inference system (FIS) to the

prediction of AOp. He made a comparison between the

results obtained from the predictive models and the values

of regression analyses and observed field data. The ANN

and fuzzy models were shown more accurate compared to

the regression analysis. Using a total of 75 datasets related

to three mines in India and the technique of support vector

machine (SVM), Khandelwal and Kankar (2011) attempted

to predict AOp. The AOp values obtained from the SVM

technique were compared to those of a generalized pre-

dictor equation. They concluded that the AOp values pre-

dicted by SVM are much closer to the actual values

compared to those obtained from the generalized predictor

equation. In order to predict AOp using two intelligent

systems namely neuro-fuzzy (ANFIS) and ANN, 166

blasting operations were investigated by Jahed Armaghani

et al. (2015a) and the most effective parameters on AOp

were measured. At the end of this study, they mentioned

that when higher accuracy of AOp prediction is needed

ANFIS model would be the proper alternative compared to

ANN technique. Hajihassani et al. (2015) utilized and

developed a combination of the particle swarm optimiza-

tion and ANN to predict air and ground vibrations of

blasting and introduced PSO-ANN as an applicable and

accurate tool for estimating air and ground vibrations

induced by blasting. Table 2 shows several investigations

of AOp prediction and their performances using soft

computing techniques.

Artificial neural network

Artificial neural networks (ANNs) which were developed

by McCulloch and Pitts (1943), are composed of large

numbers of neurons, while a neuron is a simplification of a

biological neuron. Depending on problem to be solved,

different numbers of neurons can be utilized. There are

various ways to connect the neurons in order to create an

ANN model. Feed-forward (FF)–back-propagation (BP) is

the most commonly used ANN type in a wide range of

science and engineering as reported by many researchers

(e.g., Simpson 1990; Dreyfus 2005; Momeni et al. 2015b).

The multi-layer perceptron (MLP) neural network is one of

the most well-known FF-ANNs (Haykin 1999). MLP

includes several nodes or neurons in three layers (input,

hidden and output) which are linked to each other by

weights. Normally, the number of hidden layers and

Table 1 Site factors, H and b
for some blasting conditions

References Description H b

Siskind et al. (1980) Quarry blasts, behind face 622 0.515

Quarry blasts, direction of initiation 19,010 1.12

Quarry blasts, front of face 22,182 0.966

Hopler (1998) Confined blasts for AOp suppression 1906 1.1

Blasts with average burial of the charge 19,062 1.1

Hustrulid (1999) Detonations in air 185,000 1.2

Kuzu et al. (2009) Quarry blasts in competent rocks 261.54 0.706

Quarry blasts in weak rocks 1833.8 0.981

Overburden removal 21,014 1.404

Hajihassani et al. (2014) Quarry blasts, front of face (distance of 300 m) 10,909 1.09

Quarry blasts, front of face (distance of 600 m) 959.48 0.45
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number of neurons in hidden layers are obtained using

trial-and-error procedure (Baheer 2000; Poulton 2002). In

ANN, initially, a desired weight in the range of (0, 1) is

assigned to each input parameter. Then, each input is

multiplied by the weight and summation of these amounts

is assigned to the hidden layer(s). The obtained value is

summed with bias (neuron weight) which is normally equal

to one. In the next round, another weight is assigned to the

obtained value and the cycle is reached to the next layer

(output layer). Summation of all obtained values from each

layer is the last step of ANN modeling and after that the

training procedure is completed and the system is ready to

testing (or checking). In a FF–BP algorithm, the signals

flow from input layer to the output layer, called forward

pass, then the achieved value(s) from the system is com-

pared to the actual one and the error is computed by the

network. The obtained error is propagated back through the

network to update the individual weights, called backward

pass. In the mentioned process, errors of both training and

testing datasets are decreased. FF–BP procedure is repeated

until the error is converged to a level defined by a cost

function such as mean square error (MSE) and root mean

squared error (RMSE) (Simpson 1990; Garrett 1994).

However, a database comprising of sufficient number of

datasets is needed to construct a suitable ANN model.

Genetic algorithm

GA which was developed by Holland (1975) is a stochastic

search algorithm and optimization technique. This algo-

rithm mimics the natural selection mechanism and the

biological species evolution. The stochastic optimization is

a technique where the solution space is searched through

the generation of potential solutions using a random

number generator. To advance, GA only needs an evalua-

tion of objective function value for each decision variable.

