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Abstract Water quality and its effects on human life

have become one of the major concerns in aquatic

ecosystems. The water quality index (WQI) is defined as a

parameter to interpret water-monitoring data and clarify the

quality of water. In this study, the gene expression pro-

gramming (GEP) and artificial neural networks (ANNs)

were employed to predict WQI in free surface constructed

wetlands. Seventeen points of a selected wetland were

monitored twice a month over a period of 14 months, and

an extensive data set was collected for 11 water quality

variables (WQVs). A principal factor analysis (PFA)

indicated that WQI was greatly affected by pH and SS,

while temperature no has significant effect on the WQI in

tropical areas. A sensitivity analysis was carried out to

reduce the number of 11 WQVs in prediction of the WQI.

Subsequently, five significant parameters, pH, suspended

solid (SS), ammoniacal nitrogen (AN), dissolved oxygen

(DO) and chemical oxygen demand were selected to

develop a GEP and ANNs. The GEP was able to suc-

cessfully predict the WQI with high accuracy (R2 = 0.983

and MAE = 0.295). The statistical parameters indicate

that, although the ANNs with R2 = 0.988 and MAE =

0.013 produced better results compared with GEP, the

GEP-based formula is more useful for practical purposes.

The GEP and ANNs are recommended as rapid and pow-

erful WQI evaluation techniques to reduce substantial

effort and time by optimizing the calculations.

Keywords Constructed wetland � Gene expression

programming � Water quality index � Surface water �
Principal factor analysis � Artificial neural networks

Introduction

Poor quality of surface water is a serious problem in the

world which threatens human health, ecosystems and

plants/animals life. Water quality (WQ) is, therefore, a

main concern in water resource, environmental systems

and ecosystem. It is a terminology used to describe the

chemical, physical, and biological characteristics of water

in connection with a set of standards (Liou et al. 2004).

WQ assessment can be used to evaluate water properties in

reference to natural quality and human health effects

(Fernández et al. 2004). It can be assessed by measuring a

broad range of variables to represent the water pollution

level. Hence, a robust mathematical technique is required

to combine the physico-chemical characterization of water

into a single variable which describes the water quality. In

view of this, a water quality index (WQI) was developed as

a single number which uses a set of physico-chemical

water variables to explain the water quality at a certain

place and time (Zandbergen and Hall 1998).
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WQI is a unit-less number which reflects the status of

water quality in wetlands, lakes, streams, rivers, and

reservoirs. The concept of WQI is based on the comparison

of the water quality parameter with respective regulatory

standards (Khan et al. 2003). There are several equations

for WQI in different countries such as the US, Canada, and

Malaysia which are developed based on the standards of

the US National Sanitation Foundation (Said et al. 2004).

In 1974, the Department of Environment (DoE) Malaysia

recommended an index to assess the quality of surface

waters in Malaysia. Totally, six parameters were chosen as

main water quality variables (WQVs) to develop WQI for

surface water such as dissolved oxygen (DO), biochemical

oxygen demand (BOD), chemical oxygen demand (COD),

ammoniacal nitrogen (AN), suspended solid (SS) and pH

(DoE 2005; Khuan et al. 2002; Norhayati et al. 1997).

These variables should be converted into non-dimensional

parameters by sub-index functions. The conventional

method recommended by DoE requires long-lasting trans-

formations to calculate sub-indices. In addition, the sub-

indices required the inclusion of different equations, which

need lengthy effort and time to estimate the final WQI.

Therefore, estimation of such a WQI is cumbersome and

can lead to occasional mistakes (Gazzaz et al. 2012), and

robust techniques can be employed to solve these problems

(Mohammadpour et al. 2013a). The gene expression pro-

gramming (GEP) and artificial neural networks (ANNs)

can be suggested as alternative techniques for estimation of

WQI, as both employ the raw data instead of sub-indices.

