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Abstract In most cases, climate change projections from

General Circulation Models (GCM) and Regional Climate

Models cannot be directly applied to climate change impact

studies, and downscaling is, therefore, needed. A large

number of statistical downscaling methods exist, but no

clear recommendations exist of which methods are more

appropriate, depending on the application. This paper

compares two different statistical downscaling methods,

Presim1 and Presim2, using the Coupled Model Intercom-

parison Project Phase 5 (CMIP5) datasets and station

observations. Both methods include two steps, but the

major difference between them is how the CMIP5 dataset

and the station data used. The downscaled precipitation

data are validated with observations through China and

Jiangxi province from 1976 to 2005. Results show that

GCMs cannot be used directly in climate change impact

studies. In China, the second method Presim2, which

establishes regression model based on the station data, has

a tendency to overestimate or underestimate the real val-

ues. The accuracy of Presim1 is much better than Presim2

based on mean absolute error, mean relative error and root

mean square error. Presim1 fuses the mode data and station

data effectively. Results also show the importance of the

meteorological station data in the process of residual

modification.
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Introduction

Precipitation as a fundamental component of the global

water cycle is a key parameter of ecology, hydrology and

meteorology (Goovaerts 2000; Langella et al. 2010; Li and

Shao 2010; Antonellini et al. 2014; Samper et al. 2014).

Understanding and quantifying the spatial variability of

precipitation are of key importance in hydrological studies

as precipitation drives most hydrological, environmental

and agricultural processes. However, strong precipitation

gradients over short distance are difficult to capture with

point measurements from meteorological stations. Stations

are generally located in areas which are readily accessible.

It is usually low and insufficient for the use of conventional

spatial interpolation techniques (Celleri et al. 2007; Ward

et al. 2011). In recent years, the development of remote

sensing and geographic information technology has pre-

sented us with new methods of precipitation observation

(Michaelides et al. 2009). Satellite precipitation data have

been widely evaluated with a better performance (Dinku

et al. 2007) and used for many applications such as

hydrological modeling (Li et al. 2012; Su et al. 2008;

Swenson and Wahr 2009), flood prediction (Li et al. 2009),

land cover (Cho et al. 2014), rainfall erosivity estimation

(Vrieling et al. 2010) and climatological studies (Islam and

Uyeda 2007). But studies show that different remote

sensing data have different performances in China (Gao
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and Liu 2013; Kan et al. 2013). Moreover, the temporal

coverage of remote sensing data is limited, not long enough

to resolve the decadal trends and variability in China.

In the World Climate Research Programme (WCRP),

different global climate models (GCMs) participate in the

Coupled Model Intercomparison Project Phase 5 (CMIP5).

The Coupled Model Intercomparison Project Phase 5

(CMIP5) datasets have been used for the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change

(AR5). These simulations of GCMs have demonstrated the

ability to generally replicate the precipitation trend over

the second half of the twentieth century, and can offer

precipitation in a longer time scale. However, GCMs have

so far been too coarse to resolve this geographically well-

defined region. A number of studies have been carried out

to create a connection between climate change at the large

scale and at the regional scale. The most straightforward

approach is linear or more sophisticated methods of

interpolation between large-scale grid points closest to the

region to infer the regional scale. This method has

attracted a lot of criticism, since it is felt that the model

resolution is too coarse and the model performance is too

poor to allow for interpolation of the results. To overcome

the problems with direct interpolation, the approach ter-

med downscaling can be pursued. This approach is based

on the understanding that the large-scale information

provided by standard coarse-grid GCMs may be postpro-

cessed together with the regional information to specify

the regional details of the present climate and its sensi-

tivity to changes in atmospheric composition or other

external anomalies. Downscaling methods are usually

classified as either dynamical or statistical. Dynamical

downscaling involves the use of high-resolution, limited-

area climate models within the domain of interest,

whereas in statistical downscaling relatively simple sta-

tistical models are used to represent the link between

atmospheric circulation variables, presumably well simu-

lated by the GCMs, and local weather variables such as

precipitation and temperature (Wilby and Wigley 1997;