This is because the stochastic-based technique of GA does

not need any specific information for guiding the search

(Chipperfield et al. 2006). However, GA is not capable of

assuring constant optimization response times. Addition-

ally, the difference between the longest and shortest opti-

mization response time is much larger in GAs compared to

that of traditional gradient methods. This property of GAs

limits its use in real-time applications (Simpson et al.

1994).

Generally, in GA, there are populations of individuals

that are known as candidate solutions; each individual

gradually converges over time to an optimal solution. Each

candidate solution is denoted by a linear string that consists

of chromosomes represented by 0 and 1 s. Total solutions

form the population size and each iteration of optimization

process is known as a generation. There are two termina-

tion conditions for the GA optimization process, namely

meeting the desired fitness or defining some stopping cri-

teria such as maximum number of generations.

In GA, three basic genetic operators, namely reproduc-

tion, cross-over, and mutation should be performed.

Reproduction is a process through which the best chromo-

somes are chosen based on their scaled values considering

the given criteria of fitness. Then the selected chromosomes

are directly transferred to the next generation. Through the

cross-over operator, offsprings (new individuals) are pro-

duced through combining particular parts of individuals

(parent). Recombination is done through several ways,

including single-point cross-over and two-point cross-over.

Nevertheless, during the process of cross-over, a random

cross-over point and two parents are chosen. The creation of

the first offspring is through the combination of the left side

genes of the first parent with the right side genes of the

second parent. To form the second offspring, an inverse

procedure is repeated (Momeni et al. 2014). Mutation is a

process during which a random change occurs in elements

(allele) of a chromosome. On the other hand, in binary

systems, mutation refers to flipping the values of a bit where

1 becomes 0 and 0 becomes 1.

Table 2 Several works on AOp prediction using soft computing techniques

References Technique Input No. of dataset R2

Khandelwal and Singh (2005) ANN DI, C 56 R2 = 0.96

Mohamed (2011) ANN, FIS DI, C 162 R2
ANN = 0.92

R2
FIS = 0.86

Khandelwal and Kankar (2011) SVM DI, C 75 R2 = 0.85

Tonnizam Mohamad et al. (2012) ANN HD, S, B, N, D, ST, PF 38 R2 = 0.93

Hajihassani et al. (2014) ANN-PSO HD, S, B, ST, PF, N, DI, C, RQD 62 R2 = 0.86

Hajihassani et al. (2015) ANN-PSO BS, C, HD, ST, SB, RQD, PF, NH, DI 88 R2 = 0.89

Jahed Armaghani et al. (2015a) ANN DI, C 166 R2 = 0.83

S spacing, B burden, ST stemming, PF powder factor, SVM support vector machine, C maximum charge per delay, D hole diameter, HD hole

depth, N number of row, PSO particle swarm optimization, DI distance from the blast-face, RQD rock quality designation, SB subdrilling, NH

number of hole
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As mentioned earlier, two drawbacks of ANNs are

getting trapped in local minima and having a slow rate of

learning (Lee et al. 1991). As shown by recently conducted

studies, GA can efficiently improve the ANN performance

and remove its drawbacks (Majdi and Beiki 2010; Ting-

Xiang et al. 2012; Rashidian and Hassanlourad 2013). The

most frequently cited advantage of GAs is the capability of

these algorithms in escaping from being trapped in a local

optimum (Chambers 2010). In study conducted by Cham-

bers (2010), it was mentioned that with the use of a GA or

at least a hybrid GA, an appropriate objective function can

be freely selected. Indeed, the multidirectional search

algorithm that is incorporated in GA helps ANN models to

converge towards a global minimum, which leads to the

improvement of the prediction capability of ANNs (Ra-

jasekaran and Vijayalakshmi Pai 2007). In other words, in

GA–ANN, the model is trained with GA rather than the

common BP algorithm. It can be concluded that the net-

work connection weights and biases are optimized with GA

instead of random generation. Several researchers have

attempted to enhance the performance quality and gener-

alization capabilities of ANNs through the use of GA

algorithm (e.g. Monjezi et al. 2012; Aghajanloo et al. 2013;

Momeni et al. 2014). A hybrid GA–ANN algorithm is

displayed in Fig. 1.

