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Abstract The temporal and spatial evolution of pore-

fluid pressure exerts strong control on debris flow motion

because it can counteract normal stresses at grain contacts,

reduce friction, and enhance bulk flow mobility. In Iver-

son’s two-phase debris flow model, the depth-averaged

pore pressure equation, which takes into account the effect

of shear-induced dilatancy, was combined with a previous

model to describe the simultaneous evolution of flow

velocity and depth, solid mass, and pore-fluid pressure. In

this work, a high-resolution scheme based on the finite

volume method was used to solve the system of equations.

Several numerical tests were performed to verify the ability

of the presented model and the accuracy of the proposed

numerical method. Numerical results were compared with

experimental data obtained in a laboratory, and the effec-

tiveness of the proposed numerical method for solving

practical problems has been proven. Numerical results

indicated that increases of the pore-fluid pressure could

enhance the motion of debris flow and expand the spread

area. Furthermore, results showed that the debris shear-

induced dilatancy could affect the evolution of pore-fluid

pressure, thus further influencing the motion of debris flow.

Keywords Debris flows � Pore-fluid pressure � Finite
volume method � Shear-induced dilatancy

Introduction

Debris flows represent one of the most extremely

destructive and dangerous types of natural hazards in the

world (Begueria et al. 2009; Wu et al. 2009; Hutter and

Luca 2012; Luna et al. 2012; Pudasaini 2012). Conse-

quently, there is a significant demand for models that can

predict the dynamics, sliding distances, and hazard zones

of such events to prevent loss. In recent years, significant

progress has been made with regard to physical models and

numerical schemes, and these developments have made it

possible for researchers to investigate the dynamic pro-

cesses and assess the risks associated with debris flows

(Savage and Hutter 1989; Hungr 1995; Gray et al. 1999;

Pudasaini and Hutter 2003; Goren and Aharonov 2009).

Generally, debris flows are multiphase events that con-

sist of a broad distribution of grain sizes mixed with fluid

(Pitman et al. 2003; Goren and Aharonov 2007; Wu 2010;

George and Iverson 2011; Pudasaini 2012). The behavior

of debris flows can vary greatly and will depend on the

amount of particle movement, solid–liquid interactions,

and the percentage of solid and fluid phases. Iverson and

Denlinger (2001) proposed a two-phase model for debris

flows by developing a depth-averaged solid–fluid mixture

theory based on the assumptions of constant porosity and

equality of velocity between fluids and solids. This model

suggests that the pore-fluid pressure plays a crucial role in

the motion of debris flows because it can counteract normal

stresses and thereby reduce friction and enhance bulk flow

mobility. Based on research of pore pressure feedback,

George and Iverson (2011) proposed a depth-integrated
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mathematical model that simulates the coupled evolution

of granular dilatancy, pore-fluid pressure, and solid and

fluid volume fractions. Results from this model demon-

strated that debris dilation causes dissipation of pore

pressure, thus further stabilizing debris flow motion. In

another work by Pitman and Le (2005), which considered

the effect of the drag force on debris flow motion that is

caused by the difference of solid and fluid phase velocities,

a novel depth-averaged two-fluid model based on the two-

fluid equations of Anderson and Jackson (1967) was pro-

posed to describe the interactions between the solid parti-

cles and the fluid. More recently, through consideration of

the many essential physical phenomena observable in

debris flows, Pudasaini (2012) presented a new generalized

two-phase debris flow model that takes into account the

effects of buoyancy, drag force, and virtual mass.

Several numerical methods have been used for computing

the model data for landslides and debris flows over the past

few decades, and the main ones include the distinct element

method (Preh et al. 2011; Wu and Chen 2011; Zhang et al.

2014; Zhao et al. 2014) and the continuum medium method

(Brufau et al. 2004; Pudasaini 2012; Ouyang et al. 2014;

Paik 2015). Hsu et al. (2013) used a particle flow code (PFC)

based on the discrete element method to study the mecha-

nisms of particle movement in debris flows and determined

the contact forces, displacements, and the strength param-

eters between particles. Wu et al. (2013) studied the post-

failure process of the Hsien-du-shan rock avalanche, which

was trigged by heavy rainfall, by using discontinuous

deformation analysis (DDA). The dynamic behavior that

exhibited itself as failure behavior and continuous-pro-

gressing failure was well described. However, discrete

numerical analysis methods are typically used for simulating

the dynamic processes of single-phase, dry granular ava-

lanches, and in such cases, the effect of pore-fluid pressure

on the motion of debris flows and the evolution of pore-fluid

pressure cannot be exhibited well. In these circumstances,

the continuum medium method can be used for simulating

the motion of debris flow, and this method has attracted the

attention of many researches. George and Iverson (2011)

used the finite volume method (FVM) to solve the model

equations and the predicted basal pore-fluid pressures mat-

ched the measured data relatively well. Furthermore,

Pudasaini (2012) used the total variation diminishing non-

oscillatory central (TVD-NOC) scheme to solve the model

equations and the results were able to highlight the basic

physics associated with the contributions of the viscous

stresses, virtual mass, generalized drag, and buoyancy and

demonstrate the interactions of the solid and fluid phases.

