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Abstract Economic exploration for shale gas is highly

dependent on the complexity of the fracture network

caused by hydraulic fracturing technology, so it is neces-

sary to accurately assess the effect of the fracture network

on gas flow behavior and productivity. Having multiple

scales is a remarkable characteristic of gas flow in fractured

shale gas reservoirs, which involves multiple flow regimes,

including the gas desorption from shale matrix, Knudsen

flow in nanoscale pores, Darcy flow in general porous

media, Darcy flow in the fracture networks and fluid ex-

change between the matrix system and the fracture system.

The extended finite element method (XFEM) has been

integrated with the dual-permeability method (DPM) to

investigate the multi-scale problem. Some previous studies

have adopted the same solution scheme, but usually con-

sidered gas flow in the natural fracture network and in the

hydraulic fractures as belonging to the same scale, and in

addition, the coverage area of the stimulated reservoir

volume (SRV) was underestimated. Based on the XFEM–

DPM, this paper subsumes flow in the micro-mecro frac-

tures and macro-hydraulic fractures under two scales be-

cause of their different effects on shale gas flow and then

presents a new multi-scale extended finite element model

to study the multi-scale flow problem in shale gas reser-

voirs. Moreover, the Lagrangian multiplier method is in-

tegrated to introduce the internal well boundary conditions

into the XFEM, so the arbitrariness and the asymmetry of

the complex fracture network can be taken into account

easily to reflect the real flow mechanisms in fractured

shale. Case studies indicate that the improved extended

finite element model constructed in this paper is effective,

especially for complicated asymmetrical physical condition

problems.
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Abbreviations

Hf Reservoir thickness (m)

bq Gas compressibility (Pa-1)

Bg Gas volume factor (m3/m3)

k Permeability in the x/y direction (m-2)

K Permeability tensor (m2)

l Gas viscosity (Pa�s)
t Time (s)

wd Fracture width along the direction parallel to the

fracture line (m)

k Lagrangian multiplier

q Gas density (kg/m3)

u Porosity

Mg Molecular weight of methane (kg/mol)

sh Tortuosity

b Slip coefficient

qs Material density of shale sample (kg/m3)

pwf Flowing bottomhole pressure (Pa)

p Pressure (Pa)

Z Real gas compressibility factor

Ct Total gas compressibility

�qw Mass flow rate on the Dirichlet boundary condition

(kg/s)

r Distance between any point on the hydraulic

fracture line and its corresponding wellbore
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rw Radius of wellbore (m)

nf Number of fractures

qL Langmuir gas volume (std m3/kg)

pL Langmuir gas pressure (MPa)

a Matrix–fracture transfer shape factor

Qext External flux vector

Subscript

x, y Space coordinates in global Cartesian coordinates

x0, y0 Space coordinates in local Cartesian coordinates

m Matrix

f Micro-mecro scale fracture

F Macroscale fracture

Superscript

enr Enrichment term

int Interfacial flux vector

ext External flux vector

T Transpose of matrix

Introduction

Economic exploration for shale gas is highly dependent on

the complexity of the fracture network caused by hydraulic

fracturing technology as well as the coverage area. It is

very important to accurately assess the effect of the fracture

network on gas flow feature and productivity. However,

due to the multiple flow regimes and the strong multi-scale

behavior, modeling for multi-scale flow in the fractured

shale reservoir is challenging but worthwhile, and many

researchers have done some meaningful work on this issue.

Having multiple scales is a characteristic of the flows in

a fractured shale reservoir which involves multiple

mechanisms, including gas desorption from matrix,

Knudson flow in nanoscale pores, Darcy flow in the porous

media, Darcy flow in the fracture networks and fluid ex-

change between the matrix system and the fracture system.

Researchers proposed a lot of models with the multi-scale

problem to tackle based on various methods including the

analytical method (Ozkan et al. 2011; Brown et al. 2011),

the semi-analytical method (Medeiros 2007a; Medeiros

et al. 2007b) and the numerical method (Dershowitz et al.