Site investigation and data collection

This study was conducted at Hulu Langat quarry site in

Selangor state, Malaysia. Geographically, the quarry lies at

a latitude of 3�70000N and a longitude of 101�490100E and is

located in the south of Selangor. This quarry is composed

of granitic rocks with the capacity to produce large

amounts (between 280,000 and 360,000 tons per month) of

aggregate. Blasting is carried out 8 to 10 times per month,

depending on the weather conditions. According to ISRM

(2007) suggested method, the mass weathering grade is

mainly classified into grades III to V, and rock mass

strength is between 40 and 70 MPa. All blasting operations

are conducted using blast-hole diameter of 89 mm.

Ammonium nitrate and fuel oil (ANFO) and dynamite

were used as the main explosive material and for initiation,

respectively. The blast-holes were stemmed using fine

gravels.

Since the blasting operations in Hulu Langat quarry site

are conducted close to residential areas, AOp is an

important blasting environmental impact in this quarry.

The nearest building to the mentioned quarry site is about

300 m (see Fig. 2). By conducting blasting operations in

Hulu Langat quarry, sometimes, AOp causes damage to

surrounding residential area, especially on the building’s

windows. Therefore, AOp is a significant problem in this

site.

During data collection, 76 blasting operations were

investigated and parameters including hole depth, maxi-

mum charge per delay, burden, spacing, stemming length,

powder factor, and distance from the blast-face were

measured (see Table 3). The range of powder factors in

these operations was observed between 0.5 and 0.9 kg/m3.

The minimum and maximum measured stemming length

was 2 and 3.5 m, respectively. Minimum value for burden

to spacing ratio was measured as 0.4 while the maximum

value of this ratio was obtained as 0.85. In each blast, AOp

was recorded using a VibraZEB seismograph. The AOp

values were monitored using linear L type microphones

connected to the AOp channels. A range of AOp values

from 88 dB (7.25 9 10-5 psi or 0.5 Pa) to 148 dB (0.0725

psi or 500 Pa) can be recorded by VibraZEB. The micro-

phones have an operating frequency response from 2 to

250 Hz, which is adequate for measuring AOp accurately

in the frequency range critical for structures and human

Fig. 1 Combination of GA–ANN (Saemi et al. 2007)

Fig. 2 Residential area which is located near Hulu Langat granite

quarry site
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Table 3 Measured blasting parameters in the site

Dataset no. Hole depth

(m)

Stemming

(m)

Burden

(m)

Spacing

(m)

Maximum charge

per delay (kg)

Powder factor

(kg/m3)

Distance

(m)

AOp

(dB)

