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Abstract In many parts of the world, landslide suscep-

tibility remains inadequately mapped, due to the lack of

both data and suitable methods for widespread implemen-

tation. Iran is one of those countries with extensive land-

slide problems, with nearly 4900 large landslides occurring

between 1993 and 2007. At the same time landslide sus-

ceptibility has not been assessed for the country. Random

forest (RF) has recently been shown to be a suitable tool for

such mapping. In this study we further coupled the RF

method with an evidential belief function (EBF) approach,

and tested the suitability for landslide susceptibility map-

ping for variable terrain and data conditions in the west of

Mazandaran Province, northern Iran. Locations of earlier

landslides were identified by interpreting aerial pho-

tographs and through extensive field surveys. Eleven con-

ditioning factors were used in the RF model. The spatial

relationship between landslide occurrence and conditioning

factors was then assessed using the data-driven EBF model,

and EBF values paired to each map. Finally, the EBF maps

were used for running the RF model. Finally, the efficiency

of the RF-EBF model was tested using the area under the

curve to measure the success and prediction rates of the

incorporated data. This resulted in a success rate of 85.2 %,

and a prediction rate of 81.8 %. The most important con-

ditioning factors identified were lithology, altitude,

distance from roads, and land use, respectively. Based on

the overall assessment, the combined RF and EBF

approach was found to be objective and an applicable

estimator that improves the predictive accuracy and con-

trols for overfitting, and thus useful for landslide suscep-

tibility mapping at regional scales.

Keywords Landslide � Random forest � Evidential belief
function � Iran � Machine learning � Slope instability

Introduction

Landslides are natural geologic processes that cause differ-

ent types of damages and effects on human life and human-

made structures (Goetz et al. 2011). Mihir et al. (2014)

stated that approximately 375 fatal landslides occur globally

each year, with around 4600 people killed annually. Previ-

ous studies have highlighted the increasing costs of landslide

damages, which can be primarily attributed to increased

human occupation and activities in vulnerable environments.

Landslide susceptibility maps are a prerequisite for planners,

decision makers, and engineers in slope management and

land use planning for this problem to be effectively

addressed. In recent decades, progress has been made in

landslide susceptibility mapping because of the rapid

development of remote sensing techniques, modeling tools

and Geographical Information Systems (GIS) (Weirich and

Blesius 2007). For landslide susceptibility mapping, land-

slide occurrences depend generally on the complex inter-

actions among a large number of conditioning factors.

Therefore, investigations into landslide susceptibility require

an assessment of the relationships between various terrain

conditions and landslide occurrence. An experienced Earth

scientist has the capabilities to assess the overall slope
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conditions and to extract the critical parameters. However,

an objective procedure that can be automated and applied

over large regions is often desired to quantitatively support

the slope instability assessment. This procedure requires the

evaluation of the spatially varying terrain conditions, as well

as the spatial representation of landslides.

Different techniques have previously been used for

landslide susceptibility mapping. Many studies have eval-

uated landslide susceptibility using GIS and frequency

ratio models (Pourghasemi et al. 2012a; Nourani et al.

2014; Park and Lee 2014), bivariate and multivariate sta-

tistical methods (Pradhan 2010; Lee et al. 2012; Poiraud

2014; Umar et al. 2014; Youssef et al. 2014a; Fiorucci

et al. 2015; Youssef 2015), index of entropy (Bednarik

et al. 2010; Constantin et al. 2011; Jaafari et al. 2014; Park

2014; Youssef et al. 2014b), analytical hierarchy process

(Hasekiogullari and Ercanoglu 2012; Park et al. 2013;

Pourghasemi et al. 2014a; Youssef 2015), fractal theory (Li

et al. 2012; Pourghasemi et al. 2014b), support vector

machine (Pradhan 2013; Li and Kong 2014; Ren et al.

2014; Wu et al. 2014; Su et al. 2015), artificial neural

networks (Pradhan and Buchroithner 2010; Song et al.

2012; Wu et al. 2013; Nourani et al. 2014; Chen et al.

2014; Moosavi and Niazi 2015; Wang et al. 2015; Dou

et al. 2015), fuzzy approaches (Ercanoglu and Gokceoglu

2004; Akgun et al. 2012; Osna et al. 2014; Bortoloti et al.

2015; Meten et al. 2015), object-based image analysis

(Martha et al. 2012), and some hybrid methods, including

the neuro-fuzzy model (Sezer et al. 2011; Pradhan 2013;

Lee et al. 2015a, b). Recently, some new methods and

techniques have been used for landslide susceptibility

mapping such as random forest (RF) (Miner et al. 2010;

Stumpf and Kerle 2011; Vorpahl et al. 2012; Catani et al.

2013; Micheletti et al. 2014; Youssef et al. 2015) and

Bayesian logistic regression (Das et al. 2012). Bivariate

statistical models such as frequency ratio are easy to run in

a GIS (Oh et al. 2011b), but have a disadvantage that equal

weights are assumed for different effective factors. In the

weights of evidence (WofE) method, the contrast value is

the rating of each class of each factor that influences

landslide occurrence. This value is positive for a positive

spatial association and negative for a negative spatial

association (Lee and Choi 2004). Logistic regression

determines the type of relation between the landslide

occurrence and effective factors, which can be positive or

negative. The index of entropy determines the weight of

each effective factor on the occurrence of landslides. ANN

needs an optimal network architecture design (number of

hidden layers and units) and the setting of the optimal cost

and weight decay values, which makes it complex to use

(Rodriguez-Galiano and Chica-Rivas 2012). The evidential

belief function (EBF) model supports a series of mass

functions, including belief, disbelief, uncertainty and

plausibility. Thus, the results of the model present the

quantitative relationships between landslide occurrence

and effective factors by modeling the degree of uncertainty

(Pourghasemi and Beheshtirad 2014). Saaty’s AHP is a

widely used multi-criteria decision making technique in the

field of natural resources and environmental management.

In general, the RF algorithm has several benefits in com-

parison with other commonly used multivariate regression

or classification methods. First, it does not require prior

assumptions about the distribution of the explanatory

variables; secondly, it allows for the mixed use of cate-

gorical and numerical variables without resorting to the use

of indicator (or dummy) variables, and third, it is capable

of considering interactions and nonlinear relationships

between variables. Although many different models and

techniques for landslide susceptibility mapping have been

proposed and implemented, no agreement has so far been

reached on which model and techniques are the best for

landslide susceptibility mapping (Wang and Sassa 2005).

Thus, the main purpose of this research is to determine

the relationship between landslide occurrences and condi-

tioning factors, using an EBF model, landslide suscepti-

bility mapping using a GIS-based RF model, and

evaluation of the combined method in the Safarood

Watershed, Mazandaran Province, northern Iran. The main

advantages of RF are that it is one of the most accurate

learning algorithms available, and that it runs efficiently on

large databases (Lee et al. 2015a, b). The accuracy and

variable importance values are generated automatically, an

important benefit in landslide susceptibility assessment.

Moreover, overfitting is not a problem in the mentioned

algorithm, and neither is it very sensitive to outliers in the

training dataset (Breiman 2001). Therefore, the RF algo-

rithm, coupled with EBF, can be a good approach for other

parts of the country, or even other countries for land use

planning and decision making in landslide risk areas.

Study area

The Safarood Watershed is located in the western part of

Mazandaran Province, Iran. The considered site lies

between the latitudes 36�4702900N to 36�5703500N, and the

longitudes 50�2401600E to 50�4103900E (Fig. 1). It covers an

area of approximately 162.6 km2. The topographical ele-

vation of study area varies between 20 and 3540 m a.s.l.