In the last decade, the GEP and genetic programming (GP)

have been successfully used in water resources modelling

issues (Azamathulla et al. 2010; Zakaria et al. 2010; Aza-

mathulla and Ghani 2011). Furthermore, these methods were

recommended as significant tools in environmental and river

engineering problems (Chen et al. 2008; Aras et al. 2007;

Mohammadpour et al. 2013b; Ghani and Azamathulla

2014; Mohammadpour et al. 2015b). Vink and Schot (2002)

developed GP for optimization of drinking water. The per-

formance of the GP was compared with analytic solution of a

series of hypothetical case studies. Hashmi et al. (2011)

developed GEP for downscaling of watershed precipitation in

Canada. Azamathulla (2012) applied GEP for prediction of

scour depth at downstream of sills. Ni et al. (2012) evaluated

water storage in wetlands using the GP technique. The result

indicated that the GP method can be used for estimation of

water fluctuation in the wetlands. Azamathulla and Ahmad

(2012) used GEP approach to predict the transverse mixing

coefficient in open channel flows. Xu and Qin (2013) solved

the problem related to agricultural water quality management

by using a combination of GA and fuzzy simulation. Orouji

et al. (2013) investigated the performance of GP and ANFIS-

GP to estimate water quality parameters. Different combina-

tions of data set were employed in their study, and the results

showed that GP is superior to ANFIS for prediction of water

quality parameters. Zaman Zad Ghavidel and Montaseri

(2014) employed GEP and other artificial intelligence

approaches to predict total dissolved solids in river basin. A

comparison between all selected approaches emphasized the

superiority of GEP over the other intelligent methods.

Recently, a lot of studies have been reported in liter-

ature regarding the application of ANNs in different fields

such as water quality, wastewater treatment and other

water resources problems (Singh et al. 2009; Civelekoglu

et al. 2009; Verma and Singh 2013; Mohammadpour

et al. 2013c, 2014b, 2015a). In the area of river man-

agement, ANNs was used to simplify and speed up the

calculation of water quality index (Khuan et al. 2002;

Juahir et al. 2004; Gazzaz et al. 2012). The ANNs was

employed to determine water quality parameters and

simulate wetlands processes (Wang et al. 2012; Kashefi

Alasl et al. 2012; Li et al. 2013; Song et al. 2013).

Schmid and Koskiaho (2006) developed ANNs to model

concentrations of dissolved oxygen in free surface wet-

lands. They have also used ANNs to estimate the relative

influence of flow rate and wind shear on near bottom

oxygen saturation. The results indicated that ANNs was

able to produce estimates of convective oxygen transport.

Dadaser-Celik and Cengiz (2013) simulated the water

level in wetlands using ANNs. It was found that the ANN

method can successfully be employed to predict water

levels in wetlands. Karthikeyan et al. (2013) developed

ANNs to predict ground water levels in the upland of a

tropical coastal wetland with fairly accurate results.

The main objective of this research is to reduce sub-

stantial time and effort for calculation of WQI in the free

surface constructed wetlands. The GEP and ANNs were

employed as the robust techniques to determine WQI.

Seventeen points in a wetland were monitored twice a

month over a period of 14 months and an extensive data set

was collected for 11 water quality variables. A principal

factor analysis (PFA) was used to determine and interpret

the correlation between variables. To develop GEP and

ANN, the significant variables were chosen using sensi-

tivity analysis. Finally, accuracy of each method was

evaluated using a comparison between the obtained results.

Materials and methods

Study area

In this research, the free surface constructed wetland

(FSCW) in the Universiti Sains Malaysia (USM) in Penang

(Malaysia) was chosen as a case study. The landscape area

is about 320 hectares, and it is covered by oil palm plan-

tation (Shaharuddin et al. 2013; Mohammadpour et al.
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2014a). The wetland is located at latitude 5� 90 7.829400

North and longitude 100� 290 53.167200 East. The FSCW

was designed based on the Stormwater Management

Manual for Malaysia (Zakaria et al. 2003). Seventeen

sampling points with different plant species and water

depths were chosen to monitor the water quality. These

points include the inlet, six stations in the macrophyte area

(W1–W6), nine points in micropool (MA1–MC3), and the

outlet (Fig. 1). These points have been chosen in such a

way that covers all range of plants and the water depths in

the wetland (Table 1).

The data were collected twice a month over a period of

14 months (from Oct. 2010 to Dec. 2011). Totally, 11 water

quality variables (WQVs) were collected in the wetland,

including dissolved oxygen (DO), pH, temperature, con-

ductivity, suspended solid (SS), nitrite, nitrate, ammoniacal

nitrogen (AN), chemical oxygen demand (COD), biochem-

ical oxygen demand (BOD), and phosphate. Table 2 indi-

cates statistical parameters of the collected data.