1 8.8 2.5 3.1 3.7 78.6 0.54 380 115.5

2 7.9 2.2 3.1 3.7 50.8 0.50 270 106.9

3 15.7 3.1 2.9 3.8 69.8 0.50 440 105.1

4 10.3 3.1 2.9 3.5 52.0 0.52 325 107.2

5 15.7 3.4 3 3.6 77.4 0.71 680 96.9

6 8.1 2.1 3 3.6 55.5 0.57 480 98

7 5.2 2.0 3 3.6 56.1 0.53 540 102.7

8 16.9 3.1 3.1 3.7 76.8 0.59 230 134.1

9 16.3 2.0 3.15 3.75 79.8 0.60 630 99

10 10.8 2.0 2.95 3.9 57.9 0.72 500 92.6

11 11.5 2.7 3 3.6 62.6 0.60 600 94.5

12 23.2 3.3 3.1 3.7 79.6 0.76 350 120.2

13 19.8 2.4 1.95 3.7 63.8 0.65 300 108.7

14 7.6 2.2 2 3.8 82.1 0.81 330 123.4

15 19.8 2.7 1.7 3.5 63.2 0.51 710 89.2

16 6.8 2.3 2.05 3.6 65.0 0.87 350 107.8

17 9.1 2.7 1.4 3.5 65.7 0.77 310 107.6

18 7.5 2.7 2.1 3.6 79.2 0.68 395 109.3

19 6.7 2.0 2 3.7 63.8 0.69 355 109.1

20 19.0 2.7 1.95 3.75 64.4 0.63 190 115.8

21 15.5 2.4 1.6 3.9 81.6 0.65 705 97.9

22 10.0 2.0 2 3.6 81.6 0.60 338 122.1

23 11.0 3.0 2.1 3.7 69.1 0.79 630 93

24 11.0 3.0 1.9 3.8 71.5 0.53 190 115.8

25 21.4 3.1 2.2 3 68.6 0.56 330 113.3

26 11.7 3.0 2 3 68.0 0.59 230 117.5

27 8.0 2.4 1.95 2.9 66.2 0.68 665 91

28 16.1 2.4 2.1 2.8 71.5 0.50 372 107.1

29 9.8 2.4 2.4 2.9 69.7 0.54 412 114.4

30 15.8 2.5 2 2.7 59.1 0.90 570 90.2

31 15.8 2.4 2.1 2.65 78.2 0.63 620 105

32 13.9 2.6 2.7 3.3 71.5 0.63 430 105.6

33 15.2 2.6 2.9 3.6 50.8 0.57 300 106.5

34 13.1 2.4 3 3.7 71.5 0.57 550 106

35 14.8 2.4 2.5 3 73.3 0.67 210 130.6

36 14.8 2.4 2.2 2.9 82.1 0.60 395 111.3

37 15.2 2.6 2 2.8 53.8 0.60 180 115.3

38 12.4 2.6 2.2 2.7 55.0 0.57 270 111.2

39 15.2 2.9 2.6 3.2 71.5 0.56 480 102

40 14.8 2.9 2.9 3.5 75.1 0.62 388 109.5

41 16.1 2.3 3 3.8 75.6 0.65 345 113.8

42 12.0 2.6 3.2 4 55.6 0.76 505 89.7

43 10.7 2.6 2.8 3.4 75.1 0.55 385 112.5

44 18.9 2.6 2 2.5 74.5 0.61 200 117.7

45 13.6 2.6 1.7 2.7 51.4 0.53 520 100

46 9.8 2.6 1.8 2.9 52.0 0.69 450 91.4

47 9.8 2.6 2.1 2.6 78.0 0.59 200 129.5
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hearing. All AOp values were recorded in front of the

quarry bench. Considering location of the nearest building,

the distance between the monitoring point and the blast-

face was set in the range of 150–720 m.

According to Tables 1 and 2, the most-utilized input

parameters for prediction of AOp are maximum charge

per delay and distance from the blast-face. Therefore, in

the present study, only results of maximum charge per

delay and distance from the blast-face obtained from 76

blasting operations were used to develop AOp predictive

models.

Prediction of AOp using non-linear techniques

In order to predict AOp, three non-linear techniques

namely empirical equation suggested by Siskind et al.

(1980), ANN and GA–ANN were applied in this study. In

these models, maximum charge per delay and distance

from the blast-face were considered as predictors or model

inputs. The following sections describe modeling proce-

dure of the aforementioned methods to predict AOp. Sub-

sequently, to demonstrate the ability of these methods, the

measured values of AOp were compared with the corre-

sponding predicted values of AOp.

Power equation suggested by USBM

Previously, several scholars suggested some empirical

equations for prediction of AOp using the suggested

method of USBM (see Eq. 2 and Table 1). In this study, an

attempt was made to develop an empirical equation for

estimation AOp using two predictors including maximum

charge per delay and distance from the blast-face. To do

this, based on the suggestions in the literature (Zorlu et al.

2008; Yagiz et al. 2009), considering all 76 datasets, 5

Table 3 continued

Dataset no. Hole depth

(m)

Stemming

(m)

Burden

(m)

Spacing

(m)

Maximum charge

per delay (kg)

Powder factor

(kg/m3)

Distance

(m)

AOp

(dB)