The slope angles of the area range from 0� to as much as

70�. A rainfall map was prepared using the data collected at

six rainfall stations (Ramsar, Gavermak, Mianlat, Abe

Madani-e-Nidshet, Gardeh Poshtehsar, and Zarodal) for the

years 1975–2012 (annual mean rainfall). The mean annual

rainfall is around 1,220 mm between September and

December, according to the Islamic Republic of Iran
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Meteorological Organization (IRIMO 2012), whose data

also show the temperature in the Safarood area ranging

between 21 and 30 �C. The study area is covered by var-

ious types of lithological formations, including Quaternary,

Jurassic, Triassic, and Late Permian types of formations

(Table 1). The Quaternary deposit covers 15.56 % of the

study area and includes Qal (recent loose alluviums), Q2
d

(undivided deltaic alluviums), Q2
m (marine deposits),

Q2t1 g (old gravelly terrace), Q2
s (scree and rock falls), and

Q2
tg
2 (young gravelly terrace). The j1c-2 (dark gray

polymictic conglomerate with abundant quartzite pebbles,

with inter layers of siltstone, sandstone and coal), TRe
d1

(light gray-to-cream dolomite) and La (laterite) covers

about 80 % of the study area (GSI 1997). Its folded

mountain system regionally strikes northwest to the

southeast. The Binaksar fault is one of the main faults in

the study area. Most of the area (64 %) is covered by

forest. Other land use classes are dry-farming and forest,

forest, forest and orchard, irrigation agriculture, irrigation

agriculture and orchard, orchard, range, tea land, and res-

idential area. Generally, mountainous features, high tec-

tonic activity, and geological and climatologically variety

caused to the Iranian plateau being susceptible to various

kinds of landslides, especially in the Alborz active

mountainous belts. Alborz is a mountain range in north-

ern Iran that stretches from the border of Azerbaijan along

the western and entire southern coast of the Caspian

Sea, and finally runs northeast and merges into the Ala-

dagh Mountains in the northern parts of Khorasan (https://

en.wikipedia.org/wiki/Alborz). According to earlier studies

by the Iranian Landslide Working Party (ILWP 2007), the

highest frequency of landslide occurrence in Iran is in the

Mazandaran Province. The results showed that more than

520 landslides occurred between 2005 and 2013 and caused

extensive damages. Evidence for that includes the

destruction of some 438 ha forest lands, 1264 ha agricul-

ture lands and gardens, 12 km roads, as well as more than

50 villages (http://irna.ir/fa/NewsPrint.aspx?ID=

80365819). The Safarood Watershed is one of the most

important ecotourism areas in Iran and the Mazandaran

Province, because of its climate conditions, geomorpho-

logical attributes, and ecological landscape. Despite the

mentioned potential (important ecotourism area), defor-

estation, road construction, land use changes, and expan-

sion of villas along high slopes have led to increasing

landslide occurrence in the study area. The area is highly

prone to landslide and this susceptibility needs to be

assessed for a safer and more optimized use of the land.

Fig. 1 Map of the study area, with indication of past landslides
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Methodology

The flowchart of the methodology used in this study is

shown in Fig. 2, and consists of four phases: (1) data

integration and analysis, (2) determination of the relation-

ship between landslide occurrence and conditioning factors

using the EBF model, (3) pairing EBF values to each map

for running the RF model, (4) landslide susceptibility

modeling using RF, and (5) validation of the landslide

susceptibility map using the ROC-AUC curve (success rate

and prediction rate curves).

Data integration and analysis

Generally, data collection and construction of a database of

conditioning factors are the most important parts of the

landslide modeling process (Ercanoglu and Gokceoglu

2002). Firstly, the landslides were identified and localized

by interpreting aerial photographs, and through extensive

field surveys. From the total of 153 landslides that occurred

between 2005 and 2013, 70 % (105 cases) were used in the

model building, while the remaining 30 % (48 cases) were

used for validation according to random partition algorithm

(Lee and Pradhan 2007; Bednarik et al. 2010; Ozdemir and

Altural 2013; Pradhan 2013; Pourghasemi et al. 2014a;

Youssef et al. 2014a, b). Failure modes of the landslides

identified in the study area were determined according to

the landslide classification system proposed by Varnes

(1978). Most of the landslides are shallow rotational, with

minimum and maximum dimensions of 350 m2 and

150,420 m2, respectively. Some examples of landslides

identified in the Safarood Watershed are shown in Fig. 3.

For landslide susceptibility mapping in the study area,

eleven conditioning factors were considered: slope angle,

slope aspect, altitude, plan curvature, profile curvature,

topographic wetness index, lithology, land use, distance

from rivers, distance from roads, and distance from faults.

One of the most important factors in landslide suscepti-

bility mapping is topography. In this study, a digital ele-

vation model (DEM) was created by digitizing contour

lines (20 m interval) and survey base points. We used the

ArcGIS TIN (Triangular Irregular Network) module, and

then converted the TIN to Raster (pixel size 20 m). The

contour lines and points were prepared by Iran’s National

Cartographic Center (NCC), and we only created the DEM

from these layers. Using the DEM, slope angle, slope

aspect, altitude, plan curvature, profile curvature, and

topographic wetness index were extracted (Fig. 4a–e).

Slope angle is one of the parameters that influence land-

slide occurrences. The slope map of the study area was

derived from the DEM and divided into five classes:\5�,
5� to 15�,[15� to 30�,[30� to 50�, and[50� (Fig. 4a).

Slope aspect is another factor that correlated with the

amount of solar energy received by the area. Therefore, the

slope aspect layer was selected as one of the landslide-

related factors, and was categorized into nine classes: (1)

flat, (2) north, (3) northeast, (4) east, (5) southeast, (6)

south, (7) southwest, (8) west, and (9) northwest (Fig. 4b).

The altitude map was extracted from the DEM and clas-

sified into eight equal interval classes (Lee and Pradhan

2007; Pourtaghi et al. 2014): (1)\100 m, (2) 100–500 m,

(3)[500-1000 m, (4)[1000–1500 m, (5)[1500–2000 m,

(6)[2000–2500 m, (7)[2500–3000 m, and (8)[3000 m

Table 1 Types of geological formations in the study area

Class Code Formation Geological age Lithology

A Qal – Quaternary Recent loose alluviums

B Q2
d – Quaternary Undivided deltaic alluviums

C Q2
m – Quaternary Marine deposits

D Q2t1 g – Quaternary Old gravelly terrace

E Q2
s – Quaternary Scree and rock falls

F Q2
tg
2 – Quaternary Young gravelly terrace

G J2-3
1,d1 – Jurassic Light gray-to-cream, medium-to-thick-bedded limestone and

dolomite

H J1
c
-2 – Jurassic Dark gray polymictic conglomerate with abundant quartzite

pebbles, with interlayers of siltstone, sandstone and coal

I Jk1 – Jurassic Gray-to-cream thin-bedded to massive limestone, in part with

chert nodules and layers

G TRe
dl Elika Triassic Light gray-to-cream dolomite

K La – Triassic Laterite

L Pn Nesen Late Permian Dark gray, well-bedded, chert-bearing limestone with

interlayers of shale and dolomitic limestone
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(Fig. 4c). Plan curvature is described as the curvature of a

contour line formed by intersecting a horizontal plane with

the surface. The influence of plan curvature on the slope

erosion processes is the convergence or divergence of

water during downhill flow (Ercanoglu and Gokceoglu

2002). The plan curvature map was produced using ArcGIS

9.3 and was classified into three categories: concave, flat,

and convex (Fig. 4d). The profile curvature (also called

slope profile curvature) is a primary topographic attribute.