The local water quality index

As mentioned earlier, to determine WQI of water surface,

the DoE (2005) recommended six variables such as, DO,

BOD, COD, AN, SS and pH. These variables should be

converted into non-dimensional variables using sub-index

functions (SI). Table 3 shows the required functions which

can be used to estimate sub-indices. In this table, X is the

concentration parameter in terms of mg/L, except for pH

and DO. For DO, the X refers to percentage of saturation

and for pH it refers to the pH value. Finally, the WQI can

be calculated using the following equation (DoE 2005;

Khuan et al. 2002):

WQI ¼ 0:22 SIDO þ 0:19 SIBOD þ 0:16 SICOD þ 0:15 SIAN

þ 0:16 SISS þ 0:12 SIpH ð5Þ

where SI stands for sub-index.

WQI is a unit-less number which varies between 0 and

100, where a high value of WQI represents high (good)

water quality and a low value of WQI represents low (poor)

water quality. Based on this index, the water quality can be

classified into five classes. Table 4 shows the water quality

classes suggested by the DoE.

Principal factor analysis

In this study, principal factor analysis (PFA) has been

employed to determine the correlation between variables

and WQI. Furthermore, insignificant variables can be

clarified in this analysis. To avoid the effect of strong

variables with high values on PFA, the z scale

Fig. 1 Seventeen sample points in the constructed wetland of USM
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transformation was used to standardize the collected data

set. The KMO (Kaiser–Meyer–Olkin) and Barlett’s tests of

sphericity were employed to evaluate sampling size ade-

quacy and verification of PFA, respectively.

The PFA was applied to a matrix with the dimension of

442 objects and twelve variables (a WQI and 11 WQVs).

The KMO test produces a value equal to 0.822 which

indicates the number of collected data is adequate. In

addition, the Bartlett’s test of sphericity with approximate

Chi Square of 3792.804 (q = 0.000\ 0.05 and df = 66)

reveals that the principal factor analysis can be used to

explain the WQVs.

As shown in Table 5, three factors were extracted by the

PFA with eigenvalue bigger and equal to one. To estimate

the effect of each variable in the PFA, the Varimax rotation

was employed to determine values of rotated factor load-

ings. However, a factor loading less than 0.4 was recog-

nized as a weak factor (Lambrakis et al. 2004; Gazzaz et al.

2012).The strong and moderate factors (bigger than 0.40)

are shown in bold in Table 5.

Eight variables including the WQI are loaded on the first

factor with a variation of 49 %. The WQVs and their factor

loadings are SS (0.85), nitrate (0.84), phosphate (0.84), AN

(0.81), nitrite (0.81), BOD (0.79), COD (0.77), and WQI

(-0.62). A negative factor loading for WQI indicates that

the WQI increases with decreasing values in the mentioned

variables in the first factor. Among all variables, SS has

higher correlation with WQI. Consequently, it is a signif-

icant parameter on WQI.

Suspended solids (SS) is solid materials, including

organic and inorganic, that are suspended in the water.

High concentrations of SS increases the amount of light

which can be absorbed by the water. In this condition, the

water becomes warmer and loses its ability to hold oxygen.

Aquatic plants also receive less light and less oxygen that is

produced by photosynthesis. The combination of less light,

warmer water and less oxygen decreases the water quality.

The loaded variables on the second factor are pH (0.90),

conductivity (0.82), DO (0.47) and WQI (-0.69). The high

correlation between pH (0.90) and WQI (-0.69) illustrates

that pH is another significant variable. In addition, negative

coefficient indicates that WQI decreases with increasing

pH in range of 6.11 and 9.19 (Table 2).

The third factor received the highest factor loading from

DO (0.68) and temperature (0.82). The WQI is loaded on

this factor with very low value (-0.09). In the second

extracted factor, it was observed that DO has a correlation

with WQI indicating that temperature alone has no effect

on the WQI. It may be due to low variation of wetland

temperature in tropical areas with minimum, maximum and

average value of 27.3, 35.15 and 31.12, respectively,

(Table 2). Consequently, temperature is an insignificant

variable for wetlands which are located in tropical areas.

