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Abstract The generalized Pareto distribution (GPD), as

one of themost important distributions in statistical theory of

extreme value, is often used to explain the probability of

extreme events in nature, through setting up amodel with the

observation points exceeding the threshold. This paper uses

GPD model to fit the distributions of the relatively large and

small monthly average discharge of Ürümqi River in

Northwest China and gives the detailed steps of this method.

Firstly, the Mean Excess, shape parameter and modified

scale parameter plots are applied to determine the thresholds;

then the parameters of GPD are estimated by the maximum

likelihood method; next the models are diagnosed by the

probability and quantile plots; finally the return levels and

the corresponding 95 % confidence intervals of the dis-

charge are calculated by themaximum likelihood and profile

likelihood methods, respectively. The results show that the

return levels of the maximum monthly average discharge

with the return periods 10, 25, 50 and 100 years are 35.4,

39.9, 43.2 and 46.3 m3 s-1, respectively, and the return

levels of the minimum monthly average discharge with the

return periods 10, 25, 50 and 100 years are 0.60, 0.43, 0.30

and 0.18 m3 s-1, respectively. Some comparisons are also

made between the generalized extreme value (GEV) and

GPD models. The results of these two models are close to

each other while the GPD model should be more reliable

because it can make use of more information than the GEV

model. This paper proposes a complete framework for

modeling hydrological data by GPD model.

Keywords Generalized Pareto distribution � Streamflow

return levels � Extreme events of discharge � Statistics of
hydrological extremes � Ürümqi River

Introduction

Research shows that the frequency and magnitude of extreme

climate and hydrology events are on the rise significantly

(IPCC 2013). The extreme events in climate and hydrology

drive the application of extreme value statistics in hydrology

(Wang 1991; Rasmussen 2001; Katz et al. 2002; Towler et al.

2010; Liu et al. 2012; Saidi et al. 2014). A large body of

literature exists that correlates extreme hydrological events

with flood events. For example, the generalized extreme value

(GEV) distribution has been widely used in describing flood

characteristics (Lettenmaier et al. 1987; Hosking and Wallis

1988;Morrison and Smith 2002; Najib et al. 2008; Gilroy and

McCuen 2012; Xia et al. 2012). Recently, Liu et al. (2013a, b)

applied the GEV model in groundwater area to model the

minimumdischarge ofNiangziguanSprings and predicted the

probability of drying up in the future. However, the GEV

model is only based on block maxima, and it is a wasteful

approach to extreme value analysis (Coles 2001). Comparing

with GEV model, the generalized Pareto distribution (GPD)

canmake full use of the scarce observed data by determining a
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proper threshold, and simulate the distribution of extreme

values more reliably in hydrology, meteorology and other

fields (Holmes and Moriarty 1999; Macdonald et al. 2006;

Zagorski andWnek2007; Burke et al. 2010; Lucio et al. 2010;

Grigg and Tawn 2012; Fan et al. 2013).

Glacier-fed inland river is one of important sources of

inland rivers in arid Central Asia, maintaining the ecological

functions, the life of people and the economic development

of the local areas (Kutuzov and Shahgedanova 2009; Duan

et al. 2012; Kong and Pang 2012; Wang et al. 2012; Hagg

et al. 2013; Gao et al. 2013; Wu et al. 2013; Wang et al.

2013a, b). Thus the research on the hydrological extreme

events of glacier-fed inland rivers is of great significance

(Chen et al. 2012; Deng et al. 2012). To study this problem,

this paper chooses the Ürümqi River upstream basin, which

is a typical inland river basin as the study area, applies the

GPD models to analyze the extreme values of monthly

average discharge in themountain areas of ÜrümqiRiver and

provides the detailed calculations at each step. Some com-

parisons are also made between the results obtained by GPD

andGEVmodels, respectively. The ÜrümqiRiver from1958

to 2006 was barely interfered by human or climate changes

and its discharge data present steady characteristics without

any long-term trends, and thus can be modeled by GPD and

GEVmodels directly. The results of this paper provide some

basis for decision making in Ürümqi city water regulation

and meanwhile gives a complete framework of applying the

GPD model to analyze the hydrological extreme events.