2000; Cipolla et al. 2010; Kristinof et al. 2010; Sheng et al.

2012).

Ozkan et al. (2011) and Brown et al. (2011) adopted the

trilinear analytical model to couple the flow in three en-

vironments: a tight, homogeneous reservoir beyond the tips

of the hydraulic fractures (outer reservoir), a naturally

fractured reservoir between hydraulic fractures (inner

reservoir) and hydraulic fractures distributed along the

length of the horizontal well. Their studies highlighted the

effect of the SRV consisting of the hydraulic and natural

fractures and noted that the production beyond the

stimulated reservoir volume can be negligible (Carratú

2013).

Medeiros (2007a) proposed a semi-analytical model to

investigate the performances of horizontal wells with

multiple fractures. They solved the diffusivity equation on

the basis of Green’s function solution and utilized dual-

porosity idealization to cope with the flow in the SRV.

Medeiros et al. (2007b) further obtained several important

conclusions in which the most important one is that the

variation of stress distribution caused by hydraulic frac-

turing may significantly promote the formation of the

fracture networks and the productivity. Based on the finite

difference method, Cipolla et al. (2010) studied the impact

of the conductivity of the hydraulic fractures on produc-

tivity. Cherubini et al. (2013) carried out a 3D finite ele-

ment simulation to analyze the impact of single inclined

faults on the fluid flow. Huang et al. (2014) coupled the

discrete fracture model and the continuum model to

simulate groundwater flow in fractured rocks, based on

domain decomposition.

The XFEM was initially proposed to tackle the strong-

discontinuity problem in relation to crack growth and was

soon extended to other problems characterized by local-

ization, complex geometries and multi-phase. The method

has two main advantages over other numerical methods.

The first is that the modeling of arbitrary geometric fea-

tures can be independent of the mesh. The second is that

the local field can be accurately reproduced based on the

theory of partition of unity (Melenk and Babuška 1996).

Belytschko and Black (1999) first presented the essential

ideas of modeling crack growth by finite elements with

minimal remeshing and adopting a discontinuous function

to enrich the approximation. Moës et al. (1999) further

improved Belytschko and Black’s work by introducing the

Heaviside function and the near-tip asymptotic function to

capture the strong-discontinuity behavior. Many re-

searchers developed the XFEM to solve problems for weak

discontinuity such as interface problems and fluid flow in

fractured reservoir. Sukumar et al. (2001) combined the

level set method with the XFEM to represent the weak

discontinuity due to material interfaces in composite.

Réthoré et al. (2007, 2008) adopted a two-scale approach to

model fluid flow in fractured porous media, and at the fine

scale, the flow in the fracture was modeled using Stokes

equations. Mohammadnejad and Khoei (2013a, b) regarded

the pressure gradient jump across the hydraulic fracture as

the weak discontinuity and established a fully coupled

extended finite element model for modeling hydraulic

fracture propagation.

Lamb et al. (2010) first combined the DPM and the

XFEM to analyze coupled deformation and fluid flow in

fractured porous media and demonstrated the validity of
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the weak-discontinuity enrichment scheme. On the basis

of Lamb’s work, Sheng et al. (2012) built an XFEM–

DPM model for multi-scale flow in fractured shale gas

reservoir which integrated multiple flow regimes includ-

ing mass transfer between matrix and fractures, four kinds

of flow regimes and pressure dependence. Both Lamb’s

work and Sheng’s work are meaningful, but have some

shortcomings. Firstly, all the fractures are treated as mi-

cro-mecro scale fractures, including the macroscale hy-

draulic fractures which dominate the main flow direction.

Secondly, the domain of dual-permeability media is un-

reasonably confined in the small finite elements which are

bisected by the fractures, so the coverage area of the

fracture network characterized by the SRV is underesti-

mated and should be enlarged. Thirdly, they usually lo-

cated the wellbore on the outer boundary of the whole

domain rather than its interior according to the assumption

of symmetry which did not always make sense, because

both the complex fracture network and the reservoir were

usually asymmetrical.