Fowler et al. 2007; Tareghian and Rasmussen 2013; Duan

and Mei 2014). Statistical downscaling method is widely

undertaken because it is easy and fast to apply (Fowler

et al. 2007; Haylock et al. 2006; Barfus and Bernhofer

2014). Statistical downscaling is a two-step process con-

sisting of (1) the development of statistical relationships

between local climate variables and large-scale predictors

and (2) the application of such relationships to the output

of GCM experiments to simulate local climate character-

istic in the future. The two main challenges in statistical

downscaling are the determination of the functional rela-

tionship and the identification of the predictor variables

that convey the most relevant information about the pre-

dictand and the climate change signal.

Although there is a large body of literatures where an

intercomparison of different downscaling methods has

been made (Mehrotra et al. 2004; Diaz-Nieto and Wilby

2005; Frost et al. 2011; Liu et al. 2012), very few of these

studies have compared downscaling methods from the

point of data usage ways. Here, we present two statistical

downscaling methods and compare them to give the opti-

mal one for China. We use the meteorological site infor-

mation over China to downscale the simulations of CMIP5

output results. Both statistical downscaling methods used

here involve two steps: (1) determining a local linear model

by Geographical Weighted Regression method (GWR) for

every location in the prediction domain, (2) using the High

Accuracy Surface Modeling method (HASM) to modify

the residual produced by the first step. The major differ-

ence between them is the data used in the two steps. Then,

we use the separate dataset in Jiangxi province and 10 % of

the data from national scale to validate the results. At last, a

conclusion is given in the final section.

Study area and data

China is located in east Asia. It is the third largest country

on earth. China’s topography varies enormously from high

mountainous regions to inhospitable desert zones and flat,

fertile plains. It is a predominantly mountainous country

with a very distinct structural pattern. The extremely varied

landforms of China affect the climate conditions in various

ways. Precipitation over China exhibits complex space and

time structures. Large interannual variability causes local

precipitation to fluctuate from year to year. Several floods

and droughts often occur in the same season of a year over

different regions. Precipitation over China has distinct

seasonal characteristics, and is largely controlled by the

monsoon circulation. Traditionally, the time from mid-May

to the end of August has been defined as the east Asian

summer monsoon season, resulting in remarkably variable

precipitation for the whole region (Wang and Li 2007).

The historical precipitation data of 752 stations across

China were obtained from the national meteorological

network in China for the period 1976–2005, which were

further analyzed for quality control. The sampling periods

of the meteorology stations are not synchronous. Only 712

stations with more than 20 complete years are selected with

the exception of 30 locations with between 15 and 25

complete years, which are located in the west of China. We

chose 10 % of the total sampled points to verify test results

and withheld from the downscaling calculations. We also

used the meteorological stations in Jiangxi province to

validate the results (Fig. 1). The WCRP’s Coupled Model

Intercomparison Project phase 5 (CMIP5) multi-model
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datasets (Moss et al. 2008) were used in the period

1976–2005 with a resolution of 1o � 1o. The output data-

bases from 21 climate models were selected for the climate

change projections in China under the Representative

Concentration Pathways (RCP) scenarios. The selected

models include both twentieth century climate simulations

and twenty-first century climate projections under the

RCP2.6, RCP4.5, and RCP8.5 scenarios.

Method

The statistical downscaling method used in this study can

be summarized as,

Presim ¼ Predownscale þ Preres ð1Þ

where Presim is the final result, Predownscale is the down-

scaling result and will be obtained by the GWR method.

Preres is the residual produced by GWR and will be inter-

polated by HASM. The two downscaling methods are

different according to the data used in Predownscale, and thus

in Preres. We denote the result of the first method is Presim1

and the second is Presim2. For Presim1, we use CMIP5 output

to form the regression function and then get Predownscale1,

and employ station data to modify the residual to obtain

Preres1. While for Presim2, we use meteorological informa-

tion to establish a statistical transfer function using latitude,

longitude, elevation, and impact coefficient of aspect as

independent variables to produce Predownscale2, and employ

the results of CMIP5 to modify the residual and obtain

Preres2. The second method Presim2 has been widely used in

climate change research in recent years (Yue 2011; Wang

et al. 2012; Fan et al. 2012).