48 9.8 2.6 2.3 3 77.4 0.68 150 127.4

49 15.8 2.6 2.3 3 75.1 0.86 345 115.1

50 15.2 2.6 2.3 2.7 76.2 0.56 312 120.3

51 15.8 2.6 2.2 2.9 77.4 0.56 405 114.4

52 15.8 2.0 3.1 4.1 78.0 0.90 370 117.8

53 15.8 2.4 1.95 3.8 78.6 0.88 330 117.9

54 15.8 2.4 2.1 3.6 75.6 0.85 330 118.2

55 16.8 2.4 2.3 2.8 81.0 0.83 365 117.9

56 16.8 2.5 2 2.9 75.1 0.83 190 128.1

57 17.0 2.5 2.1 3.6 77.4 0.69 230 121.1

58 17.0 2.0 2.5 3.1 78.6 0.71 365 116.1

59 14.9 2.4 2.2 3.2 81.6 0.81 660 106

60 14.9 3.0 2.05 3 81.4 0.85 690 107

61 15.0 3.5 2 2.5 75.1 0.65 220 117.7

62 15.2 3.2 2.2 3.5 82.7 0.59 240 124.4

63 15.2 3.4 2.7 3.5 79.2 0.83 350 120.3

64 15.2 2.9 2.7 3.5 78.0 0.76 325 122.4

65 11.0 2.1 2.7 3.5 77.4 0.73 370 119.3

66 13.0 2.3 2.2 2.7 77.4 0.85 415 114.3

67 11.0 2.6 2.5 3 82.7 0.69 298 123.4

68 10.0 2.9 2.3 3 78.0 0.75 330 122.3

69 12.0 2.0 2.2 3 79.8 0.82 370 120.3

70 12.0 2.2 2 2.9 76.2 0.71 430 109.3

71 14.0 2.2 1.95 2.9 77.4 0.85 355 119.3

72 15.0 2.1 2.3 2.7 82.1 0.85 420 107.4

73 12.0 2.1 1.8 2.2 81.6 0.89 315 123.9

74 15.0 2.1 2.9 3.5 67.4 0.85 390 104.9

75 15.0 2.1 2.9 3.8 83.3 0.81 720 101.2

76 15.0 2.1 2.9 4 58.5 0.88 295 106.1
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different sets were selected (to training and testing data-

sets) randomly for choosing the most precise equation.

Random data selection for purposed models was performed

utilizing the ANN code written by authors. In the studies

conducted by Swingler (1996) and Looney (1996), testing

dataset was recommended as 20 and 25 % of whole data-

set, respectively, while a range of 20–30 % of whole data

was suggested for testing in the study by Nelson and

Illingworth (1990). Therefore, in the present study, 20 %

(15 datasets) of whole datasets (76 datasets) was selected

randomly as testing datasets, whereas the remaining 61

datasets were used to develop the models. Using the

selected datasets, five power equations (based on Eq. 2)

were proposed to predict AOp as listed in Table 4. In

construction of these equations, results of maximum charge

per delay and distance from the blast-face were used to

calculate the SD values. The statistical software package of

SPSS version 16 (SPSS 2007) was used to construct and

analyze the empirical equations. As shown in Table 4,

when considering only model development datasets, R2 of

the proposed empirical equations vary between 0.602 and

0.684. However, the R2 values are in the range of 0.501 and

0.782 when testing datasets are taken into consideration.

More information regarding selection of the best equation

will be given later.

ANN modeling

In ANN modeling procedure of this study, the same data-

sets performed in the analyses of empirical equation were

applied. As a first step of ANN modeling, all data should be

normalized using the following equation:

Xnorm ¼ X�Xminð Þ= Xmax � Xminð Þ ð3Þ

where Xnorm, Xmin and Xmax represent the normalized,

minimum and maximum values of the measured parameter,

respectively, and X is the measured value.

The performance of ANN models depends strongly on

the suggested architecture of the network as mentioned in

the studies by Hush (1989) and Kanellopoulas and

Wilkinson (1997). Therefore, determination of the optimal

architecture is required to design an ANN model. The

network architecture is defined as the number of hidden

layer(s) and the number of neurons in each hidden lay-

er(s). According to various researchers (e.g., Hecht-Niel-

sen 1987; Hornik et al. 1989), one hidden layer can solve

any complex function in a network. Hence, in this study,

one hidden layer was chosen to construct the ANN

models. In addition, determining neuron number(s) in the

hidden layer is the most critical task in the ANN archi-

tecture as stated by Sonmez et al. (2006). Table 5 tabu-

lates some equations related to determination of number

of neuron proposed by several scholars. Based on this

table and considering 2 neurons in input layer (Ni) and

one neuron in output layer (No), the number of neurons

which should be used in the hidden layer is in the range

of 1 and 6.