It shows the flow acceleration, deposition (positive values),

and erosion (negative values) rate (Yesilnacar 2005). In

addition, the profile curvature is important because it

controls the velocity change of mass flowing down the

slope (Talebi et al. 2007). The map was created in ArcGIS

9.3 and classified to three categories (Fig. 4e). The topo-

graphic wetness index (TWI) is defined as ln (A/tanb),
where A is upslope contributing area and b is the slope

angle (Beven and Kirkby 1979). TWI has been extensively

used to describe the effect of topography on the location

and size of saturated source areas of runoff generation

(Beven 1997; Beven and Freer 2001). This index is com-

monly used to characterize the spatial distribution of soil

moisture; therefore, it is used in landslide susceptibility

mapping (Ozdemir 2011a, b; Oh et al. 2011a; Pourtaghi

et al. 2014; Naghibi et al. 2015). The TWI map was pro-

duced using the System for Automated Geoscientific

Analyses (SAGA-GIS) (Fig. 4f). The lithology map was

obtained using a 1:100,000-scale geological map (GSI

1997), and the lithological units were classified into twelve

groups according to lithology and its susceptibility to

landslide occurrence. (Fig. 5; Table 1). The land use/land

cover changes play an important role in the study of

environmental issues, especially in landslide assessment

(Mallick et al. 2014). The land use map was created using

Landsat-7 imagery. To create the land use map, a super-

vised classification using the maximum likelihood algo-

rithm was applied and verified by field survey. Nine land

use classes were drawn such as dry-farming and forest

Data used for landslide susceptibility mapping by Random Forest (RF) model in the Safarood Watershed

Dependent Factor 
(Landslide Inventory Map)

Landslide Conditioning 
Factors

Digital Elevation Model (DEM)

Topographic data

Slope Angle

Slope Aspect

Altitude

Plan Curvature

Profile Curvature

TWI

Distance from Rivers

Distance from Roads

Geology

Satellite images 
(Landsat-7 imagery)

Distance from Faults

Land use

Lithology

Validation dataset Training dataset

Random partition

Determine of relationship between landslide 
occurrence and conditioning factors using evidential 

belief function (EBF) model

Landslide susceptibility modeling using Random 
Forest-EBF technique

Classification
Extract of EBF values

Validation of RF-EBF model using ROC-AUC curve

Pairing the EBF values to each 
map for running RF model

70% Dataset30% Dataset

Fig. 2 Flowchart of the methodology used in this study
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(DF), forest (F), forest and orchard (FO), irrigation agri-

culture (I), irrigation agriculture and orchard (IO), orchard

(O), range (R), tea land (T), and residential area

(U) (Fig. 6). Using the topographical database, the distance

from rivers and distance from roads factors were calculated

in ArcGIS 9.3, respectively (Fig. 7a–b). The distance from

the faults was calculated at 100 m intervals, using the

geological map as well (Fig. 7c).

For the classification of the conditioning factors, dif-

ferent methods were used, such as equal interval, natural

break, and common standards such as standard division.

Finally, for the application of the RF model, all condi-

tioning factors were converted to a raster grid with

20 m 9 20 m pixel size in ArcGIS 9.3 and R geostatistical

packages. All the maps are in UTM (Universal Transverse

Mercator) coordinate system and use the WGS84 datum

(WGS84-UTM-Zone39 N).

Evidential belief function (EBF)

The Dempster–Shafer theory (Dempster 1968; Shafer

1976) is a bivariate statistical method that was applied to

detect the spatial integration according to the rule of

combination (Carranza 2009; Althuwaynee and Pradhan

2014). The EBF theory is based on the Dempster–Shafer

rule and consists of four functions: degrees of belief (Bel),

disbelief (Dis), uncertainty (Unc), and plausibility (Pls).

Bel and Pls are lower and upper probabilities, respectively

(Dempster 1968). Thus, Pls may be greater than or equal to

Bel. Conversely, Unc and Pls are equal to Pls–Bel and 1–

Unc–Bel, respectively. The degree of uncertainty indicates

ignorance (or doubt) of one’s belief in the proposition

based on a given evidence, while the degree of disbelief is

the belief that the proposition is false according to a

specific evidence. If Unc = 0, then Bel = Pls. In general,

Bel ? Unc ? Dis = 1. Dempster (1968) stated that Bel,

Unc, and Dis are the functions used to integrate evidences

according to combination rules. Hence, the degree of belief

BelCij

� �
is shown by Eqs. 1 and 2 (Carranza and Hale

2002):

BelCij
¼

WCijDPm
j¼1 WCijD

ð1Þ

WCijD ¼
N Cij \ D
� �

=N Cij

� �

N Dð Þ � N Cij \ D
� �

=N Tð Þ � N Cij

� � ð2Þ

where N Cij \ D
� �

is density of landslide pixels that are

given in D, N Cij

� �
is the total density of landslides that

have occurred in the study area, N(D) is the density of

Fig. 3 Field photographs of some identified landslides in the Safarood Watershed
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Fig. 4 Topographical variables maps of the study area: a slope angle, b slope aspect, c altitude, d plan curvature, e profile curvature,

f topographic wetness index (TWI)
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pixels in D, and N(T) is the density of pixels in the whole

study area T.

Conversely, estimation of the degree of disbelief (DisCij
)

is given by Eqs. 3 and 4 (Carranza et al. 2005; Nampak

et al. 2014):

DisCij
¼

WCij
�DPm

j¼1 WCij
�D

ð3Þ

WCij
�D ¼

N Cij \ D
� �

=N Cij

� �

N Tð Þ � N Dð Þ � N Cij

� �
� N Cij \ D

� �� ��
N Tð Þ � N Cij

� �

ð4Þ

Fig. 5 The lithology map of the study area and the landslides

location used for the model building

Fig. 6 The land use map of the study area. DF dry-farming and

forest, F forest, FO forest and Orchard, I irrigation agriculture, IO

irrigation agriculture and Orchard, O Orchard, R range, T tea land,

U urban

Fig. 7 Buffer maps: a distance from rivers, b distance from roads,

c distance from faults
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Accordingly, Eqs. 5 and 6 were used to calculate the

uncertainty and plausibility functions.

Unc ¼ 1� BelCij

� �
� DisCij

� �� �
ð5Þ

Pls ¼ 1� DisCij

� �� �
ð6Þ

More details of the mentioned algorithm can be found in

Carranza and Hale (2002), Carranza et al. (2005), and

Carranza et al. (2008).

Random forests (RF)

RFs are an extension of classification and regression trees,

and were first developed by Breiman (2001). RFs are

widely used for data prediction and interpretation purposes.

They show many appealing characteristics, such as the

ability to deal with high-dimensional data, complex inter-

actions and correlations. The RF algorithm tends to pro-

duce quite accurate models, because the ensemble reduces

the instability that can be observed when building single

decision trees (Williams 2011). The algorithm exploits

random binary trees, which use a subset of the observations

through bootstrapping techniques. For each tree grown on a

bootstrap sample, the error rate for observations left out of

the bootstrap sample is monitored. This is called the ‘‘out-

of-bag’’ (OOB) error rate (Breiman 2001). Basically, the

OOB accuracy indicates the accuracy of the RF predictor.