Geographically weighted regression method

Due to the large gradients in precipitation means and

variances in China, it is common practice to transform

observed precipitation first:

Prei ¼
Prei

max Prei;i¼1;...;n

� � ; ð2Þ

where Prei is the CMIP5 simulation value in the first

method or the station data in the second method, Prei is the

transformed data, n is the number of grids of CMIP5 results

or the number of stations. This process can limit extreme

values in the results.

Then, we carry Box–Cox transform of Prei, which can

give a more normal distribution and/or improved predic-

tions (Box and Cox 1964; Sakia 1992). The formulation of

this transformation is,

Prei ¼
ln Prei; d ¼ 0

Pre
d

i � 1

d
; d 6¼ 0

8
>><

>>:
ð3Þ

where Prei is the Box–Cox transformed data and d is a

suitable parameter, which is selected to make Pr ei obey

normal distribution and thus satisfy the assumption of

GWR method (Fotheringham et al. 2002). In this paper,

d ¼ 0:4 in the first method and d ¼ 0:48 in the second

method. Studies have shown that this process avoids neg-

ative values in the results and is necessary for precipitation

interpolation (Yue et al. 2013).

It is incorrect to hold that the same linear relationship is

appropriate in all places especially in the case of orographic

enhancement. Unlike the ordinary linear regression model,

GWR (Brunsdon et al. 1996; Loader 2004) is developed to

deal with non-stationarity in the regression context, which is

especially important for characterizing highly variable pre-

cipitation within China. GWR method has been successfully

used in precipitation research (Brunsdon et al. 2001) and the

formulation of GWR can be written as

Predownscale ¼ d0;0ðxi; yjÞ þ
XN

i;j¼1

ai;jdi;jðxi; yjÞ ð4Þ

Predownscale is the downscaling value of ði; jÞ grid-box in

the finer scale; d0;0 xi; yj
� �

is the intercept; ai;j is the

explanatory variable and di;j xi; yj
� �

is the corresponding

coefficient which is a function of the position. xi; yi are the

longitude and latitude, respectively. We select the inde-

pendent variables from latitude, longitude, elevation,

impact coefficient of aspect and sky view factor according

to the value of the adjust R2 in GWR. In this research, the

most influence factors are latitude, longitude, elevation and

Fig. 1 Spatial distribution of the meteorological network in China
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impact coefficient of aspect with R2 is equal to 0.92 for the

first method and 0.91 for the second method.

Hasm

As an innovative surface modeling method (Yue 2011),

HASM is based on the fundamental theorem of surfaces

which ensures that a surface is uniquely defined by its first

and second fundamental coefficients. The first fundamental

coefficients reflect the local details in the surface and the

second fundamental coefficients mean the macro-informa-

tion of the surface. The equation of HASM is the following

symmetric positive definite linear system (Zhao and Yue

2014),

Wxnþ1 ¼ vn ð5Þ

where W¼ATAþ BTBþ CTC þ k2STS, v ¼ ATd þ BTqþ
CTpþ k2STk, and k is a suitable parameter. The precon-

ditioned conjugate gradient method can be used to solve

Eq. (5) and the solution x is the simulated value of the

residual Preres in Eq. (1).

Results and discussion

We first compare two methods in Table 1. Prems is the

CMIP5 output. Three indices, mean absolute error (MAE),

mean relative error (MRE) and root mean square error

(RMSE), were calculated from the station value and

downscaling value at each validation sample site. The

formulations of these indexes are:

MAE ¼ 1

N

X

k¼1;...;N

Presim � Preobsj j; MRE

¼ 1

N

X

k¼1;...;N

Presim � Preobs

Preobs

����

����; RMSE

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X

k¼1;...;N

ðPresim � PreobsÞ2
s

;

Results show that the first method is much better than

the second from these three error indexes for both datasets.