Table 1 Plant species and the

water depth in the USM wetland
Site Wetland plant species Water depth (m)

Wetland 1 Dominant: Hanguana malayana, Lepironia articulata 0.25–0.3

Wetland 2 Dominant: Hanguana malayana, Typha angustifolia

Less dominant: Scirpus grossus

0.27–0.32

Wetland 3 Dominant: Lepironia articulata, Eleocharis variegata

Less Dominant: Eriocaulon longifolium

0.51–0.62

Wetland 4 Dominant: Hanguana malayana, Lepironia articulata,

Eleocharis variegata

0.47–0.54

Wetland 5 Dominant: Lepironia articulata 0.51–0.64

Wetland 6 Dominant: Lepironia articulata

Less dominant: Typha angustifolia

0.31–0.54

Micropool

(MA, MB and MC)
Without plant 2.48–2.54

Table 2 Descriptive statistics of wetland parameters

WQV Min Max Mean SD

Temperature (�C) 27.30 35.15 31.12 1.52

pH 6.11 9.19 7.73 0.69

DO (mg/l) 4.96 11.06 8.24 0.87

Conductivity (ls/cm) 94.00 206.00 136.59 25.49

Nitrite (mg/l) 0.00 0.06 0.02 0.01

Nitrate (mg/l) 0.20 4.90 2.15 0.91

Phosphate (mg/l) 0.11 0.58 0.25 0.10

AN (mg/l) 0.10 0.47 0.22 0.07

BOD (mg/l) 1.32 4.12 2.53 0.47

COD (mg/l) 9.00 44.00 21.96 5.60

SS (mg/l) 2.00 39.00 17.75 7.79

Number of data = 442
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Artificial neural networks (ANNs) methods

Artificial neural networks (ANNs) are a computational

process which attempts to represent and compute a map-

ping from multivariate data set as inputs to another as

outputs. A neuron is the smallest part of the neural net-

work, with artificial neurons arranged in the structure like a

network. In this study, feed forward back propagation

neural network (FFBP) was used to predict WQI in the

wetland. The network consists of a set of neurons in three,

inputs, hidden and output layers to approximate a multi-

variant function of f(x). The number of neurons in hidden

layers can be detected by trial and error. The learning

procedure includes the best weight vector to achieve the

best approximation of f(x). Firstly, a set of input data (x1,

x2,…xR) is fed to the input layer, and the output of each

neuron can be determined from the following equation:

n ¼
X

wi jxi þ bi ð2Þ

where n is the neuron output, wij is weight of the connec-

tion between the jth neuron in the present layer and ith

neuron in the previous layer, xi is neuron value in the

previous layer and bi is the bias. The sigmoid function can

be used as a transfer function to generate the output of each

neuron (Bateni et al. 2007) given by:

yi ¼
1

1þ e�C1

P
wi j xi þb ið Þ ; C1 [ 0 ð3Þ

A comparison between the target value and obtained

results was used to estimate network errors, while the back

propagation algorithm corrects the weight between neu-

rons. The back-propagation (BP) method is a descent

algorithm, which tries to minimize the error at each itera-

tion. The network weights are set by the algorithm such

Table 3 The sub-index

equation for WQI in Malaysia

(DoE 2005)

WQVs Valuea Sub-index

DO (%saturation) X� 8 SIDO ¼ 0

8\X\92 SIDO ¼ �0:395þ 0:03X2 � 0:0002X3

X� 92 SIDO ¼ 100

BOD X� 5 SIBOD ¼ 100:4� 4:23X

X[ 5 SIBOD ¼ ð108 e�0:055XÞ � 0:1X

COD X� 20 SICOD ¼ 99:1� 1:33X

X[ 20 SICOD ¼ ð103 e�0:0157XÞ � 0:04X

AN X� 0:3 SIAN ¼ 100:5� 105X

0:3\X\4 SIAN ¼ ð94 e�0:573XÞ � 5 X � 2j j
X� 4 SIAN ¼ 0

SS X� 100 SISS ¼ ð97:5 e�0:00676XÞ þ 0:05X

100\X� 1000 SISS ¼ ð71e�0:0016XÞ þ 0:015

X� 1000 SISS ¼ 0

pH X\5:5 SIpH ¼ 17:2� 17:2X þ 5:02X2

5:5�X\7 SIpH ¼ �242þ 95:5X � 6:67X2

7�X\8:75 SIpH ¼ �181þ 82:4X � 6:05X2

X� 8:75 SIpH ¼ 536� 77X þ 2:76X2

a X is the concentration parameter in terms of mg/L, except for pH and DO. For DO, X refers to DO

percentage saturation and for pH it refers to the pH value

Table 4 Water quality classes,

WQI and water status (DoE

2005)

Parameters Unit Classes

I II III IV V

AN mg/l \0.1 0.1–0.3 0.3–0.9 0.9–2.7 [2.7

BOD mg/l \1 1–3 3–6 6–12 [12

COD mg/l \10 10–25 25–50 50–100 [100

DO mg/l [7 5–7 3–5 1–3 \1

pH – [7 6–7 5–6 \5 [5

SS mg/l \25 25–50 50–150 150–300 [300

Water quality index – [92.7 76.5–92.7 51.9–76.5 31.0–51.9 \31.0

Water Status – Very good Good Average Polluted Very polluted
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that the network error decreases along a descent direction

(gradient descent). Generally two parameters, called

momentum factor (MF) and learning rate (LR), are used to

control the weight adjustment in the descent direction.