In this study, we investigated Iverson’s depth-averaged

two-phase debris flow model that accounts for the coupled

evolution of the flow dynamics and pore-fluid pressure.

This model employs Mohr–Coulomb plasticity for the solid

stress, and the fluid stress is modeled as Newtonian viscous

stress that formally appears as a single-phase model with a

stress term that accounts for the contributions from the two

constituents. Pore-fluid pressure has both hydrostatic

component and non-hydrostatic component that are estab-

lished by initial conditions and are dissipated diffusively in

response to debris flow motion. A high-resolution

scheme based on the finite volume method is presented to

solve the system of equations. Finally, with several site-

specific examples, we compare the numerical results with

experimental data to verify the numerical method and

model. In this study, the effect of pore-fluid pressure on the

movement of debris flows is discussed. A discussion of the

influence of shear-induced dilatancy on the evolution of

pore-fluid pressure is also presented.

Model equations

The two-dimensional (2-D), depth-integrated, and mass-

conservation equation for a debris flow mixture may be

expressed as follows:

q
oh

ot
þ o huð Þ

ox
þ o hvð Þ

oy

� �
¼ 0 ð1Þ

where q ¼ #fqf þ 1� #f

� �
qs is the density; qf is the fluid

phase density; qs is the solid phase density; #f is the fluid

volume fraction; h is the height; u and v are the velocity

components in the x and y directions, respectively; x rep-

resents the horizontal direction; y represents the vertical

direction; and t is the time. The depth-integrated x-direc-

tion momentum-conservation equation for the grain–fluid

mixture of the debris flow may be expressed as (Iverson

and Denlinger 2001)
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� h
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where l is the pore-fluid viscosity; r = (rx, ry) is the radius

of the local bed curvature in the x and y directions; pbed is

the basal pore-fluid pressure; g = (gx, gy, gz) is the gravity

acceleration in all directions; kap is the earth pressure

coefficient; /bed is the basal friction angle; and /int is the

internal friction angle. Interchanging x and y as well as u

and v in the x-direction momentum equation yields the

following y-direction momentum equation:
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The depth-integrated pore pressure evolution equation,

which takes into account the effect of the shear-induced dila-

tion rate, may be expressed as (Iverson and Denlinger 2001)

opbed
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¼ � u

opbed

ox
þ v

opbed

oy

� �
� 2g
alh2

pbed � qf gzh
� �
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where a is the compressibility; W is the shear-induced

dilatancy angle (a property of granular materials that is

commonly expressed as an angle, �p=2\W\p=2); g is

the hydraulic permeability; and k is a longitudinal normal-

stress coefficient that equals 1 if the stress stat is hydro-

static (Iverson and Denlinger 2001).

An active (or passive) state of stress will develop if an

element of a material is elongated (or compressed), and the

formula for the corresponding state can be derived from the

Mohr diagram (McDougall and Hungr 2005):

kap ¼ 2
1� 1� cos2 /int 1þ tan2 /bedð Þ½ �

1
2

cos2 /int

ð5Þ

here, ‘‘-’’ corresponds to the active state (ou=oxþ ov=oy

� 0) and ‘‘?’’ to the passive state (ou=oxþ ov=oy� 0).

The model equations are hyperbolic for the mass and

momentum-conservation. To more directly reflect these

properties of the model, Eqs. (1)–(3) were rewritten in a

matrix form as follows, by reordering and moving some

source terms to the left-hand side:
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here, we grouped the source terms on the right-hand side of

Eq. (6) according to the type of stress, where S represents

the driving stress that includes the gravitational force and

basal shear stresses, T represents the longitudinal normal-

stress, and R represents the transverse shear stresses, all of

which are in the x and y directions.