Data and methods

Research area

Located in the hinterland of Eurasia, the Ürümqi River is a

typical inland mountainous river fed by the glacier melt and

rainfalls. It originates from theGlacierNo. 1with an elevation

of 3900 m above mean sea level (AMSL) on the northern

flank of Tianger Peak II (4479 m AMSL) in the middle

TianshanMountains in northwest China (Métivier et al. 2004;

Liu et al. 2008), and goes northwards from Urabo Reservoir,

then passes through the downtown Ürümqi and vanishes north

of Miquan County. It runs as long as 214.3 km (Liu et al.

2011).Thewatershedof ÜrümqiRiver ranges from86�450E to

87�560E and 43�000N to 44�070N, with a drainage area of

4684 km2 (Lan et al. 2010; Kong and Pang 2012).

Our research area was constricted to the upstream area

of the Ürümqi River. The length of the upper above the

mountain pass is about 63 km with a drainage area of

924 km2 and an average altitude of 3083 m Liu et al.

Fig. 1 DEM map and hydro-

meteorological observation sites

in the upstream of Ürümqi River

basin
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(2013, 2015) (Fig. 1). Yingxiongqiao Hydrological Station

(YHS), the unique control station of the upstream of the

Ürümqi River, is near the mountain pass. Daxigou Mete-

orological Station (DMS) is located at about 2 km down-

stream of the Glacier No.1. The information of the two

stations is listed in the Table 1.

The Ürümqi River is mainly fed by the precipitation and

glacier melt water (Zhang 2010). According to the mete-

orological data observed from 1958 to 2006 at DMS and

YHS, the annual average precipitation in the upstream of

Ürümqi River is 454 mm. Rainfalls in the upstream area

occur most frequently from June to August, and they

account for 60–80 % of the total precipitation in a year

(Liu et al. 2015). The annual average runoff is

2.43 9 108 m3 in the upstream mountainous region by

YHS, with glacier melt water accounting for nearly 12 %,

snow melt water accounting for 37 %, rainfalls accounting

for 36 % and underground water accounting for 15 %.

Data acquisition

YHS has an abundant long sequence of the streamflow

observations of Ürümqi River from the year of 1958 until

now. Since the Daxigou Reservoir was constructed 5 km

upstream of YHS for flood control and irrigation in 2007,

the streamflow is intervened artificially hereafter. In order

to analyze monthly average discharge extremes of the

Ürümqi River under natural hydrological conditions, this

paper selects the monthly average discharge data from

January 1958 to December 2006. The monthly discharge

data are shown in Fig. 2 as blue points. In Fig. 2 almost all

of the points are above 10 m3 s-1 during flood periods

(June to August), and below 5 m3 s-1 during dry periods

(December to February of the next year).

Research method

The theory of GPD is as follows:

Suppose X1;X2; . . .;XN is a sequence of independent

random variables with common distribution function F, let

MN ¼ maxfX1; . . .;XNg and denote an arbitrary term in the

Xt sequence by X. If MN satisfies lim
N!1

PrðMN � zÞ ¼ GðzÞ,
where GðzÞ is the distribution function of a nondegenerate

distribution, then GðzÞ must be the distribution function of

a generalized extreme value (GEV) distribution i.e.,

G zð Þ¼ exp � 1þ n
z� l
x

� �h i�1
n

� �
; defined on

z : 1þ n z� lð Þ=x[ 0f g
ð1Þ

and what is more, for a large enough threshold u, the dis-

tribution function of ðX � uÞ, conditional on X[ u,

approximately obeys a GPD, i.e.:

PrðX � u� xjX[ uÞ � HðxÞ; ð2Þ

where,

HðxÞ ¼ 1� ð1þ nx
r
Þ�1=n; defined on fx

: x[ 0; ð1þ nx
r
Þ[ 0g ð3Þ

and

r ¼ xþ nðu� lÞ ð4Þ

Equation 1 is the distribution function of GEV distribution

with parameters l, x and n. HðxÞ defined in Eq. 3 is called

two parameters GPD who only has scale and shape

parameters r and n. The l in Eqs. 1 and 4 are identical. In

Eqs. 2 and 4, u represents a specified threshold and in this

paper, it represents a specified discharge; GEV distribution

in Eq. 1 and GPD in Eq. 3 share the same shape parameter

n and their scale parameters x and r also have some

relation which is revealed in Eq. 4. (Coles 2001).