It gives an estimate of test set accuracy (generalization

error) (Cutler 2013). An RF tries to improve on bagging by

‘‘de-correlating’’ the trees. Each tree has the same expec-

tation. In other words, the algorithm uses random feature

selection at each node for the set of splitting variables

(Meyer et al. 2003). This algorithm needs two original

parameters to be tuned by the user: the number of trees

(T) and the number of variables (m). It has been suggested

(Breiman 2001; Micheletti et al. 2014) to pick a large

number of trees, and the square root of the dimensionality

of the input space for m (Micheletti et al. 2014). Based on

two parameters, the number of trees in RF has been fixed at

1000 after an introductory analysis, and the number of

variables sampled at each node was selected to be 3 to

analyze the conjunct contribution of subsets of features,

while maintaining a fast convergence during iterations. No

calibration set is needed to tune the parameters (number of

tree and number of variable) (Micheletti et al. 2014). The

parameters to tune in model are iterations and learning rate.

Moreover, two types of error were calculated: mean

decrease in accuracy, and mean decrease in node impurity

(mean decrease in Gini). The mean decrease in accuracy is

determined during the calculation of the OOB error. Con-

versely, the mean decrease in the Gini coefficient is a

measure of how much each variable contributes to the

homogeneity of the nodes and leaves in the resulting RF.

These importance measures can be used for ranking vari-

ables and for variable selection (Calle and Urrea 2010).

Generally, mean decrease accuracy and mean decrease

Gini errors in RF model have been used widely in many

fields and researcher and have shown good performance for

variable selection (Lawrence et al. 2006; Cutler et al. 2007;

Watts et al. 2009; Stumpf and Kerle 2011; Rahmati et al.

2016), including for the classification of moderate resolu-

tion imagery that was trained with high-resolution data

(Shruthi et al. 2014).

Results

Spatial relationship between landslide

and conditioning factors

Results of the spatial relationship between landslide and

conditioning factors using the EBF (belief, disbelief,

uncertainty, and plausibility) model are shown in Table 2.

For the slope degree of [50�, the belief and disbelief

values were 0.341 and 0.196, respectively, which indi-

cates a very high probability of landslide occurrence. In

the case of slope aspect, the highest Bel values were

related to south, southwest, and east (0.195, 0.175, and

0.140, respectively), and it showed that these categories

have a positive spatial association with landslide occur-

rence. On the other hand, the degree of belief was lowest

for other aspect categories. The relationship between

landslide occurrence and altitude shows that elevations

between 100 and 500 m and[500–1000 m have the

highest Bel values (0.630 and 0.150, respectively), indi-

cating that the probability of landslide occurrence in these

altitudes is high. In general, the results showed that there

is an inverse relationship between altitude and belief

values. For plan curvature, there is a high belief and low

disbelief value for convex shapes (0.349, 0.320, respec-

tively). In the case of profile curvature, classes of

\-0.001 or convex shapes have the highest belief value

(0.376), followed by concave shapes ([?0.001), which

mirrored findings by Gorum et al. (2011) for landslides in

China. The higher (Belief degree) and lower (Disbelief

degree) probabilities of landslide occurrence were

obtained in areas having a TWI\8, with values of 0.359

and 0.313, respectively. In the case of lithology, there are

eleven classes. The degree of belief, with respect to

landslide occurrence, was higher for La (Laterite) and Pn
(including dark gray, well-bedded, chert-bearing lime-

stone with interlayers of shale and dolomitic limestone)

lithological units (0.369 and 0.176, respectively), but

lower or zero for other classes or units (Table 1). In the
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Table 2 Spatial relationship between landslide conditioning factors and landslide locations, using the EBF model

Factors Class No. of pixels No. of landslides Belief Disbelief Uncertainty Plausibility

Slope angle (�) \5 48761 10 0.144 0.206 0.650 0.794

5–15 114392 34 0.209 0.189 0.602 0.811

[15–30 166085 45 0.190 0.194 0.616 0.806

[30–50 66888 11 0.115 0.215 0.670 0.785

[50 10286 5 0.341 0.196 0.462 0.804

Slope aspect Flat 1900 0 0.000 0.111 0.889 0.889

North 88416 16 0.083 0.120 0.796 0.880

North East 85002 16 0.087 0.119 0.794 0.881

East 69280 21 0.140 0.107 0.753 0.893

South East 52640 20 0.175 0.103 0.722 0.897

South 28459 12 0.195 0.106 0.700 0.894

South West 14627 3 0.095 0.112 0.794 0.888

West 18633 4 0.099 0.112 0.789 0.888

North West 47455 13 0.126 0.110 0.764 0.890

Altitude (m) \100 43223 0 0.000 0.140 0.860 0.860

100–500 52619 58 0.630 0.064 0.306 0.936

[500–1000 72281 19 0.150 0.124 0.725 0.876

[1000–1500 70820 10 0.081 0.137 0.783 0.863

[1500–2000 73974 17 0.131 0.128 0.741 0.872

[2000–2500 70609 1 0.008 0.150 0.842 0.850

[2500–3000 19975 0 0.000 0.131 0.869 0.869

[3000 2911 0 0.000 0.126 0.874 0.874

Plan curvature (100/m) Concave 164717 39 0.303 0.352 0.346 0.648

Flat 77129 21 0.348 0.329 0.323 0.671

Convex 164566 45 0.349 0.320 0.331 0.680

Profile curvature (100/m) \ (-0.001) 122963 35 0.376 0.320 0.303 0.60

(-0.001)–(?0.001) 101862 20 0.260 0.362 0.378 0.638

[ (?0.001) 181587 50 0.364 0.317 0.319 0.683

TWI \8 98166 29 0.359 0.313 0.328 0.687

8–12 255688 64 0.295 0.365 0.340 0.635

[12 52558 12 0.347 0.322 0.331 0.678

Lithology J2–3
1,d1 3103 0 0.000 0.084 0.916 0.916

J1
c–2 148670 8 0.033 0.122 0.845 0.878

Jk1 10726 0 0.000 0.086 0.914 0.914

La 132809 79 0.369 0.031 0.600 0.969

Pn 7048 2 0.176 0.083 0.741 0.917

Qal 4111 0 0.000 0.084 0.916 0.916

Q2
d 24466 0 0.000 0.089 0.911 0.911

Q2
m 4732 0 0.000 0.085 0.915 0.915

Q2
t1g 7877 0 0.000 0.085 0.915 0.915

Q2
s 4047 0 0.000 0.084 0.916 0.916

Q2
tg
2 17624 9 0.317 0.080 0.604 0.920

TRe
dl 41199 7 0.105 0.087 0.808 0.913

Landuse DF 29183 1 0.031 0.125 0.845 0.875

F 259750 95 0.327 0.031 0.642 0.970

FO 21339 4 0.167 0.119 0.714 0.881

I 11290 3 0.237 0.117 0.646 0.883

IO 12056 0 0.000 0.121 0.879 0.879

O 33045 0 0.000 0.127 0.873 0.873

R 34280 1 0.026 0.127 0.847 0.873

T 4216 1 0.212 0.117 0.671 0.883

U 1253 0 0.000 0.117 0.883 0.883

185 Page 10 of 17 Environ Earth Sci (2016) 75:185

123



case of land use, the degree of belief was higher for forest

(0.327) and irrigation agriculture (0.237) land use types;

these classes also showed lower Dis values of 0.031 and

0.117, respectively. Regarding distance from rivers, the

highest belief and lowest disbelief values are found for a

distance\100 m. The results indicated that landslide

occurrence decreases with an increase in distance from

rivers. The highest belief and lowest disbelief values in

case of distance from roads were related to the class

of\100 m as well. The results revealed that this class had

the highest probability in landslide occurrence. In the case

of distance from faults, the\200 m class had the highest

belief (Bel = 0.291) and lowest disbelief (Dis = 0.172)

values, respectively. The results show that with growing

distance from faults landslide occurrence also increases,

thus there is a direct relationship between distance from

faults and landslide susceptibility. Gorum et al. (2011)

also stated that landslide density decreases gradually with

increasing distance from surface ruptures.