Methods

The hyperbolic character of the governing equations makes

finding solutions difficult because it can generate discon-

tinuous and numerical oscillations in finite time. Moreover,

the nonlinear character of the equations limits the applica-

ble range of analytical solutions. Therefore, the numerical

method used must be able to eliminate these effects. For this

purpose, some methods have been put forth such as the

method of characteristics (Katopodes and Strelkoff 1978),

the finite difference method (Fennema and Chaudhry 1990),

and the finite volume method (Jha et al. 1995; Zoppou and

Roberts 2000; Fraccarollo et al. 2003; Brufau et al. 2004;

Gottardi and Venutelli 2004; Benkhaldoun et al. 2012). The

finite volume method is advantageous in that it is robust and

can capture the locations of the discontinuities accurately.

However, the exact solution of the Riemann problem is less

efficient, so a number of approximate Riemann solvers have

been constructed to solve the Riemann problem in an effi-

cient manner (Brufau et al. 2004; Liang and Marche 2009;

Toro 2009). In this study, the finite volume method and

Roe’s approximation were used to solve the debris flow

problem (Brufau et al. 2004; Toro 2009). To improve the

feasibility of this model, we also used the fractional step

method (Gottardi and Venutelli 2004). A simple space-

splitting type has been adapted and the model equations are

divided into two 1-D problems as follows:
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oQ

ot
þ oF

ox
¼ Sx þ Tx þ Rx ð7Þ

oQ

ot
þ oG

oy
¼ Sy þ Ty þ Ry ð8Þ

After that, the solution at the next time step can be

obtained by an efficient step as follows:

Qnþ1 ¼ Lx2
dt

2

� �
Ly2

dt

2

� �
Ly1

dt

2

� �
Lx1

dt

2

� �
Qn ð9Þ

where Lx and Ly represent the operator in the x and y di-

rections, respectively, and each is executed twice to obtain

the solution at the next step (Liang et al. 2006; Ouyang

et al. 2014). For Lx1, the two-step calculation can be

expressed as follows:

Step 1 Solving the homogeneous shallow water

equations

First,

oQ

ot
þ oF

ox
¼ 0 ð10Þ

The corresponding discretization form of homogeneous

operator Eq. (10), which is based on the finite volume

method, is written as

Qnþ1
i ¼ Qn

i þ
Dt
Dx

ðFn
iþ1

2
� Fn

i�1
2
Þ ð11Þ

where Fn
iþ1

2

and Fn
i�1

2

are numerical fluxes at the cell inter-

face. In this paper, the numerical fluxes are solved using

Roe’s approximation. In Roe’s approximation, the nonlin-

ear problem is linearized at the cell interface. At the cell

interface, we have a discontinuity with state UL on the left

side and state UR on the right side. Equation (10) is lin-

earized as follows:

oQ

ot
þ J

oQ

ox
¼ 0 ð12Þ

Then, the Jacobian matrix J of the normal flux F can be

evaluated as

J ¼ oF
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�uv v u

2
4

3
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where h, cm, u, and v for the average state are

h ¼
ffiffiffiffiffiffiffiffiffiffi
hLhR

p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r
; u

¼
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p
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The evaluation of the numerical flux used in this study,

derived from Eq. (11), is accomplished with

F ¼ 1

2
FR þ FL � Jj j QR �QLð Þ½ � ð15Þ

The approximate Jacobian matrix is not directly used in

the actual method. Instead, the difference in the vector Q

across the grid edge is decomposed on the basis of the

matrix eigenvectors as

DQ ¼ QR �QL ¼
X3
m¼1

amcm ð16Þ

and

Jj j QR �QLð Þ ¼
X3
m¼1

kmj jamcmð Þ ð17Þ

where a represents the wave strengths; k are eigenvalues of

J; and c are the corresponding eigenvectors.

Step 2 Solving the source term.

After the solution, Qm of Eq. (10) is obtained by the

above steps with initial date Q, and the source term can be

calculated as

oQ

ot
¼ Sþ Tþ R ð18Þ

To reduce numerical instabilities, a semi-implicit

method is used and the equation is discretized as shown

below:

Qx �Qm

Dt
¼ Sm þ Tm þ Rm ð19Þ

where Sm, Tm, and Rm can be obtained by Qm.

After the solution, Qx of Eq. (7) (x-direction) is obtained

by the above steps with initial date Qn, and by solving

Eq. (8) (y-direction) with the date Qx to obtain the solution

Qn?1 through the same steps. Lastly, the pore-fluid pres-

sure pbed can be updated by Qn?1.

The stability criterion adopted here is expressed by

(Brufau et al. 2004; Gottardi and Venutelli 2004)

Dt�min cfl
A

maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
þ cmÞP

 !
ð20Þ

where cfl\ 1 is the Courant number; and A and P are the

area and perimeter of the computational cell, respectively.