This paper aims to improve Lamb’s and Sheng’s work.

The complex fracture network is further subsumed under

two scales (the micro-mecro scale fracture network and the

macroscale hydraulic fractures) according to their different

impact on gas flow, and the flow in the two scales of

fractures is strongly coupled. The notion of SRV is high-

lighted to reflect the coverage area of the micro-mecro

scale fracture network and its impact on draining shale gas.

The dual-permeability method (DPM) is adopted to capture

the flow behavior resulting from the micro-mecro scale

fracture network in the SRV, and in the meantime, ex-

tended finite element method (XFEM) is used to tackle the

strong-/weak-discontinuity problems in relation to the flow

field variations of the fracture system and the matrix sys-

tem across the macroscale fractures which dominate the

main flow direction. Combined with the method of intro-

ducing the interior well boundary condition into the XFEM

based on the theory of Lagrangian multiplier (Cheng 1999),

the arbitrariness and the asymmetry of the model can be

taken into account easily to represent the real flow be-

havior. This study improves the XFEM–DPM model for

multi-scale flow in fractured shale gas reservoir and the

corresponding solution scheme.

Governing equations

Descriptions of physical model

The whole domain X is divided into three adjacent parts,

including matrix domain Xm (outer reservoir), SRV domain

Xs (inner reservoir) and macroscale fracture domain XF

(see Fig. 1). X is bounded by the outer boundary Co, while

Xs bounded by the exterior boundary Cs of the SRV and the

interior boundary Cþ
d [ C�

d which on the other side is the

outer boundary of XF . A fractured horizontal well with

several hydraulic fractures is located in the domain. The

macroscale hydraulic fractures dominate the main flow

direction in the reservoir, and due to their high perme-

ability and conductivity, they are defined and dealt with

explicitly. The SRV domain is regarded as the dual-per-

meability media which involves numerous micro-mecro

scale fractures. Every flow regime in the model is an

isothermal event and obeys Darcy’s law. The internal

boundary conditions related to the wellbore include the

Dirichlet boundary condition on Cw and the Neumann

boundary condition on C/.

nCo
and nCs

are the unit outward normal to X and Xs,

respectively. nCd
is the unit normal vector to the disconti-

nuity pointing to Xþ (nCd
¼ nC�

d
¼� nCþ

d
).

Fluid flow in multi-fractured shale involves multiple

scale flow regimes, including the gas desorption from the

shale matrix, Knudsen flow in nanoscale pores, Darcy flow

in the micro-mecro scale fracture network and Darcy flow

in the macroscale hydraulic fractures. The last two kinds of

flow regimes are coupled by considering mass transfer

between the two scale fractures.

The impermeable boundary conditions are imposed on

the external and the internal boundary of the matrix system

as

opm

on
¼ 0 on Co [ Cþ

d [ C�
d ; ð1Þ

The impermeable boundary conditions are also imposed on

the external boundary of the SRV domain as

opf

on
¼ 0 onCs: ð2Þ

In addition, mass transfer is considered to couple the fluid

flow in the micro-mecro scale fracture network and the

Fig. 1 Fluid flow in a hydraulically multi-fractured reservoir
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macroscale fractures. The complementary coupling condi-

tion is written as

_Wf

� �� �
nCd

¼ _WF

� �� �
nCd

¼ qwd on Cd ð3Þ

�½ �½ � ¼ �þ � �� represents the difference between the cor-

responding values at the two fracture faces.The Dirichlet

boundary condition and the Neumann boundary condition

can be imposed on the wellbore according to different

production modes as

pf ¼ pwf on C/: ð4Þ

qF
kx0F

lF

opf

ox0

����
w

¼ �qw on Cw: ð5Þ

Improvements and assumptions

Lamb et al. (2010) first combined the DPM and the XFEM

to model the fluid flow in fractured porous media, and

further Sheng et al. (2012) adopted the same approach to

study multi-scale flow problem in a fractured shale reser-

voir. Their works are very meaningful, but should still be

improved. In this paper, mistakes that exist in several

equations given by Sheng have been corrected and some

improvements have been made in several aspects as

follows:

(a) It is assumed that two scale fractures exist in

hydraulically fractured shale. This kind of classifi-

cation scheme is similar to the scheme proposed by

Lee et al. (2000). The first scale refers to the

numerous micro-mecro scale fractures which usually

compose a network, while the second scale fractures

are the hydraulic fractures in control of the main

flow direction.