Sensitivity analysis using ANNs

In this study, the ANNs was employed to reduce the

number of independent variables for prediction of the WQI.

Range of data for sensitivity analysis is shown in Table 6.

A network with feed forward back propagation method

(FFBP) was developed for sensitivity analysis. The number

of neurons in the input layer was determined based on the

number of input variables. Since the WQI was chosen as the

network output, then the number of neurons in the output

layer was selected equal to one. One layer was chosen in

hidden layer and the optimumnumber of neurons in this layer

was found equal to 5 using trial and error approach.

The leave-one-out method was used to assess the effect

of each variable on the WQI. In this method, two indica-

tors, the ratio of error and its rank, were estimated by

removing each input variable at a time (Ha and Stenstrom

2003). The ratio of the error is obtained after elimination of

individual variable to the error obtained using all variables.

The high ratio illustrates the importance of individual

variable and vice versa (Table 7).

Another attempt was conducted to determine the sig-

nificance or influence of input variables on WQI. Table 8

compares the ANNs models with one of the independent

variables removed in each case. As shown in this table, pH,

COD, DO, AN and SS are significant variables with

R2 = 0.9882, RMSE = 0.0179 and MAE = 0.0136 and

have a non-negligible influence on WQI. These parameters

were chosen to developed GEP and ANNs in this study.

Other parameters such as BOD, phosphate, nitrate, nitrite

and conductivity do not have any significant effect on WQI

and can be ignored.

In light of these findings, the pH with the highest rank

can be considered as a main parameter for WQI in the

wetlands (Table 7), although it is ranked only as the 6th

variable in the conventional WQI equation. This equation

(Eq. 1) is suggested for estimation of WQI in the rivers,

and the difference between ranking of pH in Eq. (1) and

the present study may be due to the discharge of the point

source and non-point source pollution loads to rivers.

However, the selected wetland is mainly polluted by dis-

charge from non-point source pollution due to storm water.

Table 5 Matrix of the weights for the principal components

Item Component (factor)

1 2 3

SS 0.85 0.18 0.19

Nitrate 0.84 0.11 0.13

Phosphate 0.84 0.13 0.16

AN 0.81 0.11 0.24

Nitrite 0.81 0.25 0.00

BOD 0.79 0.05 -0.06

COD 0.77 -0.11 0.19

pH -0.03 0.90 0.20

Conductivity 0.16 0.82 -0.01

WQI 20.62 -0.69 -0.09

Temperature 0.34 -0.03 0.82

DO 0.00 0.47 0.68

Eigenvalue 5.88 2.00 1.00

Initial variance (%) 49.00 16.72 8.32

Cumulative variance (%) 49.00 65.72 74.05

Total variance (%) 74.05

Table 6 Range of data for training and testing

Parameters Training Testing

Min Max Min Max

Temperature 27.30 35.15 28.38 34.76

Conductivity 94.00 206.00 96.00 189.00

Nitrite 0.00 0.06 0.00 0.05

Nitrate 0.20 4.50 0.20 4.90

Phosphate 0.11 0.58 0.12 0.48

pH 6.11 9.19 6.40 9.17

DO 4.96 11.06 5.13 10.81

AN 0.10 0.47 0.10 0.42

BOD 1.32 4.12 1.46 3.75

COD 9.00 44.00 11.00 44.00

SS 2.00 39.00 2.00 34.00

WQI 73.51 93.21 73.76 92.84

Table 7 Sensitivity analysis using ANNs

All variable without Ratio Rank

pH 1.226 1

COD 1.081 2

DO 1.048 3

AN 1.044 4

SS 1.020 5

BOD 1.019 6

Phosphate 1.000 7

Nitrate 1.000 8

Conductivity 0.999 9

Nitrite 0.998 10

Temperature 0.997 11
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This point can be considered for re-establishment of a new

equation for WQI in the wetlands and other water resources

with discharge from non-point pollution.