Results and discussion

A series of model tests were undertaken to verify the

presented numerical model. Specifically, the model pre-

dictions were compared with alternative numerical solu-

tions and laboratory experimental data published in the

literature. The computational grid size was fixed at 5 cm,

the gravity acceleration g = 9.8 m/s2, and the Courant

number cfl = 0.7. Moreover, free boundary conditions

were imposed on each side of the computational domain.
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Laboratory dam-break over a triangular hump

In this sub-section, a laboratory dam-break flow over a

triangular hump, which was performed by the EU CADAM

(European Union Concerted Action on Dam Break Mod-

elling) project, was simulated to verify the accuracy of the

current computational framework. The experiment setup is

sketched in Fig. 1. The horizontal domain was 38 m long

with the gate located 15.5 m away from the upstream end.

The still water surface elevation of the reservoir was

0.75 m. A symmetric triangular hump that was 0.4 m high

and 6 m long was located 10 m away from the gate at the

downstream end. The floodplain was initially dry and a

constant Manning coefficient of n = 0.0125 was used

throughout the domain. The upstream and downstream

ends of the domain were assumed to be a solid wall and a

free outlet, respectively. Seven gauges were located at 2, 4,

8, 10, 11, 13, and 20 m downstream of the gate, and these

were used to record the time history of the water depth,

which reflects the complicated process of water wave

propagation. By assuming that the gates all open suddenly,

the simulation results were computed and then compared to

the laboratory measurements; these data are shown in

Fig. 2. At those gauges, the arriving time and water depth

were predicted with a high amount of precision. Although a

small discrepancy was observed at gauge 7 between the

numerical and measured values, the comparison between

the numerical predictions and measurements was satisfac-

tory at most of the gauge points overall. This confirms the

effectiveness of the presented method for practical problem

simulation.

Computational results compared with USGS flume

experiments

To verify the ability of the current model to capture the

debris flow dynamics over non-erodible beds, numerical

computational comparisons were made with U.S. Geologi-

cal Survey (USGS) flume experimental results. The

experimental description of the debris flow on the non-

erodible bedspread was summarized by Iverson et al.

(2010). The computational material parameters and corre-

sponding measured values are listed in Table 1. The value

of k varied from about 0.3 to 3 depending on whether the

flowing debris underwent longitudinal extension or com-

pression (Iverson 2009; George and Iverson 2011). To focus

our computations on the evolution of the debris flow height,

the traditional shallow-flow assumption was used, where

k = 1. Comparisons between the numerical solutions and

experimental results for the flow height and pore-fluid

pressure versus time are shown in Figs. 3, 4, respectively.

The results show that the flow arrival time to the sensor and

the flow height versus time agree well with the experimental

results. However, a timing discrepancy was observed with

respect to the pore-fluid pressure. In the experimental data,

the arrival time of pore-fluid pressure was about 1 s late

when compared with the arrival time of the flow front. This

phenomenon is commonly observed in debris flows because

of particle-size segregation during the movement process

(Iverson et al. 2010, 2015). It can be concluded that the

pore-fluid pressure versus time data agreed well with the

experimental results, except for the timing discrepancy.

Predictions of downslope debris flow dynamics

To study the effect of pore-fluid pressure on the motion of

debris flow, a simple numerical test was conducted for

simulations of debris flow down an inclined slope. A sketch

of the chute and the initial shape of the debris flow are

shown in Fig. 5. In the numerical test, a simple reference

surface was defined, which consisted of an inclined plane

(slope angle = 40�, x\ 175 cm), a horizontal run-out

zone (x[ 215 cm), and a transition zone joining the two

regions. Superimposed on the inclined section of the chute

was shallow, parabolic, and cross-slope topography (y2/2R

with R = 110 cm). The flow material was released from

rest of the parabolic inclined section of the chute by means

of a Perspex cap that opened rapidly (t = 0 s). The cap was

Fig. 1 Dam-break over a

hump: experimental setup
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fitted to the basal chute topography and it had a spherical

free surface. The major axis of the cap was 32 cm in

length, and the maximum height of the cap above the

reference surface was 22 cm. The basal friction angle was

set to /bed ¼ 30
�

and other computational material

parameters were the same as those shown Table 1. The

Fig. 2 Dam-break over a hump: time histories of water depth at different gauges
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computed results, which consisted of three representative

moments at times t = 0.51, 1, and 1.51 s, are shown in

Fig. 6. Once the cap was open, the debris flow accelerated

and spread out rapidly in the downslope direction. The

computed results without pore-fluid pressure were slightly

less than those of the computed results with pore-fluid

pressure at t = 0.51 s, and the distance of later spread with

pore-fluid pressure was larger. Owing to the particular

cross-slope topography of the chute, the distance of lateral

spread of the debris flow during movement was shorter at

t = 1 s when compared with the shape of debris flow at

t = 0.51 s. As the debris flow entered the horizontal run-

out zone, compared to the debris flow with pore-fluid

pressure, the debris flow without pore-fluid pressure began

to accumulate at t = 1 s. In the end, the differences in

sliding distances between the two numerical results were

obvious, and the spread areas were also different. These

results demonstrate that pore-fluid pressure can counteract

normal stresses at grain contacts and reduce friction, thus

further enhancing the bulk flow mobility.