(b) Many research findings revealed that economic

exploration for shale gas is highly dependent on

the complexity and the coverage area of the fracture

network which can be characterized by the SRV. In

comparison with the previous works, this paper

enlarges the coverage area of SRV of the model in

accordance with the popular opinion, rather than

confining SRV in the elements which are bisected by

the fractures. In this study, the DPM is adopted to

capture the behavior of flow in the micro-mecro

scale fracture network in the SRV (namely ‘‘inner

reservoir’’ defined by Ozkan et al. 2011). On the

other hand, the XFEM is used to tackle the weak-

discontinuity problems involving the matrix system

and the fracture system.

(c) In the fractured shale reservoir, gas flows mainly

from the porous matrix into the micro-mecro scale

fracture network first, then into the macro-fractures

and finally into the wellbore. In addition, the fracture

pressure which falls quite faster and is weak

discontinuous strongly affects the matrix pressure

near the macro-fracture. So the direct fluid transfer

between the matrix and the macro-fractures can be

ignored, and both the matrix pressure field and the

fracture pressure field are assumed to be weak

discontinuous across the macroscale fractures.

(d) The model is constructed on the basis of real gas,

instead of ideal gas.

(e) The fluid pressure within the fracture is assumed to

be constant along the inward direction that is

perpendicular to the fracture line, while the pressure

gradient and the fluid flow are discontinuous.

Based on the above five main improvements, this paper

uses the same mesh to approximate the fluid pressure in

both the fracture and matrix systems.

Strong form

The flow in a hydraulically fractured shale reservoir in-

volves two highly coupled systems, i.e., the multiple scale

matrix and fracture systems.

The gas flow in the matrix is at nano-, micro- and

macroscales due to the difference in pore diameter, mole-

cular collisions and so on, while fractures can be classified

into two scales (macro- and micro-mecro scales) according

to their lengths and conductivities. Macroscale fractures

denote the main fractures which can dominate the main

flow direction. Micro-mecro scale fractures are numerous

and usually compose fracture networks. First to be con-

stituted are the strong-form equations corresponding to the

matrix and the fracture systems.

The continuity equation for the porous flow in the shale

matrix is written as

qmumCtm þ ð1� umÞCaqmbq � qLumb/m
� � opm

ot

�r qm
Km

lm
rpm

� �
þ a

qmKm

lm
ðpm � pf Þ ¼ 0:

ð6Þ

Where Ca represents the nanoscale behavior and the impact

of gas desorption from the bulk matrix on the flow in the

shale matrix and is defined by Civan et al. (2011) as

Ca¼
qsMg

qbqVstd

qLpL

ðpL þ pÞ2
: ð7Þ

Ctm denotes the total compressibility of shale gas. For the

detailed derivation process of the differential Eq. (6),

readers can refer to the papers published by Sheng et al.

(2012) and Civan et al. (2011).

The continuity equation for the flow in the micro-mecro

scale fracture network is written as
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qfuf Ctf

opf

ot
�r qf

Kf

lf
rpf

 !

� a
qmKm

lm
ðpm � pf Þ ¼ 0

ð8Þ

In the DPM, the flow in the micro-mecro scale fracture

network is seen as continuous field in most of the SRV

domain, which is, however, weak discontinuous across the

large-scale fracture due to the pressure gradient jump. The

shape factor a is introduced to accurately describe the

single-phase quasi-steady-state transfer flow between ma-

trix and fracture (Warren and Root 1963; Lemonnier and

Bourbiaux 2010).