Random forests

In the RF model, 1000 trees (ntree = 1000) and just three

variables (mtry = 3) were considered for the split point in

each node. The out-of-bag error (OOB) was used to eval-

uate the performance of the model. The obtained OOB

error rate was 25 %, thus the model accuracy is 75 %,

which is a reasonably good model. Stumpf and Kerle

(2011) reported that the model with the lowest OOB is the

best. The overall measure of accuracy can be seen in the

confusion matrix that records the disagreement between the

Table 2 continued

Factors Class No. of pixels No. of landslides Belief Disbelief Uncertainty Plausibility

Distance from rivers (m) \100 155235 49 0.310 0.174 0.516 0.826

100–200 110944 33 0.292 0.191 0.517 0.809

[200–300 73964 16 0.212 0.209 0.578 0.791

[300–400 39411 6 0.149 0.211 0.640 0.789

[400 26858 1 0.037 0.214 0.749 0.786

Distance from roads (m) \100 20158 13 0.225 0.135 0.640 0.865

100–200 18326 10 0.191 0.138 0.671 0.862

[200–300 17590 7 0.139 0.143 0.718 0.857

[300–400 15877 8 0.176 0.141 0.683 0.859

[400–500 15325 9 0.205 0.139 0.656 0.861

[500 319136 58 0.063 0.305 0.632 0.695

Distance from faults (m) \100 53152 19 0.229 0.182 0.588 0.818

100–200 52849 24 0.291 0.172 0.537 0.828

[200–300 50466 20 0.254 0.179 0.567 0.821

[300–400 42774 8 0.120 0.200 0.680 0.800

[400 207171 34 0.105 0.267 0.628 0.733

DF dry-farming and forest, F forest, FO forest and orchard, I irrigation agriculture, IO irrigation agriculture and orchard, O orchard, R range,

T tea land, U urban

Total pixels = 404612, Total landslides = 105

Table 3 Confusion matrix from RF model (0 = non-landslide or

negative, 1 = landslide or positive)

Predicted Overall class

error
0 1

Actual

0 73 32 0.3048

1 21 84 0.200

Table 4 Conditioning factors’ importance based on the random

forest model

Variables 0 1 MDA MDG

Slope aspect 2.71 3.75 4.58 2.85

Altitude 7.71 23.63 21.60 11.70

Distance from faults 0.98 7.72 6.19 5.34

Land use 4.03 17.70 15.37 4.59

Lithology 8.66 24.65 23.18 9.15

Plan curvature -0.66 -0.27 -0.65 4.02

Profile curvature -0.83 1.20 0.24 4.25

Distance from rivers 2.77 9.45 9.04 5.74

Distance from roads 7.18 18.26 18.03 8.43

Slope angle 2.54 4.44 4.95 5.25

TWI 1.96 3.14 3.54 4.99

0 non-landslide, 1 landslide, MDA mean decrease in accuracy, MDG

mean decrease in Gini
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final model predictions and the actual outcomes of the

training observations (Table 3). It showed that the model

and training dataset agree that for 73 of the observations

landslide absence is correctly predicted (69.5 %), and that

of the actual 105 landslide locations 84 (80 %) were cor-

rectly predicted. One of the most important problems in

RFs, compared with a single decision tree, is that it

becomes quite a bit more difficult to readily understand the

discovered knowledge of 1000 trees. This was solved by

assessing the relative variable importance (Table 4). The

higher values in Table 4 indicate that the associated vari-

able is relatively more important. For better understanding,

a visual plot of the two measures of variable importance

calculated by the RFs technique is shown in Fig. 8. Clearly,

lithology is the most important variable, followed by alti-

tude, distance from roads, and land use. The accuracy

measure then includes distance from roads and land use

factors as the next most important. In contrast, altitude,

lithology, distance from roads, rivers, and faults had higher

importance based on the Gini measure. Another key output

of the RFs model is an error plot. This plot portrays the

accuracy of forest of trees (y-axis) against the number of

tress that have been included in the forest (x-axis; Fig. 9). It

can be seen that going beyond about 50 trees in the forest

adds low values (0.26–0.3), when considering the OOB

error rate. The two other plots show the changes in error

rate associated with the model prediction. Finally, the

landslide susceptibility map (LSM) using the RF algorithm

was constructed, and classified based on the natural break

classification scheme in ArcGIS 9.3 (Ozdemir 2011a;

Pourghasemi et al. 2012a, b; Mohammady et al. 2012;

Pourghasemi et al. 2013) into low, moderate, high and very

high potential classes. The landslide susceptibility map

achieved from the RF method showed that about 33 % of

the study area falls into the low landslide susceptibility

class, while 28, 25, and 13 % were identified as having

Fig. 8 Two measures of

variable importance calculated

by the random forest algorithm.

DEM altitude, Road distance

from roads, LU land use, River

distance from rivers, Fault

distance from faults, Slope slope

angle, Aspect slope aspect, TWI

topographic wetness index, Prof

profile curvature, Plan plan

curvature

Fig. 9 OOB error plot of the random forests algorithm in the study

area (0 non-landslide, 1 landslide)
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moderate, high and very high susceptibility, respectively

(Fig. 10). These are substantial advantages that confine the

generation of outliers, especially when working with ter-

rain variables with a high frequency of missing data, and an

intrinsic uncertainty in the assignment to the correct class

also in surveyed areas. This is a typical problem for classes

such as soil type, for which only a few point locations have

been directly surveyed (Catani et al. 2013).

Validation of landslide susceptibility map

To determine the accuracy of the landslide susceptibility

map created using the RF algorithm, the receiver operating

characteristic (ROC) curve was used. This is a common

method used to assess the diagnostic test accuracy. In the

ROC analysis, the area under the curve (AUC) value ranges

from 0.5 to 1.0, and is used to evaluate the model accuracy

(Nandi and Shakoor 2010). If the model does not predict

the landslide occurrences better than chance, the AUC

would equal 0.5. A ROC curve of 1.0 shows perfect pre-

diction (Yesilnacar 2005). The quantitative–qualitative

relationship between AUC and prediction accuracy can be

classified as follows:[0.9–1, excellent;[0.8–0.9, very

good;[0.7–0.8, good;[0.6–0.7, average; and 0.5–0.6,

poor (Yesilnacar 2005). In this study, the landslide loca-

tions which were not used during the model building pro-

cess were used to verify the landslide susceptibility map.

For this purpose, success rate and prediction rate curves

were created. The success rate method used the training

landslide pixels that were used in establishing the landslide

models, thus it is not a suitable method for assessing the

prediction capability of the models (Bui et al. 2012).