The above theory implies that for an independent ran-

dom variables sequence X1;X2; . . .;XN with common dis-

tribution F, if their maximum MN nearly follows a

nondegenerate distribution, then MN will nearly follow a

GEV distribution, and the threshold excesses ðX � uÞ,
under the condition of X[ u, will nearly follow a GPD,

regardless of what form the distribution function F has.

Table 1 The parameters of the

two stations
Station Longitude Latitude Altitude (m) Start time (year) Affiliation

YHS 87�120E 43�220N 1920 1958 Xinjiang Water Resources Bureau

DMS 86�500E 43�060N 3543 1959 Xinjiang Meteorological Bureau

Fig. 2 Scatter diagram of the monthly average discharge from 1958

to 2006
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In fact most MN always converges to a nondegenerate

distribution in the reality, and this paper assumes that the

maxima of the monthly average discharge in each year

nearly follow GEV distribution, and thus the threshold

excesses of the monthly average discharges, for a proper

threshold, approximately follow a GPD, under the condi-

tion that the monthly average discharge exceeds the

threshold. Whether the data follow the GEV and GPD

distributions can be further diagnosed via probability and

quantile plots.

The aforementioned GPD model can only study the

varying pattern of the observation values that exceed

threshold, namely, can only model relatively large values.

In order to model the relatively small observations, this

paper takes the opposite number of these observations and

then repeats the above theory to set up a GPD model with

the threshold excesses of these negative values. Finally,

this paper takes the opposite of the output results so that the

results can be back to positive numbers.

Calculation procedure

Determination of threshold

Two methods are usually used to determine a reasonable

threshold.

One is observing the trend of the mean excess function

eðuÞ, which is defined as:

eðuÞ ¼ EðX � ujX[ uÞ

If u0 is an appropriate threshold, which means the dis-

tribution of the random variable X � u0 under the condition

X[ u0 really obeys a GPD, then for any u[ u0, the mean

excess function:

eðuÞ ¼ EðX � ujX[ uÞ ¼ ru
1� n

¼ xþ nðu� lÞ
1� n

ð5Þ

is a linear function of u, where ru denotes the scale

parameter of the GPD model with the threshold u, l and x
are the location and scale parameters of the GEV model in

Eq. 1, which can be thinked as constants here. For a given

u, the eðuÞ can be estimated by emðuÞ defined in the

following:

emðuÞ ¼
1

Nu

XNu

i¼1

ðxðiÞ � uÞ ð6Þ

where Nu is the number of observations which exceed u,

and xð1Þ; . . .; xðNuÞ are just these Nu observations. For a

reasonable threshold u0, the scatter plot of

fðu; emðuÞÞju[ u0g i.e., fðu; 1
Nu

PNu

i¼1 ðxðiÞ � uÞÞju[ u0g
should fluctuate around a straight line.

Generally, the plot of fu; 1
Nu

PNu

i¼1 ðxðiÞ � uÞg is called

Mean Excess plot (Coles 2001). Thus u0 can be an

appropriate threshold if the Mean Excess plot presents the

linear trend against u on the right of u0, i.e., when u[ u0,

the Mean Excess plot vibrates around a straight line. Most

literatures select the smallest u0 which satisfies the above

condition so that more data can be introduced into the

model and therefore more information can be used.

The other method to select the threshold is to estimate

the model at a range of thresholds. If u0 is a reasonable

threshold, then for any threshold u larger than u0, the shape

parameter n of the distribution of threshold excess X � u

under the condition X[ u should be invariant, and the

modified scale parameter r� should also be a constant,

where

r�¼ ru � nu ¼ x� nl ð7Þ

Thus, if the estimates of n and r�, i.e., n̂ and r̂�, exhibit
vibrations around two certain constants respectively when

u[ u0, then it can be inferred that u0 is an appropriate

threshold. Similarly, most literatures generally choose the

smallest point satisfying the above condition as u0, namely,

on the right of this u0, n̂ and r̂� vibrate around two

constants.

After the threshold is determined, this paper uses the

corresponding excesses of the threshold, i.e. xð1Þ �
u0; . . .; xðNu0

Þ � u0 to set up the GPD model.

Parameter estimation

The parameters r and n in the GPD can be estimated via

the maximum likelihood method. Suppose that the values

y1; . . .; yk are the k excesses of the threshold. For n 6¼ 0, the

likelihood function can be written as:

‘ðr; nÞ ¼ �k log r� ð1þ 1

n
Þ
Xk
i¼1

logð1þ nyi
r
Þ ð8Þ

where ð1þ n y
rÞ[ 0, for i ¼ 1; . . .; k. Some numerical

techniques are used to search the maximum likelihood

estimated values n̂ and r̂ which make the likelihood

function ‘ðr; nÞ reach its maximum.