Development of GEP for water quality index

Gene expression programming (GEP) is a learning algo-

rithm which was developed based on genetic programming

(GP) and genetic algorithms (GA). In each individual

population, the chromosomes are generated randomly and

evaluated using a fitness function. Mutation is found as

effective genetic operators to modify chromosomes. The

following steps were used to develop GEP model.

In the first step, the size of the population was chosen

equal to 30 as optimum size. Ferreira (2001) recommended

a population size between 30 and 100 chromosomes as

being able to provide an accurate result.

Secondly, the root relative squared error (RRSE) was

chosen as fitness function in the GEP.

In the third step, a basic mathematical function (power),

and four basic arithmetic operators (?, -, 9, /) were

chosen to create chromosomes in each gene.

In next step, the chromosome architecture was chosen

based on the length of the head, number of genes, and tail.

The optimum result was determined for length head of

seven and three genes per chromosome (Ferreira 2001,

Mohammadpour et al. 2011, 2013b).

In the fourth step, both addition and multiplication

operators were evaluated to find the best linking function,

and the result showed that the addition function is more

accurate. This function was employed to make a link

between the sub-expression (chromosomes) in the GEP.

In the last step, the operators of GEP such as, mutation,

transpositions, inversion, and cross-over, were employed to

develop the GEP model.

Table 8 Sensitivity analysis using different variables

Variables Training Testing

R2 RMSE MAE R2 RMSE MAE

pH-COD 0.8235 0.0703 0.0530 0.7870 0.0758 0.0602

pH-COD-DO 0.8835 0.0571 0.0443 0.8130 0.0710 0.0555

pH-COD-DO-AN 0.9757 0.0261 0.0208 0.9636 0.0313 0.0255

pH-COD-DO-AN-SS 0.9926 0.0144 0.0112 0.9882 0.0179 0.0136

pH-COD-DO-AN-SS-BOD 0.9988 0.0058 0.0047 0.9911 0.0155 0.0073

pH-COD-DO-AN-SS-BOD-phosphate 0.9988 0.0059 0.0048 0.9970 0.0090 0.0068

pH-COD-DO-AN-SS-BOD-phosphate-nitrate 0.9989 0.0055 0.0044 0.9974 0.0084 0.0062

pH-COD-DO-AN-SS-BOD-phosphate-nitrate-conduc. 0.9991 0.0050 0.0039 0.9980 0.0073 0.0056

pH-COD-DO-AN-SS-BOD-phosphate-nitrate-conduc.-nitrite 0.9992 0.0048 0.0037 0.9981 0.0074 0.0055

All variables 0.9992 0.0047 0.0035 0.9981 0.0074 0.0055

Fig. 2 Architecture of ANNs-FFBP for free constructed wetland

Fig. 3 Variation of RMSE for training and testing data in terms of

number of neurons
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Performance of the GEP and ANNs was assessed

through the statistical parameters such as, coefficient of

determination (R2), mean absolute error (MAE) and root

mean square error (RMSE). Expressions for these measures

are given as follows:

R2 ¼ 1�

Pp

i¼1

ðOi � PiÞ2

Pp

i¼1

ðOi � OiÞ2
ð4Þ

MAE ¼ 1

n

Xp

i¼1

Oi � Pij j ð5Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1 ðOi � PiÞ2

n

s

ð6Þ

where Oi is observed values, Pi is predicted value, Oi is

average of observed value and n is the number of samples.

Results and discussion

The total 442 datasets were divided randomly into training

and testing subsets, 80 % (353 data set) for training and

20 % (89 data set) for testing (Table 6). Regarding the

sensitivity analysis, five main variables of pH, COD, DO,

AN and SS were employed to develop ANNs and GEP.

Figure 2 indicates an architecture of FFBP with five

neurons as input and one neuron at output layer. Based on

trial and error, the ANNs-FFBP network with 2000 epochs

provided better results in comparison with the other

networks.

The ANNs was developed with a different number of

neurons in the hidden layer to find ANNs with the best

performance. To assess over-fitting of network (low

training error but high test error), the root mean square

error (RMSE) was employed as a criterion. As shown

in Fig. 3, the RMSE decreases dramatically with

increasing number of neurons in the hidden layer.

Table 9 indicates the performance of ANN-FFBP with

different neurons in the hidden layer. The testing data

was assessed to find the optimum number of neurons in

hidden layer.