In order to determine the optimum number of neurons in

the hidden layer, using only one dataset of all five datasets,

several ANN models were constructed considering one

hidden layer and number of hidden neurons in the range of

1–6 (see Table 6). It should be noted that, in constructing

these models, the results of R2 were only consider to select

the optimum number of hidden node. According to

Table 6, considering average R2 values of both training and

testing datasets, model No. 5 with hidden neurons of 5

outperforms the other ANN models. Hence, 5 was selected

as optimum number of hidden neuron in constructing ANN

models of this study. Levenberg–Marquardt (LM) back-

propagation learning algorithm was used in ANN model-

ing. Study by Hagan and Menhaj (1994) suggests the

efficiency of this algorithm compared to other conventional

gradient descent techniques. Using the suggested ANN

structure (2 9 5 9 1) and five different randomly selected

datasets, five ANN models were trained. The testing

datasets were also simulated for each train and their results

will be discussed later. More details regarding LM algo-

rithm can be seen in the study carried out by Hagan and

Menhaj (1994). Suggested ANN structure for solving AOp

problem is displayed Fig. 3.

Table 4 Proposed empirical equations for five randomly selected

datasets

Dataset no. Proposed equation R2

1 AOp = 269.03 SD-0.198 0.638

2 AOp = 271.54 SD-0.2 0.639

3 AOp = 305.75 SD-0.226 0.684

4 AOp = 278.47 SD-0.206 0.602

5 AOp = 281.11 SD-0.208 0.615

Table 5 The proposed number of neuron for hidden layer (Sonmez

et al. 2006)

Heuristic References

B2 9 Ni ? 1 Hecht-Nielsen (1987)

3Ni Hush (1989)

(Ni ? No)/2 Ripley (1993)

2þNo�Niþ0:5No� N2
oþNið Þ�3

NiþNo

Paola (1994)

2Ni/3 Wang (1994)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ni � No

p
Masters (1994)

2Ni Kaastra and Boyd (1996)

Kanellopoulas and Wilkinson (1997)

Ni number of input neuron, No number of output neuron
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GA–ANN modeling

In order to develop GA–ANN model for prediction of

AOp, the most influential GA parameters should be

determined. For this purpose, several parametric investi-

gations were carried out to find optimum GA parameters.

In the GA–ANN modeling, the mutation probability was

set to 25 % of the population size; whereas the recombi-

nation percentage was fixed at 9 % and value of 1 % was

applied in the study conducted by Momeni et al. (2014).

The single-point cross-over was used with possibility of

70 %. Numerous selection methods have been proposed in

the literatures regarding cross-over operation; however, the

tournament selection method was employed to generate

two offspring from two parents Momeni et al. (2014). It

should be mentioned that the mutation probability and

cross-over possibility were determined using trial-and-error

method.

Finding the best population size is the next step of GA–

ANN modeling. In this regard, several GA–ANN models

were built with various population sizes ranging from 25 to

600 as shown in Table 7. In these models, the suggested

ANN architecture (2 9 5 9 1) and maximum generation

of 50 were used. According to Table 7, considering the

results of both training and testing datasets, among all 14

models, model No. 5 with population size of 150 can

provide better network performance. Therefore, population

size = 150 was selected in the GA–ANN modeling of this

study.

Determination of maximum number of generation is the

next step of hybrid GA–ANN modeling procedure. Another

parametric study was conducted to investigate the effect of

maximum number of generation on the network’s perfor-

mance. The number of generation was set to be 500 to

determine the optimum number of generation. To do this,

14 models presented in Table 7 were constructed again

Table 6 R2 of trained ANN models to predict AOp in order to select the optimum number of hidden node

Model no. Nodes in hidden layers Network result

Iteration 1

R2
Iteration 2

R2
Iteration 3

R2
Iteration 4

R2
Iteration 5

R2
Average

R2

Train Test Train Test Train Test Train Test Train Test Train Test

1 1 0.870 0.848 0.869 0.870 0.864 0.874 0.861 0.903 0.857 0.910 0.864 0.881

2 2 0.887 0.864 0.884 0.880 0.885 0.817 0.899 0.823 0.867 0.884 0.884 0.854

3 3 0.887 0.922 0.893 0.846 0.914 0.817 0.904 0.854 0.902 0.865 0.900 0.861

4 4 0.901 0.920 0.914 0.723 0.908 0.805 0.925 0.801 0.916 0.880 0.913 0.826

5 5 0.912 0.908 0.918 0.855 0.902 0.885 0.922 0.897 0.924 0.865 0.916 0.882

6 6 0.933 0.603 0.902 0.899 0.914 0.834 0.899 0.805 0.905 0.885 0.911 0.805

Fig. 3 Suggested ANN

structure for solving AOp

problem
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using the mentioned maximum generation number (500).