The calculation of return level

The N-year return level, denoted by zN , can be estimated

via the following formula:

ẑN ¼ uþ r̂

n̂
½ðNn1̂uÞn̂ � 1� ð9Þ

where ẑN is the estimate of zN ; u is the specified threshold;

n represents the number of observations each year, and in
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this paper n ¼ 12; fu is the probability of the random

variable X exceeding threshold u, i.e., fu ¼ PrðX[ uÞ and
the symbol 1̂u, calculated via the sample proportion of

points exceeding u, is the estimate of fu. The r̂ and n̂,
calculated by the maximum likelihood method, are the

estimates of the scale and shape parameters r and n in the

GPD model respectively. In addition, zN can be interpreted

as the extreme event that occurs once in N years on aver-

age. After determining the parameters estimated values r̂, n̂
and 1̂u, then for any given return period N-year, Eq. 9 can

provide the corresponding estimation of the return level ẑN .

Results and discussion

Figure 2 shows the monthly average discharge data of the

upstream of Ürümqi River recorded at YHS from 1958 to

2006 (totally 49 years, 588 observations), whose maximum

and minimum are analyzed via GPD models in this paper.

Maximal monthly average discharge

Before establishing a proper GPD model, a reasonable

threshold u0 should be determined first. Two methods are

used to select an appropriate u0.

The first method involves mean excess function. The

Mean Excess plot is drawn in Fig. 3 which shows that:

when the threshold u is in the interval [10, 25], the curve

presents approximately linear decreasing trend; when

u\10, the curve exhibits a quadratic trend; when u[ 25,

the vibration becomes severe, for which the number of

observations exceeding 25 is so small that the curve

vibrates severely. Too small sample size will result in an

unstable model and thus u[ 25 will not be considered.

This plot implies that the reasonable threshold should be

between 10 and 25, but it is not very obvious that from

which point the curve becomes linearly decreasing in

Fig. 3. Thus the second method should be used to find out

the accurate u0.

According to the second method, the plots of modified

scale parameter r� and shape parameter n against threshold
u are drawn in Fig. 4, which show that when u is in [19.92,

22.71], the modified scale parameter r� is fluctuating

around the constant 6.630, and the shape parameter n is

vibrating centering on the constant -0.0426. In short, the

estimations of r� and n present constant trends starting

from 19.92, thus the reasonable threshold should be near

19.92. Here this paper chooses 20 as the threshold for

convenience.

The return level plot of GPD model can be used to

further analyze whether the chosen u0 ¼ 20 is a reasonable

threshold. This paper selects equidistant 11 points in the

interval [19, 23], then lets each of them be the threshold

and builds the corresponding GPD models. The return level

plots show that only when u0 ¼ 20, almost all of the

observation points fall in the 95 % confidence interval of

the return level (not shown in this paper). Thus u0 ¼ 20 is a

proper threshold.

After u0 is determinated, the shape and scale parame-

ters n and r of GPD are estimated through the maximum

likelihood method. The estimations are r̂ ¼ 5:99,

n̂ ¼ �0:06, and the standard errors of r̂ and n̂ are 0.814

and 0.077, respectively. Then the corresponding GPD

model is:

Fig. 3 Mean Excess plot of the monthly average discharge in the

upstream of Ürümqi River

Fig. 4 Modified scale r* (a)
and shape n (b) against
threshold u in the case of the

maximum average discharge
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PrðX � 20� xjX[ 20Þ � HðxÞ; ð10Þ

where

HðxÞ ¼ 1� ð1� 0:06x

5:99
Þ1=0:06; defined onfx

: x[ 0; ð1� 0:06x

5:99
Þ[ 0g ð11Þ

Finally, the model diagnosis plots including probability,

quantile, return level and density plots are shown in Fig. 5.

Both probability and quantile plots show that all the points

scatter around the straight line with slope 1, which means

that the data and model coincide well. In the return level

plot, almost all of the observation points fall within the

95 % confidence interval of the GPD model, and in the

density plot, the sample histogram is consistent with the

density curve of GPD. The four diagram plots consistently

indicate that the fitted GPD model is reasonable.