The accuracy of the downscaling method Presim2 is worse

than the result of CMIP5 based on the validation dataset in

Table 1 Comparison of two downscaling methods

Validate dataset Methods MAE (mm) MRE (%) RMSE (mm)

China Presim1 75.24 10 119.78

Presim2 343.71 95 424.96

Prems 347.39 105 436.23

Jiangxi Presim1 74.43 4 97.27

Presim2 227.82 13 257.91

Prems 208.67 12 245.40
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Fig. 2 Observed and estimated precipitation using different methods, a Presim1 for 10 % points from China, b Presim2 for 10 % points from

China, c Presim1 for points from Jiangxi province, d Presim2 for points from Jiangxi province
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Jiangxi province. Scatter correlation plots for the observed

and predicted precipitation (Fig. 2) suggest that the first

downscaling method estimates the annual mean precipita-

tion quite reliably, as shown in Fig. 2a and c. Many sim-

ulation points are relatively far from the straight line of

y ¼ x using the second method. Underestimation of pre-

cipitation is evident for the points from national scale and

overestimation of precipitation is obvious for Presim2 in

Jiangxi province (see Fig. 2b, d). The correlation coeffi-

cients between predicted and observed values are 0.97 for

Presim1 and 0.73 for Presim2 for the 10 % of the total

sampled points in China. The correlation coefficients are

0.75 and 0.71 for Presim1 and Presim2, respectively, in

Jiangxi province.

Figure 3 illustrates the downscaling results. We can see

that due to the large errors in the original CMIP5 output

(Fig. 3a), especially in southeastern of the Tibetan Plateau,

the second method which used the CMIP5 output to modify

the residual is worse than the first one. The distribution

trends in Fig. 3a, c are similar, which show that the second

downscaling method did not modify the errors produced by

CMIP5. However, Fig. 3b, which is produced by the first

downscaling method, agrees well with the real situation.

The reason of this is the function of the meteorological

station information. The accuracy of the results mainly

depends on the first step in the downscaling process. For

Presim1, there are about 969 points of CMIP5 output that

distribute evenly across China. While for Presim2, 641

meteorological observations are used for downscaling

which distribute extremely uneven in China. The site

density is higher in eastern China than in western China,

which did not well reflect the characteristics of

Fig. 3 The comparison of two downscaling methods, a original CMIP5 output, b the first method Presim1, c the second method Presim2
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precipitation in China. The number and the distribution of

the stations limit the accuracy of the downscaling results.

The evenly distributed points of CMIP5 results and the

local regress method, GWR which considers the non-sta-

tionarity of the precipitation, ensure the accuracy of the

downscaling results in the first step. And further, we can

see that original CMIP5 output is not good enough for use,

which means that the introduction of station data is nec-

essary to modify the local details that implemented by

HASM. The comparison of the two downscaling methods

also reveals that the second step in the downscaling pro-

cess, that is, the residual correction, is critical important for

accuracy improvement.

Conclusion

Precipitation, as a fundamental component of the global

water cycle, is a key parameter in ecology, hydrology and

meteorology. Precipitation data with accurate, high spatial

resolution are crucial for improving our understanding of

basin-scale hydrology. In this study, we compare two sta-

tistical downscaling methods using two datasets. One

dataset scatters randomly in the whole of China and

another is located in Jiangxi province. As expected, the

results show that GCMs cannot be used directly in climate

change impact studies. In China, the second method Presim2

which establishes regression model based on the station

data has a tendency to overestimate or underestimate the

real values. The advantage of the first method is obvious,

which fuses the mode data and station data effectively.

Results also show the importance of the meteorological

station data in the process of residual modification. China

is such a vast area, precipitation is affected by many geo-

graphical and topographical factors, which means that

more accurate results can be obtained in different regions

with different explanatory variables, especially for short

time scales. Except the variables considered in this study,

further researches should concentrate on more explanatory

variables to gain more accurate results.
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