Table 1 The values of

computational parameters
Parameter (units) Symbol Experiment value(s) Model value

Solid phase density (kg/m3) qs 2700 2700

Fluid phase density (kg/m3) qf 1100 1100

Slope angle (degrees) d 31 31

Basal friction angle (degrees) /bed 40 40

Internal friction angle (degrees) /int 40 40

Hydraulic permeability (m2) g 4 9 10-12 to 4 9 10-11 4.5 9 10-12

Pore-fluid viscosity (Pa–s) l 0.001 to 0.05 0.005

Compressibility (Pa-1) a 10-5 to 10-3 5 9 10-4

Fluid volume fraction #f \0.4 0.38

Dilatancy angle (radians) W -0.2 to 0.2 0.1

Normal-stress coefficient k 0.3 to 3 1

Fig. 3 Comparison of flow height versus time for the flume

experiment with a rough bare bed at locations x = 32 and 66 m

Fig. 4 Comparison of pore-

fluid pressure versus time for

the flume experiment with a

rough bare bed at locations

x = 32 and 66 m
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Analysis of debris shear-induced dilatancy

The effect of debris shear-induced dilatancy on the evo-

lution of pore-fluid pressure was also investigated. For this

purpose, we performed one numerical test with three dif-

ferent values of W ¼ �p=4; 0; p=4 under the same condi-

tions. The channel was 10 m long, and it consisted of an

inclined plane (slope angle = 31�, x\ 4 m), a horizontal

run-out zone (x[ 6 m), and a transition zone joining the

two regions. The initial condition of debris flow at t = 0 s

is given by

u ¼ 0; h ¼
0:6 x� 1ð Þ 1� x� 1:5m
0:6 2� xð Þ 1:5� x� 2m

0 otherwise

8<
: ð21Þ

The computational parameters were set to a basal fric-

tion angle of /bed ¼ 28
�
, an internal friction angle of /int ¼

42
�
, and the other computational material parameters were

Fig. 5 Simple sketch of the

chute and initial shape of the

debris flow

Fig. 6 Comparison of the numerical results between experiments with pore-fluid pressure (right) and without pore-fluid pressure (left) at three

representative moments t = 0.51, 1 and 1.51 s
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the same as those in Table 1. In order to illustrate the

difference between the numerical results more intuitively,

the positions of both the front and tail parts of the landslide

as it descended the incline are shown in Fig. 7, along with

the maximum pore-fluid pressure during the run. The

simulation results show similar overall characteristics. In

the numerical tests, the maximum pore-fluid pressure with

a smaller dilatancy angle was higher with increase of time

than that with a larger dilatancy angle, and this led to a

longer sliding distance of debris-flow. It can be concluded

that the grains of debris flow converge during shearing

because of the negative dilatancy, and the remaining pore-

fluid pressure counteracts normal stresses at grain contacts

and reduces friction. In contrast, positive dilatancy caused

dissipation of pore-fluid pressure, thus further helping to

stabilize debris-flow motion.

Conclusions

In this paper, a high-resolution numerical scheme based on

the finite volume method was proposed to solve Iverson’s

two-phase debris flow model. To improve the feasibility of

this scheme, the fractional step method was adopted in this

study. The numerical method has been programmed, and

several numerical experiments were conducted. In these

numerical experiments, the influences of factors such as

pore-fluid pressure evolution and shear-induced dilatancy

on debris flow mobility were considered. By comparing the

numerical results with experimental data, the accuracy of

the numerical method and the feasibility of the model have

been verified. Moreover, the effects of pore-fluid pressure

and shear-induced dilatancy on debris flow mobility have

been investigated. The results showed that pore-fluid

pressure can have marked effects on the mobility of debris

flows. Debris shear-induced dilatancy was also found to be

an important factor that can influence the evolution of pore-

fluid pressure and further affect the motion of debris flows.

However, in future studies, it will be necessary to collect

more information about the relevant factors that influence

the behavior of pore-fluid pressures so that the present

model can be calibrated to predict the motion of actual

debris flows more accurately.
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