The best performance was provided for networks with

five neurons in hidden layer. In this network, ANNs-FFBP

predicts WQI with high accuracy in the wetland

(R2 = 0.9887, RMSE = 0.0173 and MAE = 0.0130). An

over-fitting was observed in testing data for a number of

neurons bigger than 5.

To evaluate the WQI, the GEP model has been devel-

oped using the same data set employed for the ANNs. The

GEP expression tree is shown in Fig. 4. The simplified

analytic form of the GEP model can be expressed as:

WQI ¼ 8:5þ 0:85SS

DO

� �
AN� 0:81ð Þ pHð Þ þ AN� 7:68

� �

� ANð Þ � DO2 � 7:63 DO

COD
� 0:19COD

� pH� 7:31ð Þ2þ96:63 ð7Þ

Table 9 Performance of ANN

with different neurons in hidden

layer

No. of neurons Training Testing

R2 RMSE MAE R2 RMSE MAE

2 0.9559 0.0352 0.0243 0.9552 0.0345 0.0247

3 0.9886 0.0179 0.0142 0.9832 0.0211 0.0156

4 0.9910 0.0159 0.0127 0.9873 0.0183 0.0139

5 0.9917 0.0153 0.0121 0.9887 0.0173 0.0130

6 0.9926 0.0145 0.0113 0.9840 0.0206 0.0156

7 0.9930 0.0140 0.0109 0.9866 0.0189 0.0147

8 0.9932 0.0139 0.0107 0.9559 0.0342 0.0181

9 0.9940 0.0130 0.0098 0.9843 0.0204 0.0148

10 0.9941 0.0129 0.0098 0.9704 0.0280 0.0177

11 0.9948 0.0121 0.0095 0.9808 0.0226 0.0161

12 0.9954 0.0114 0.0087 0.9782 0.0241 0.0174

13 0.9952 0.0116 0.0087 0.9860 0.0193 0.0146

14 0.9954 0.0114 0.0087 0.9745 0.0260 0.0183

15 0.9957 0.0110 0.0082 0.9790 0.0236 0.0182

16 0.9961 0.0105 0.0081 0.9820 0.0218 0.0165

17 0.9964 0.0101 0.0075 0.7040 0.0886 0.0278

18 0.9965 0.0099 0.0073 0.9666 0.0298 0.0213

19 0.9970 0.0093 0.0072 0.9458 0.0379 0.0204
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This equation predicts WQI in constructed wetlands

with only five direct variables instead of sub-index vari-

ables. Therefore, this equation is more useful and rapid in

comparison with Eq. (1).

A comparison between predicted and observed WQI for

both GEP and ANN-FFBP is shown in Fig. 5 and Table 10.

It should be noted that the raw dataset was used to develop

GEP (Fig. 5a) while the normalized dataset was employed

Fig. 4 Expression trees for the GEP equation

Fig. 5 Comparison between predicted and observed WQI using a GEP; b ANN-FFBP
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for prediction of WQI in ANN-FFBP (Fig. 5b). Prediction

of proposed GEP with R2 = 0.983, RMSE = 0.379 and

MAE = 0.295 is comparable with ANNs (R2 = 0.988,

RMSE = 0.017 and MAE = 0.013). The results indicate

that the both GEP (Eq. 7) and ANN-FFBP can be used as a

reliable and precise method in the range of the collected

data (Table 2). Furthermore, these methods propose some

advantages in comparison with the traditional method.

Firstly, the BOD is excluded in both GEP and ANN, and

these methods have been developed using five variables.

Therefore, the number of variables required is less than

those in traditional methods which required six sub-indices.

Furthermore, measurement of BOD requires significant

time, cost and commitment. The BOD test is run in the dark

at 20 �C for 5 days. The temperature is specified because

the rate of oxygen consumption is temperature dependent,

and with no light source to eliminate the possibility of

photosynthesis. However, determination of BOD is a very

time-consuming process in comparison with other vari-

ables. Therefore, the recommended methods are more rapid

and cost effective.

Secondly, the conventional equation recommended by

DoE (2005) employs six sub-indices parameters, which

requires a more cumbersome attempt and longer time to

convert the six raw data into its sub-indices (Table 3). In

addition, instead of using the original parameters, all

parameters are based on the sub-indices (Eq. 1) which should

be obtained from rating curves. In contrast, both the GEP and

ANN approaches use the raw variables rather than the sub-

indices which lead to a direct prediction of the WQI. Most

importantly, the GEP and ANN techniques are more direct,

rapid, and convenient compared to the conventional method.