However, the method can help in determining how well the

resulting landslide susceptibility maps have classified the

areas of existing landslides. Another validation technique is

the prediction rate curve, which explains how well the

model predicts a landslide (Mohammady et al. 2012;

Akgun et al. 2012; Ozdemir and Altural 2013). The AUC

values of the ROC curve for RF model and the mentioned

curves (success rate and prediction rate curves, respec-

tively) were found to be 0.8520 (85.2 %) and 0.8177

(81.8 %), respectively (Fig. 11a, b). It can be concluded

that this model provides reasonable results according to the

success rate and prediction rate curves for landslide sus-

ceptibility mapping of the study area. Stumpf and Kerle

(2011) stated that the RF algorithm provided relatively

high accuracies of up to 87 % for sites in Haiti and

Wenchuan. Vorpahl et al. (2012) compared eight different

Fig. 10 Landslide

susceptibility map based on the

random forests (RF) algorithm
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techniques for landslide susceptibility mapping in Southern

Ecuador. They indicated that RF and boosted regression

tree (BRT) showed the best performance in tenfold cross-

validation. Meanwhile, they found that a generalized

additive model (GAM) and general linear model (GLM)

with stepwise backwards variable selection performed

equally well. Bui et al. (2013) used an EBF-fuzzy logic

hybrid model for landslide susceptibility mapping in the

Vietnam. Results indicated that EBF-fuzzy logic model is

better than EBF and Fuzzy models when applied separately

in the study area. Esposito et al. (2014) for landslide sus-

ceptibility mapping in Rio de Janeiro, Brasil used RF and

logistic regression (LR) models. Their results showed that

AUC for RF and LR models were 0.81 and 0.72, respec-

tively. Therefore, RF model shows better accuracy than

LR. Trigila et al. (2015) performed a comparative study on

landslide susceptibility assessment using three models,

namely logistic regression, RF, and frequency ratio. The

validation of results showed that the RF model had the

highest AUC with 4*4 m regular grid sampling. In another

study, Goetz et al. (2015) applied different modeling

techniques, such as GLM, GAM, weight of evidence,

SVM, RF, and bootstrap aggregated classification tree with

penalized discriminant analysis (BPLDA) for landslide

susceptibility mapping in three areas in Austria. Mean-

while, the difference of AUC-ROC values ranged from 2.9

to 8.9 %, but the results showed that the RF model per-

formed slightly better than the other models in all study

areas. Youssef et al. (2015), in assessing landslides in the

Wadi Tayyeh Basin, Asir Region, in Saudi Arabia, used

different data mining techniques, such as RF, BRT, clas-

sification and regression tree (CART), and GLM models.

The prediction rate curves indicated that RF

(AUC = 81.2 %), BRT (AUC = 85.6 %), and CART

(AUC = 86.2 %) have the highest AUC in comparison

with generalized linear models (AUC = 76.9 %). These

results are in agreement with our finding, showing that RF-

EBF model has a good performance for landslide suscep-

tibility assessment.

Conclusion

Different methods have been proposed for landslide sus-

ceptibility mapping in the literature, with the accuracy of

different methods still being debated. The reliability of

landslide susceptibility maps mainly depends on the

amount and the quality of available data, the working scale,

and the selection of the best methodology (Baeza and

Corominas 2001). The RF technique has interesting fea-

tures that other models lack. It can effectively handle

missing data during both the training and validating steps.

Because of its ensemble design, it can apply a prediction

even when some of the input values are missing. Moreover,

during the process of modeling, a measure of variables

importance can be calculated, lending insight to the par-

ticular system being modeled (Ball 2009). Therefore, in

this study a GIS-based RF model was used for landslide

susceptibility mapping in the west of Mazandaran Pro-

vince, northern Iran. At the same time it served as a fea-

sibility assessment to determine if the approach can be used

for other un-/under mapped parts of the country. Of the

total of 153 landslide locations in the study area, 105 cases

were used as training data, while the remaining 48 cases

were used for validation purposes. To perform the landslide

susceptibility mapping, eleven conditioning factors—slope

angle, slope aspect, altitude, plan curvature, profile curva-

ture, topographic wetness index, lithology, land use, dis-

tance from rivers, distance from roads, and distance from

Fig. 11 ROC curves for the landslide susceptibility map produced by

the random forest algorithm: a success rate curve b prediction rate
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faults—were considered. The EBF model was used as an

initial bivariate statistical method to evaluate the correla-

tion between the landslides and classes of each condition-

ing factors. Subsequently RF was applied to produce the

landslide susceptibility map for the study area. For vali-

dation of the model the AUC was used. The RF model

resulted in a success rate of 85.2 %, and a prediction rate of

81.8 % accuracy. In summary, based on the overall

assessment, the proposed algorithm is objective and an

applicable estimator that improves the predictive accuracy.

It is also suitable for landslide studies and land use plan-

ning in different parts of the country, for which to date no

comprehensive landslide susceptibility assessment has

been done. Therefore, we propose a coupled RF and EBF

analysis for landslide susceptibility in Iran, as it surpasses

the performance of established methods such as bivariate

and multivariate statistical models.
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fuzzy logic in Vitória, Brazil. Environ Earth Sci

74(3):2125–2141

Breiman L (2001) Random forests. Mach Learn 45(l):5–32

Bui TD, Pradhan B, Lofman O, Revhaug I (2012) Landslide

susceptibility assessment in Vietnam using support vector

machines, decision tree and Naive Bayes models. Math Probl

Eng 2012:1–26. doi:10.1155/2012/974638

Bui DT, Pradhan B, Revhaug I, Nguyen DB, Pham HV, Bui QN

(2013) A novel hybrid evidential belief function-based fuzzy

logic model in spatial prediction of rainfall-induced shallow

landslides in the Lang Son city area (Vietnam). Geomat Nat

Hazards Risk. doi:10.1080/19475705.2013.843206

Calle ML, Urrea V (2010) Letter to the Editor: Stability of random

forest importance measures. Brief Bioinform 12(1):86–89

Carranza EJM (2009) Controls on mineral deposit occurrence inferred

from analysis of their spatial pattern and spatial association with

geological features. Ore Geol Rev 35:383–400

Carranza EJM, Hale M (2002) Evidential belief functions for data-

driven geologically constrained mapping of gold potential,

Baguio district, Philippines. Ore Geol Rev 22:117–132

Carranza EJM, Woldai T, Chikambwe EM (2005) Application of

data-driven evidential belief functions to prospectivity mapping

for aquamarine-bearing pegmatites, Lundazi District, Zambia.

Nat Resour Res 14:47–63

Carranza EJM, van Ruitenbeek FJA, Hecker C, van der Meijde M,

van der Meer FD (2008) Knowledge-guided data-driven eviden-

tial belief modeling of mineral prospectivity in Cabo de Gata, SE

Spain. Int J Appl Earth Obs Geoinf 10:374–387

Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide

susceptibility estimation by random forests technique: sensitivity

and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831

Chen T, Niu R, Du B, Wang Y (2014) Landslide spatial susceptibility

mapping by using GIS and remote sensing techniques: a case

study in Zigui County, the Three Georges reservoir, China.

Environ Earth Sci 73(9):5571–5583

Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011)

Landslide susceptibility assessment using the bivariate statistical

analysis and the index of entropy in the Sibiciu Basin (Romania).

Environ Earth Sci 63:397–406

Cutler A (2013) Trees and random forests. NIH 1R15AG037392-01,

p 92

Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J,

Lawler JJ (2007) Random forests for classification in Ecology.