Compared with the maximum likelihood method, the

profile likelihood method is also used to estimate the return

levels and the corresponding 95 % confidence intervals.

Table 2 lists the return level estimates of the maximal

monthly average discharge corresponding to the return

periods 10, 25, 50 and 100 years, respectively. In the last

column of Table 2, the ratio is shown. The symbols xMU,

xML represent the upper and lower bounds of the 95 %

confidence interval of maximum likelihood estimation,

while xPU, xPL denote the bounds of the 95 % confidence

interval of profile likelihood estimation. The ratio is writ-

ten as following:

ratio ¼ xMU � xML

xPU � xPL

It represents the ratio of the confidence interval lengths

obtained by the two methods. It is apparent that in the last

column of Table 2, all the ratio is less than 1, i.e., the

Fig. 5 Diagnostic plots of the

GPD model for the threshold

excess in the case of maximum

monthly average discharge

[Probability plot (a), Quantile
plot (b), Return level plot

(c) and Density plot (d)]

Table 2 Return level estimations of the maximum monthly average discharge in different return periods by maximum and profile likelihood

methods respectively

Return period (years) Likelihood function Point estimation 95 % confidence interval Ratio ¼ xMU�xML

xPU�xPL

10 Maximum likelihood 35.36 33.16 37.57 0.623

Profile likelihood 35.36 32.61 39.67

25 Maximum likelihood 39.91 35.23 44.59 0.852

Profile likelihood 39.91 36.3 47.29

50 Maximum likelihood 43.19 37.21 49.16 0.696

Profile likelihood 43.19 38.84 53.83

100 Maximum likelihood 46.34 38.79 53.88 0.758

Profile likelihood 46.34 41.18 61.08
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confidence intervals deduced by maximum likelihood are

shorter than those obtained by profile likelihood. But it does

not mean that the maximum likelihood is more accurate. It is

worth noting that themaximumdischarge of Ürümqi River is

55.2 m3 s-1 during the 49 years (much less than 100 years)

from 1958 to 2006; however, the 95 % confidence interval of

100-year return level based onmaximum likelihood is [38.8,

53.9] which does not include 55.2, while the corresponding

confidence interval obtained by profile likelihood is [41.2,

61.1], covering the point 55.2. Actually, the confidence

interval of profile likelihood is virtually always broader and

more reliable than maximum likelihood.

Figure 6 shows the return level’s estimates and 95 %

confidence intervals based on profile likelihood corre-

sponding to the return periods 10, 25, 50 and 100 years,

respectively. As we expected, the estimate of return level is

increasing when the return period is extending in Fig. 6.

And the confidence interval becomes broader when return

period is larger, which means the estimations will get less

accurate along with the extension of return period.

This paper also sets up theGEVmodelwith themaxima of

monthly average discharge in each year, and the result of the

maximumestimations of theGEVandGPDmodels are listed

in the Table 3, where the number 5.2183 is calculated via

Eq. 4, i.e., 5.04 - 0.0424 9 (20 - 24.205) = 5.2183.

According to Table 3, the shape parameter estimation n̂ are

both negative and have close values (-0.0424 and -0.06),

and the two r̂s also have similar values (5.2183 and 5.99).

The similar results of the two models further verify that the

models in this paper are proper and can reflect the reality

correctly. The GPD model should be more accurate because

it uses 79 points, which involvemore information than the 49

points in GEVmodel; thus this paper uses the GPDmodel to

analyze the discharge.

Minimal monthly average discharge

As one of the most important local water resources, the

water in Ürümqi River accounts for around 40 % of the

total surface water in the Ürümqi area. Considering the

danger of drought, it is necessary to study the varying

pattern of the minimum of the discharge.

The minimum discharge is also analyzed by the GPD

model. Considering the discharge in the dry period is

generally small, this paper defines the period when the

discharge is lower than 2 m3 s-1 as dry period. Take the

opposite number of the discharge points less than 2 m3 s-1,

then the new sequence consisting of the negative values is

shown in Fig. 7.

The negative sequence of the streamflow during the dry

period is denoted by Yt, where Yt ¼ �Xt.