Figure 4 shows the importance of the number of generation

to the network performance for AOp prediction. As indi-

cated in this figure, there is no changes in the network

performance (RMSE) after generation number = 300.

Hence, the optimum number of generation was set to be

300 in design of GA–ANN models. It is worth mentioning

that in determining number of generation, the other men-

tioned network parameters were kept constant.

In the last step of GA–ANN modeling, using the sug-

gested ANN structure (2 9 5 9 1), same different

randomly selected datasets, and obtained GA parameters,

five GA–ANN models were trained. In addition, similar to

two other predictive methods, the testing datasets were also

used in each train. The relevant results of training and

testing datasets of GA–ANN models as well as their dis-

cussion will be given in the following section.

Results and discussion

In this research, three non-linear techniques, i.e., power

equation, ANN and GA–ANN were developed to predict

AOp obtained from the granite quarry site in Malaysia.

During the modeling process of this study, all 76 datasets

were randomly selected to five different datasets (training

and testing) for development of the non-linear models. In

order to evaluate the prediction performance of the

developed models, several performance indices including

R2, variance account for (VAF) and root mean square error

(RMSE) were considered and calculated.

R2 ¼ 1�
PN

i¼1ðy� y0Þ2
PN

i¼1ðy� ~yÞ2
ð4Þ

VAF ¼ 1� varðy� y0Þ
varðyÞ

� �

� 100 ð5Þ

where

varðyÞ ¼
P

ðy� �yÞ2

N � 1
ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

ðy� y0Þ2
v

u

u

t ð7Þ

Table 7 Effects of population size on network performance

Model no. Population size Network result

Train Test

R2 RMSE R2 RMSE

1 25 0.849 0.094 0.756 0.097

2 50 0.809 0.101 0.883 0.0849

3 75 0.84 0.09 0.796 0.117

4 100 0.855 0.092 0.735 0.102

5 150 0.903 0.085 0.945 0.064

6 200 0.858 0.088 0.739 0.12

7 250 0.851 0.092 0.864 0.078

8 300 0.835 0.097 0.856 0.081

9 350 0.82 0.099 0.925 0.064

10 400 0.841 0.087 0.844 0.114

11 450 0.834 0.093 0.864 0.093

12 500 0.846 0.099 0.766 0.065

13 550 0.809 0.097 0.941 0.068

14 600 0.841 0.091 0.869 0.092

Fig. 4 The effect of the number of generation on the network performance
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where y, y0 and ~y are the measured, predicted and mean of

the y values, respectively, and N is the total number of data.

Moreover, ðy� �yÞ and ðy� �yÞ2 are deviation from the

mean and squared deviation from the mean, respectively.

Theoretically, the model will be excellent if the

VAF = 100, RMSE = zero and R2 = 1. Results of models

performance (power equation, ANN and GA–ANN) indi-

ces (R2, RMSE and VAF) for all randomly selected data-

sets based on training and testing are presented in Table 8.

As it can be seen in Table 8, selecting the best model for

AOp prediction is too difficult. To overcome this difficulty,

a simple ranking procedure suggested by Zorlu et al. (2008)

and applied by Yagiz et al. (2009) was used to select the

best models. A ranking value was calculated and assigned

for each training and testing dataset separately (see

Table 8). It is worth noting that the RMES results of ANN

and GA–ANN techniques were obtained for normalized

datasets whereas, these values were achieved in modeling

of empirical models using the original (not normalized)

datasets. This is due to limitation to make a power rela-

tionship for AOp prediction. Total ranking of training and

testing datasets for three non-linear models is shown in

Table 9. According to this table, model No. 5 exhibited the

best performance of AOp prediction for empirical method,

while models No. 2 and 4 yielded the best results in pre-

dicting AOp for ANN and GA–ANN techniques, respec-

tively. When considering both training and testing datasets,

the prediction performances of the GA–ANN models are

higher than those of empirical and ANN models. The

selected power equation (model No. 5) is shown in the

following equation:

AOp ¼ 281:11 SD�0:208 ð8Þ

Table 8 Performance indices of each model and their rank values for all predictive approches