Ecology 88(11):2783–2792

Das I, Stein A, Kerle N, Dadhwal VK (2012) Landslide susceptibility

mapping along road corridors in the Indian Himalayas using

Bayesian logistic regressionmodels. Geomorphology 179:116–125

Dempster AP (1968) Generalization of Bayesian inference. J R Stat

Soc Series B 30:205–247

Dou J, Yamagishi H, Pourghasemi HR, Song X, Ali YP, Xu Y, Zhu Z

(2015) An integrated model for the landslide susceptibility

assessment on Osado Island, Japan. Nat Hazards. doi:10.1007/

s11069-015-1799-2

Ercanoglu M, Gokceoglu C (2002) Assessment of landslide suscep-

tibility for a landslide prone area (north of Yenice, NW Turkey)

by fuzzy approach. Environ Geol 41(6):720–730

Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce

landslide susceptibility map of a landslide prone area (West

Black Sea Region, Turkey). Eng Geol 75:229

Esposito C, Barra A, Evans SG, Mugnozza GS, Delaney K (2014)

Landslide susceptibility analysis by the comparison and integra-

tion of random forest and logistic regression methods; applica-

tion to the disaster of Nova Friburgo-Rio de Janeiro, Brasil

(January 2011). Geophys Res Abstr 16:11407

Fiorucci F, Antonini G, Rossi M (2015) Implementation of landslide

susceptibility in the Perugia Municipal Development Plan

(PRG). In: Lollino et al. (eds) Engineering geology for society

and territory, vol 5, pp 769–772

Geology Survey of Iran (GSI) (1997) http://www.gsi.ir/Main/Lang_

en/index.html

Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and

empirical landslide susceptibility models using generalized

additive models. Geomorphology 129:376–386

Environ Earth Sci (2016) 75:185 Page 15 of 17 185

123

http://dx.doi.org/10.1007/978-3-319-03644-1_3
http://dx.doi.org/10.1155/2012/974638
http://dx.doi.org/10.1080/19475705.2013.843206
http://dx.doi.org/10.1007/s11069-015-1799-2
http://dx.doi.org/10.1007/s11069-015-1799-2
http://www.gsi.ir/Main/Lang_en/index.html
http://www.gsi.ir/Main/Lang_en/index.html


Goetz JN, Brenning A, Petschko H, Leopold P (2015) Evaluating

machine learning and statistical prediction techniques for

landslide susceptibility modeling. Comput Geosci 81:1–11

Gorum T, Fan X, van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G

(2011) Distribution pattern of earthquake-induced landslides

triggered by the 12 May 2008 Wenchuan earthquake. Geomor-

phology 133:152–167

Hasekiogullari GD, Ercanoglu M (2012) A new approach to use AHP

in landslide susceptibility mapping: a case study at Yenice

(Karabuk, NW Turkey). Nat Hazards 63(2):1157–1179

I.R. of Iran Meteorological Organization (2012) http://www.mazan

daranmet.ir/

Iranian Landslide Working Party (ILWP) (2007) Iranian landslides

list. Forest, Rangeland and Watershed Association, Iran, p 60

Jaafari A, Najafi A, Pourghasemi HR, Rezaeian J, Sattarian A (2014)

GIS-based frequency ratio and index of entropy models for

landslide susceptibility assessment in the Caspian forest, north-

ern Iran. Int J Environ Sci Technol 11:909–926

Lawrence RL, Wood SD, Sheley RL (2006) Mapping invasive plants

using hyperspectral imagery and Breiman Cutler classifications

(Random Forest). Remote Sens Environ 100:356–362

Lee S, Choi J (2004) Landslide susceptibility mapping using GIS and

the weight-of evidence model. Int J Geogr Inf Sci 18(8):789–814

Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor,

using frequency ratio and logistic regression models. Landslides

4:33–41

Lee MJ, Choi JW, Oh HJ, Won JS, Park I, Lee S (2012) Ensemble-

based landslide susceptibility maps in Jinbu area, Korea. Environ

Earth Sci 67(1):23–37

Lee J, Lee K, Joung I, Joo K, Brooks BR, Lee J (2015a) Sigma-RF:

prediction of the variability of spatial restraints in template-

based modeling by random forest. BMC Bioinform. doi:10.1186/

s12859-015-0526-z

Lee MJ, Park I, Lee S (2015b) Forecasting and validation of landslide

susceptibility using an integration of frequency ratio and neuro-

fuzzy models: a case study of Seorak mountain area in Korea.

Environ Earth Sci 74(1):413–429

Li XZ, Kong JM (2014) Application of GA–SVM method with

parameter optimization for landslide development prediction.

Nat Hazards Earth Syst Sci 14:525–533

Li C, Ma T, Sun L, Li W, Zheng A (2012) Application and

verification of a fractal approach to landslide susceptibility

mapping. Nat Hazards 61(1):169–185

Mallick J, Al-Wadi H, Atiqur Rahman, Ahmed M (2014) Landscape

dynamic characteristics using satellite data from a mountainous

watershed of Abha, Kingdom of Saudi Arabia. Environ Earth

Sci. doi:10.1007/s12665-014-3408-1

Martha TR, Kerle N, van Westen CJ, Jetten VG, Kumar KV (2012)

Object-oriented analysis of multi-temporal panchromatic images

for creation of historical landslide inventories. ISPRS J Pho-

togram Remote Sens 67:105–119

Meten M, Bhandary NP, Yatabe R (2015) Application of GIS-based

fuzzy logic and rock engineering system (RES) approaches for

landslide susceptibility mapping in Selelkula area of the Lower

Jema River Gorge, Central Ethiopia. Environ Earth Sci

74(4):3395–3416

Meyer D, Leisch F, Hornik K (2003) The support vector machine

under test. Neurocomputing 55(1–2):169–186

Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A,

Jaboyedoff M, Kanevski M (2014) Machine learning feature

selection methods for landslide susceptibility mapping. Math

Geosci 46:33–57

Mihir M, Malamud B, Rossi M, Reichenbach P, Ardizzone F (2014)

Landslide susceptibility statistical methods: a critical and

systematic literature review. Geophys Res Abstr 16(EGU2014-

9814):2014

Miner AS, Vamplew P, Windle DJ, Flentje P, Warner P (2010) A

comparative study of various data mining techniques as applied

to the modeling of landslide susceptibility on the Bellarine

Peninsula, Victoria, Australia. Geologically active. In: Proceed-

ings of the 11th IAEG congress of the international association

of engineering geology and the environment, Auckland, New

Zealand

Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide

susceptibility mapping at Golestan Province, Iran: a comparison

between frequency ratio, Dempster-Shafer, and weights-of-

evidence models. J Asian Earth Sci 61:221–236

Moosavi V, Niazi Y (2015) Development of hybrid wavelet packet-

statistical models (WP-SM) for landslide susceptibility mapping.

Landslides. doi:10.1007/s10346-014-0547-0

Naghibi SA, Pourghasemi HR, Pourtaghi ZS, Rezaei A (2015)

Groundwater qanat potential mapping using frequency ratio and

Shannon’s entropy models in the Moghan Watershed, Iran. Earth

Sci Inform 8(1):171–186

Nampak H, Pradhan B, Manap MA (2014) Application of GIS based

data driven evidential belief function model to predict ground-

water potential zonation. J Hydrol 513:283–300

Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility

evaluation using bivariate and multivariate statistical analyses.