Thirdly, the proposed GEP (Eq. 7) is more practical in

comparison to ANNs, and raw data without normalization

can be used in this equation. In comparison with conven-

tional equation, GEP is more direct, convenient, and rapid.

An example is mentioned in the Appendix to compare

calculation of WQI based on proposed and traditional

methods. The WQI obtained by GEP with a value of 84.15

is close to the value obtained by the traditional equation

(84.34). The results show that GEP is accurate, simple and

quick to calculate WQI. In this sample, the water was

classified as group-II with a range of WQI between 76.5

and 92.7 (Table 4).

Accordingly, this research highlights that the GEP and

ANN-FFBP can be employed as valuable techniques for

estimation of water quality in the FSCW. These methods

simplify the calculation of the WQI and reduce substantial

time and effort by optimizing the computations. These

approaches are highly recommended to be used for water

quality assessment of any aquatic system in the world. This

research should encourage the researchers and managers to

apply the GEP and ANN-FFBP methods as more direct and

reliable alternatives to estimate water quality in wetlands

and other water bodies.

Conclusions

In this study, GEP and ANNs techniques were employed to

develop the WQI in the free surface constructed wetlands.

Seventeen points of the wetland were monitored twice a

month over a period of 14 months, and an extensive data

set was collected for 11 water quality variables. The PFA

was employed to interpret correlation between WQI and

other variables. This analysis indicated that WQI was

greatly affected by pH and SS, while temperature had no

significant effect on the WQI in tropical areas. A sensitivity

analysis was carried out using ANNs to reduce the number

of variables. Subsequently, five significant parameters

including pH, COD, DO, AN and SS were chosen to

develop GEP and ANN methods. A high value of the

coefficient of correlation (R2 = 0.983) and low error

(MAE = 0.295) indicated that the GEP method was able to

successfully predict the WQI with high accuracy. The

statistical parameters indicate that, although the ANN-

FFBP with R2 = 0.988 and MAE = 0.013 produced better

results compared with GEP, the GEP-based formula is

more useful for practical purposes. This research highlights

that the GEP and ANN-FFBP can be employed as powerful

and highly reliable methods to estimate water quality in

wetlands and other water bodies. These two techniques are

highly recommended to be used for accurate, quick and

cost effective water quality assessments for any aquatic

system in the world.
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Table 10 Statistical parameters to predicted WQI using the GEP and

ANNs

Method Dataset R2 RMSE MAE

GEP Training 0.981 0.411 0.306

Testing 0.983 0.379 0.295

ANNs Training 0.9917 0.0153 0.0121

Testing 0.9887 0.0173 0.0130
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Appendix

Adata samplingwas collected in the free surface constructed

wetland with Temp. = 33.12 �C, DO = 9.05 mg/l,

BOD = 2.54 mg/l, COD = 34 mg/l, AN = 0.21 mg/l,

SS = 26 mg/l and pH = 8.10. Determine the WQI in the

wetland using the conversional equation (DoE 2005) and

GEP equation?

1. Determine WQI based on DoE (2005):

DO = 9.05 mg/l and Temperature = 33.12 �C then

DO (%saturation) = 126.34[ 92 SIDO ¼ 100:

BOD = 2.54 B 5, then SIBOD ¼ 89:66.

COD = 34[ 20, then SICOD ¼ 59:04.

AN = 0.21 B 0.3, then SIAN ¼ 78:45

SS = 26 B 100, then SISS ¼ 83:09.

pH = 8.10, 7 B pH 100\ 8.75, then SIpH ¼ 89:49.

WQI ¼ 0:22 ð100Þ þ 0:19 ð89:99Þ þ 0:16 ð59:04Þ
þ 0:15 ð78:45Þ þ 0:16 ð83:09Þ
þ 0:12 ð89:49Þ

¼ 84:34

2. Determine WQI based on GEP equation:

WQI ¼ 8:5þ 0:85ð26Þ
9:05

� �
0:21� 0:81ð Þ 8:1ð Þ

�

þ0:21� 7:68� 0:21ð Þ � 9:052 � 7:63ð9:05Þ
34

� 0:19ð34Þ

� 8:1� 7:31ð Þ2þ96:63 ¼ 84:15
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