Method Model R2 RMSE VAF Rating for R2 Rating for RMSE Rating for VAF Rank value

Empirical Training 1 0.638 6.121 63.736 3 3 3 9

Training 2 0.639 6.037 63.775 4 5 4 13

Training 3 0.684 6.061 68.246 5 4 5 14

Training 4 0.602 6.366 60.184 1 2 1 4

Training 5 0.615 6.367 61.399 2 1 2 5

Testing 1 0.763 6.558 69.801 4 3 3 10

Testing 2 0.731 6.846 69.711 2 2 2 6

Testing 3 0.501 7.057 39.859 1 1 1 3

Testing 4 0.760 5.582 76.004 3 4 4 11

Testing 5 0.782 5.564 78.109 5 5 5 15

ANN Training 1 0.909 0.068 90.890 2 3 1 6

Training 2 0.921 0.063 92.097 4 4 4 12

Training 3 0.918 0.069 91.766 3 2 2 7

Training 4 0.921 0.063 92.075 4 4 3 11

Training 5 0.930 0.060 93.011 5 5 5 15

Testing 1 0.894 0.106 84.893 4 4 3 11

Testing 2 0.902 0.102 87.389 5 5 5 15

Testing 3 0.719 0.112 69.403 1 2 1 4

Testing 4 0.804 0.107 79.213 2 3 2 7

Testing 5 0.887 0.121 87.212 3 1 4 8

GA–ANN Training 1 0.970 0.038 97.023 3 3 3 10

Training 2 0.981 0.031 98.034 5 5 5 15

Training 3 0.952 0.053 94.821 1 1 1 3

Training 4 0.973 0.037 97.312 4 4 4 12

Training 5 0.964 0.047 96.309 2 2 2 6

Testing 1 0.969 0.058 96.174 4 2 3 9

Testing 2 0.966 0.055 96.350 3 4 4 11

Testing 3 0.945 0.057 94.454 1 3 1 5

Testing 4 0.974 0.037 97.317 5 5 5 15

Testing 5 0.956 0.057 94.970 2 3 2 7
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The graphs of predicted AOp using the empirical, ANN

and GA–ANN techniques against the measured AOp for

training and testing datasets are shown in Figs. 5, 6 and 7,

respectively. As shown in these figures, the GA–ANN

model can perform better in the prediction of AOp in

comparison to other predictive models. Based on these

figures, the R2 equal to 0.974 for testing dataset suggests

the superiority of the GA–ANN technique in predicting

AOp, while these values are 0.782 and 0.902 for empirical

and ANN models, respectively. It is worth mentioning that

the performance capacity of the GA–ANN model is higher

than the performance capacities of the other techniques

implemented by previous scholars (see Table 2). This

shows the capability of the GA–ANN technique in pre-

dicting AOp induced by blasting.

Conclusions

In the present study, an attempt was made for estimating

AOp induced by quarry blasting using empirical, ANN and

GA–ANN methods. This was accomplished using the

blasting data obtained from 76 blasting operations at Hulu

Langat granite quarry site, Malaysia. The most influential

parameters on AOp namely maximum charge per delay and

the distance from the blast-face were considered as input

parameters, whereas the values of measured AOp were set

as output of the system. Using the five randomly selected

datasets and considering the modeling procedure of each

model, 15 models were constructed for all predictive

techniques. Considering some model performance indices

Table 9 Results of total rank

for all predictive techniques

obtained from five randomly

selected datasets

Method Model Total rank

Empirical 1 19

2 19

3 17

4 15

5 20

ANN 1 17

2 27

3 11

4 18

5 23

GA–ANN 1 19

2 26

3 8

4 27

5 13

Fig. 5 Measured and predicted AOp values by empirical model for training and testing datasets

Fig. 6 Measured and predicted AOp values by ANN model for training and testing datasets
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including R2, RMSE and VAF and using simple ranking

method, the best models were selected among all created

models. The results indicated that the GA–ANN approach

outperforms the other predictive techniques. The R2 equal

to 0.974 for testing dataset suggests the superiority of the

GA–ANN technique in predicting AOp, while these values

are 0.782 and 0.902 for empirical and ANN methods,

respectively. Although all proposed models in this study

are applicable for solving AOp problem in Hulu Langat

granite quarry site, they can be used depending on the

condition. When high accuracy of AOp prediction is

required, the GA–ANN model would be the proper alter-

native as it can optimize the weights and biases of the

network connection to train by ANN.
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