Eng Geol 110:11–20

Nourani V, Pradhan B, Ghaffari H, Sharifi SS (2014) Landslide

susceptibility mapping at Zonouz Plain, Iran using genetic

programming and comparison with frequency ratio, logistic

regression, and artificial neural network models. Nat Hazards

71(1):523–547

Oh HJ, Park NW, Lee SS, Lee S (2011a) Extraction of landslide-

related factors from ASTER imagery and its application to

landslide susceptibility mapping. Int J Remote Sens

33(10):3211–3231

Oh HJ, Kim YS, Choi JK et al (2011b) GIS mapping of regional

probabilistic groundwater potential in the area of Pohang City,

Korea. J Hydrol 399:158–172

Osna T, Sezer EA, Akgun A (2014) GeoFIS: an integrated tool for the

assessment of landslide susceptibility. Comput Geosci 66:20–30

Ozdemir A (2011a) Using a binary logistic regression method and GIS

for evaluating andmapping the groundwater spring potential in the

Sultan Mountains (Aksehir, Turkey). J Hydrol 405:123–136

Ozdemir A (2011b) GIS-based groundwater spring potential mapping

in the Sultan Mountains (Konya, Turkey) using frequency ratio,

weights of evidence and logistic regression methods and their

comparison. J Hydrol 411:290–308

Ozdemir A, Altural T (2013) A comparative study of frequency ratio,

weights of evidence and logistic regression methods for landslide

susceptibility mapping: Sultan Mountains, SW Turkey. J Asian

Earth Sci 64:180–197

Park NW (2014) Using maximum entropy modeling for landslide

susceptibility mapping with multiple geoenvironmental data sets.

Environ Earth Sci 73(3):937–949

Park I, Lee S (2014) Spatial prediction of landslide susceptibility

using a decision tree approach: a case study of the Pyeongchang

area, Korea. Int J Remote Sens. doi:10.1080/01431161.2014.

943326

Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility

mapping using frequency ratio, analytic hierarchy process,

logistic regression, and artificial neural network methods at the

Inje area, Korea. Environ Earth Sci 68(5):1443–1464

Poiraud A (2014) Landslide susceptibility-certainty mapping by a

multi-method approach: a case study in the Tertiary basin of

Puy-en-Velay (Massif central, France). Geomorphology. doi:10.

1016/j.geomorph.2014.04.001

Pourghasemi HR, Beheshtirad M (2014) Assessment of a data-driven

evidential belief function model and GIS for groundwater

185 Page 16 of 17 Environ Earth Sci (2016) 75:185

123

http://www.mazandaranmet.ir/
http://www.mazandaranmet.ir/
http://dx.doi.org/10.1186/s12859-015-0526-z
http://dx.doi.org/10.1186/s12859-015-0526-z
http://dx.doi.org/10.1007/s12665-014-3408-1
http://dx.doi.org/10.1007/s10346-014-0547-0
http://dx.doi.org/10.1080/01431161.2014.943326
http://dx.doi.org/10.1080/01431161.2014.943326
http://dx.doi.org/10.1016/j.geomorph.2014.04.001
http://dx.doi.org/10.1016/j.geomorph.2014.04.001


potential mapping in the Koohrang Watershed, Iran. Geocarto

Int. doi:10.1080/10106049.2014.966161

Pourghasemi HR, Mohammady M, Pradhan B (2012a) Landslide

susceptibility mapping using index of entropy and conditional

probability models in GIS: Safarood Basin, Iran. Catena

97:71–84

Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Application of

fuzzy logic and analytical hierarchy process (AHP) to landslide

susceptibility mapping at Haraz watershed, Iran. Nat Hazards

63(2):965–996

Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013) Landslide

susceptibility mapping by binary logistic regression, analytical

hierarchy process, and statistical index models and assessment of

their performances. Nat Hazards 69:749–779

Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2014a) GIS-based

landslide susceptibility mapping with probabilistic likelihood

ratio and spatial multi-criteria evaluation models (North of

Tehran, Iran). Arab J Geosci 7(5):1857–1878

Pourghasemi HR, Moradi HR, Fatemi Aghda SM, Sezer EA, Goli

Jirandeh A, Pradhan B (2014b) Assessment of fractal dimension

and geometrical characteristics of landslides identified in North

of Tehran, Iran. Environ Earth Sci 71:3617–3626

Pourtaghi Z, Pourghasemi HR, Rossi M (2014) Forest fire suscep-

tibility mapping in the Minudasht Forests, Golestan Province,

Iran. Environ Earth Scis. doi:10.1007/s12665-014-3502-4

Pradhan B (2010) Landslide susceptibility mapping of a catchment

area using frequency ratio, fuzzy logic and multivariate logistic

regression approaches. J Indian Soc Remote Sens 38(2):301–320

Pradhan B (2013) A comparative study on the predictive ability of the

decision tree, support vector machine and neuro-fuzzy models in

landslide susceptibility mapping using GIS. Comput Geosci

51:350–365

Pradhan B, Buchroithner MF (2010) Comparison and validation of

landslide susceptibility maps using an artificial neural network

model for three test areas in Malaysia. Environ Eng Geosci

16(2):107–126

Rahmati O, Pourghasemi HR, Melesse A (2016) Application of GIS-

based data driven random forest and maximum entropy models

for groundwater potential mapping: a case study at Mehran

Region, Iran. Catena 137:360–372

Ren F, Wu X, Zhang K, Niu R (2014) Application of wavelet analysis

and a particle swarm-optimized support vector machine to

predict the displacement of the Shuping landslide in the Three

Gorges, China. Environ Earth Sci 73(8):4791–4804

Rodriguez-Galiano V, Chica-Rivas M (2012) Evaluation of different

machine learning methods for land cover mapping of a

Mediterranean area using multi-seasonal Landsat images and

digital terrain models. Int J Digit Earth 7(6):1–18

Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an

adaptive neuro-fuzzy model on landslide susceptibility mapping:

Klang valley, Malaysia. Expert Syst Appl 38(7):8208–8219

Shafer G (1976) A mathematical theory of evidence, vol 1. Princeton

University, Princeton

Shruthi RBV, Kerle N, Jetten VG, Stein A (2014) Object-based gully

system prediction from medium resolution imagery using

random forests. Geomorphology 216:283–294

Song Y, Gong J, Gao S, Wang D, Cui T, Li Y, Wei B (2012)

Susceptibility assessment of earthquake induced landslides using

Bayesian network: a case study in Beichuan, China. Comput

Geosci 42:189–199

Stumpf A, Kerle N (2011) Object-oriented mapping of landslides

using random forests. Remote Sens Environ 115:2564–2577

Su C, Wang L, Wang X, Huang Z, Zhang X (2015) Mapping of

rainfall-induced landslide susceptibility in Wencheng, China,

using support vector machine. Nat Hazards. doi:10.1007/s11069-

014-1562-0

Talebi A, Uijlenhoet R, Troch PA (2007) Soil moisture storage and

hillslope stability. Nat Hazards Earth Syst Sci 7:523–534

Trigila A, Carla I, Carlo E, Gabriele SM (2015) Comparison of

logistic regression and random forests techniques for shallow

landslide susceptibility assessment in Giampilieri (NE Sicily,

Italy). Geomorphology. doi:10.1016/j.geomorph.2015.06.001

Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014)

Earthquake-induced landslide susceptibility mapping using an

integrated ensemble frequency ratio and logistic regression

models in West Sumatera Province, Indonesia. Catena

118:124–135

Varnes DJ (1978) Slope movement types and processes. In: Schuster

RL, Krizek RJ (Eds) Landslides analysis and control. Special

Report, vol. 176. Transportation Research Board, National

Academy of Sciences, New York, pp 12–33

Vorpahl P, Elsenbeer H, Märker M, Schröder B (2012) How can
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