To select a proper threshold u0 for Yt, the Mean Excess

plot (Fig. 8) and the plots of r̂� and n̂ (Fig. 9) against u are

drawn. In Fig. 8, when the threshold u is in [-1.3, -1.11],

Fig. 6 P Profile likelihood

estimates of the return levels of

maximum monthly average

discharge with the return

periods 10, 25, 50 and

100 years, respectively (a is the

lower bound of the 95 %

confidence interval, b is the

point estimate, and c is the

upper bound of the 95 %

confidence interval)

Table 3 The estimation results from the GEV and GPD models with

the relatively large values

Max Number of points n̂ x̂ r̂

GEV 49 -0.0424 5.0431 5.2183

GPD 79 -0.06 5.99
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the mean excess curve presents obviously linear trend,

which implies that the value of u0 should be in the interval

[-1.3, -1.11]. Meanwhile, Fig. 9 indicates that when u is

in [-1.06, -0.63], r̂� is around the constant 0.22, and n̂ is

around 0. The number -1.06 seems to be a proper

threshold because it is the start point after which the r̂� and

n̂ present constant trends. In addition, the -1.06 is in the

range of [-1.3, -1.11], according to the theory introduced

in the determination of threshold section, -1.06 should be

a proper choice of u0.

This paper uses the return level plots with a range of

thresholds to further verify that the threshold -1.06 is

reasonable. First this paper chooses 23 equidistant points in

the interval [-1.4, -0.96] as thresholds to build corre-

sponding GPD models, respectively, and then output their

diagnosed plots. The return level plots indicate that when

u0 ¼ �1:06, most observation points fall into the 95 %

confidence interval of the return level curve. Besides, the

other three diagnostic plots also perform well as shown in

Fig. 10. So u0 ¼ �1:06 is a reasonable choice and the

distribution of threshold excess i.e., Yt � u0 under the

condition Yt [ u0, can be considered to follow GPD. The

parameters estimations by maximum likelihood method are

r̂ ¼ 0:19, n̂ ¼ �0:01, and their standard errors are 0.036

and 0.130, respectively. Then the final model is

PrðY þ 1:06� yjY [ � 1:06Þ � HðyÞ ð12Þ

where

HðyÞ ¼ 1� ð1� 0:01y

0:19
Þ1=0:01; defined on fy

: y[ 0; ð1� 0:01y

0:19
Þ[ 0g ð13Þ

Similar with the case of the maximum discharge, the

maximum likelihood and profile likelihood methods are used

to estimate both Yt’s return levels based on Eq. 13 and the

95 % confidence intervals corresponding to return periods 10,

25, 50 and 100 years, respectively. Figure 11 gives the results

of the profile likelihood method. Take the opposite of these

results to get the positive values. Table 4 lists all the results,

which shows that the estimates of minimum return levels is

around 0.60, 0.43, 0.30 and 0.18 m3 s-1 corresponding to 10,

25, 50 and 100 years, respectively.

In Table 4, the last column also lists ratios of the con-

fidence interval lengths deduced by maximum likelihood to

those obtained by profile likelihood method. The ratio

becomes smaller as return period N increases, which sug-

gests that return levels estimated by profile likelihood

contain more uncertainty comparing with maximum like-

lihood when return period N is increasing. In addition, the

lower bound of the confidence interval obtained by profile

Fig. 7 Scatter diagram of the negative monthly average discharge

during the dry period (\2 m3 s-1) from 1958 to 2006

Fig. 8 Mean Excess plot of the negative monthly average discharge

during the dry period

Fig. 9 Modified scale r*
(a) and shape n (b) against
threshold u for the opposite

number of the minimum

discharge during the dry period
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likelihood corresponding to 50 years, and the lower bounds

deduced by maximum likelihood and profile likelihood

corresponding to 100 years are -0.295, -0.199, -0.746,

respectively, all of which are below zero. The calculation

result shows that the dry period (the discharge reaches

zero) may happen before 2058.

This paper also applies the minimum of the monthly

average discharge to set up the GEV model, and

compares it with the GPD model, whose results are

listed in the Table 5. From Table 5, the two n̂ are both

negative but their values are not so close (-0.285 and

-0.01) and the two r̂ also have some difference

(0.349 and 0.19). It is generally believed that the GPD

model is more accurate because it has 55 points to

build the model compared with the 49 points in GEV

model.

Fig. 10 Diagnostic plots of the

GPD model for the threshold

excess of the opposite number

of the minimum monthly

average discharge [probability

plot (a), quantile plot (b), return
level plot (c) and density plot

(d)]

Fig. 11 Profile likelihood

estimates of the return levels of

the negative minimum monthly

average discharge with the

return periods 10, 25, 50 and

100 years, respectively (a is the

lower bound of the 95 %

confidence interval, b is the

point estimate of profile

likelihood, and c is the upper

bound of the 95 % confidence

interval)
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Summary and conclusions

Taking the Ürümqi River as an example, this paper pro-

vides a method of modeling extreme discharge of a river by

GPD model, and gives the detailed steps and the prediction

of the future return levels. The analysis data are the

monthly average discharge of the Ürümqi River from

January 1958 to December 2006, which have not been

interfered by human activities or climate changes, and thus

can be seen as a stationary sequence. The GPD model

performs well and can reflect the reality of the Ürümqi

River accurately.

In the course of analyzing the maximum monthly

average discharge, firstly, a proper threshold is chosen.

After that, the maximum likelihood method is used to

estimate the parameters in GPD model based on the

threshold excesses. At last, the return levels and the 95 %

confidence intervals of the monthly average discharge are

given by the maximum likelihood and the profile likelihood

methods, respectively. The results show that the return

levels of the maximum monthly average discharge corre-

sponding to 10, 25, 50 and 100-year return periods are

35.4, 39.9, 43.2 and 46.3 m3 s-1, respectively.

In the course of the minimum monthly discharge, this

paper first takes the opposite number of sequence, then

repeats the above steps on the new sequence of negative

values and finally takes the opposite of the output results

again so that the results could be back to positive numbers.

The results show that the return levels of the minimum

monthly average discharge corresponding to 10, 25, 50 and

100 years are 0.60, 0.43, 0.30 and 0.18 m3 s-1, respec-

tively, and the dry period may appear before 2058.

In the last columns of Table 2 and Table 4, all the ratio

is less than 1, i.e., the confidence intervals deduced by

maximum likelihood are shorter than those obtained by

profile likelihood. Besides, the 95 % confidence interval of

100-year return level based on maximum likelihood is

[38.8, 53.9] which does not include 55.2, the maximum

discharge of Ürümqi River from 1958 to 2006, while the

corresponding confidence interval obtained by profile

likelihood is [41.2, 61.1], covering the point 55.2. The

above results suggest that the profile likelihood method is

always more robust than the maximum likelihood at the

cost of the boarder confidence interval. Besides, in the last

column of Table 2, the ratio becomes smaller as return

period N increases, which suggests that the profile likeli-

hood confidence intervals becomes wider and wider com-

pared with the maximum likelihood when return period N

is increasing. In most literatures, the maximum likelihood

are more frequently used than the profile likelihood.

Compared with other statistical models of extreme val-

ues such as the generalized extreme value (GEV) model,

the GPD model is usually able to make full use of the

observations. Thus, GPD model achieves higher accuracy

and it performs better in the predictions of the future dis-

charge. However, the uncertainty contained in estimations

of return levels will increase with time, thus the confidence

interval becomes wide when time is going. Complicated

internal and external factors may also contribute to the

uncertainty in the GPD model and impair the accuracy of

the estimations, thus it is not suitable for the GPD model to

make too long prediction in the future.

Acknowledgments This work is partially supported by the National

Natural Science Foundation of China (41471001, 41402210,

41272245 & 41001006), the China Postdoctoral Science Foundation

(20100480444), and the Doctor Foundation of Tianjin Normal

University (No. 52XB1205).

Table 4 Return level estimations of the minimum monthly average discharge in different periods by the maximum and profile likelihood

methods respectively

Return period (years) Likelihood function Point estimation 95 % confidence interval Ratio ¼ xMU�xML

xPU�xPL

10 Maximum likelihood 0.599 0.47 0.729 0.933

Profile likelihood 0.599 0.422 0.7

25 Maximum likelihood 0.43 0.232 0.628 0.779

Profile likelihood 0.43 0.061 0.571

50 Maximum likelihood 0.303 0.028 0.579 0.709

Profile likelihood 0.303 -0.296 0.482

100 Maximum likelihood 0.178 -0.199 0.554 0.656

Profile likelihood 0.178 -0.748 0.402

Table 5 The estimation results from the GEV and GPD models with

the relatively small values

Min Number of points n̂ x̂ r̂

GEV 49 -0.285 0.385 0.349

GPD 55 -0.01 0.19
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