The continuity equation for the flow in the macroscale

fracture (main fracture) is written as

qFuFCtF

opf

ot
�r0 qF

KF

lF
r0pf

� �
¼ 0; ð9Þ

qFuFCtF

opf

ot
�r00 r

qFKF

lF
r00pf

� �
¼ 0: ð10Þ

Equation 9 is used to describe the linear flow in the away-

from-wellbore region of the macro-fracture, while Eq. 10

describes the radial flow in the near-wellbore region. The

symbol r denotes the vector gradient operator in the total

Cartesian coordinate system ðx; yÞ, while r0 denotes that in
the local Cartesian coordinate system ðx0; y0Þ (see Fig. 2).

To account for the feature of radial flow in the near-well-

bore egion of the main hydraulic fractures, we use another

local Cartesian coordinate ðr; y0Þ and r00, respectively, to
replace ðx0; y0Þ and r0.

Weak form

According to the above strong-form equations, weak-form

equations can be derived based on the Galerkin formula-

tion. The two weak-form equations of flow in the micro-

mecro scale fracture network and macroscale fracture can

be coupled to get the governing equation of the fracture

system by considering the fluid transfer.The weak form of

the continuity equation of fluid flow in the shale matrix is

given by

Z

X
dpm qmumCtm þ ð1� umÞCaqmbq � qLumb/
� � opm

ot
dX

þ
Z

X
rdpm � qm

Km

lm
� rpmdX

þ
Z

X
dpm � a qmKm

lm
� ðpm � pf ÞdX ¼ 0 ð11Þ

Equation (11) is derived by the application of Galerkin–

FEM, the divergence theorem and the boundary condition

(Eq. 1) based on the strong form (Eq. 6).

In the reservoir domain outside the SRV, the third term

on the left-hand side of Eq. 11 should be ignored.

The weak form of the continuity equation of fluid flow

in the micro-mecro scale fracture network is therefore

given by
Z

Xs

dpf qfuf Ctf

� � opf
ot

dXþ
Z

Xs

rdpf � qf
Kf

lf
� rpf dXs

þ
Z

Cd

dpf � _Wf

� �� �
nCd

dC

�
Z

Xs

dpf � a
qmKm

lm
� ðpm � pf ÞdXs ¼ 0: ð12Þ

Similarly, the strong-form Eq. (8) is used to construct the

Galerkin formulation, and the Divergence theorem and the

inner boundary condition (Eq. 3) are adopted. In addition,

the impermeable boundary condition (Eq. 13) is imposed

on the external boundary of the SRV.
Z

Cs

dpf � qf
Kf

lf
� rpfnCs

dCs ¼ 0 ð13Þ

The weak form of the continuity equation of fluid flow in

the macroscale fractures (main hydraulic fractures) is given

by
Z

Cd

dpf ðwdqFuFCtFÞ
opf

ot
dC

þ
Z

Cd

wdqFkx0F
lF

� odpf
ox0

� RðrÞ � opf
ox0

dC

þ
Z

Cw

dpf � RðrÞ � �qwdC

þ
Z

C/

qFkx0F
lF

� �
� RðrÞ � dpf

opf

ox0
þ odpf

ox0
pf

� �
dC

�
Z

Cd

dpf _WF

� �� �
nCd

dC

¼
Z

C/

qFkx0F
lF

� �
� RðrÞ � odpf

ox0
pwf dC; ð14Þ

where

R rð Þ ¼ 1 r[Hf =2
r þ rw 0� r�Hf =2

	
: ð15Þ

Fig. 2 Local Cartesian coordinate systems in the fracture
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r denotes the distance between any point on the hydraulic

fracture line and its corresponding wellbore. The function

RðrÞ is defined to distinguish the radial flow in the near-

wellbore region of the hydraulic fracture from the linear

flow in the away-from-wellbore region of the hydraulic

fracture. Fracture radial flow exists within a circle in the

vertical plane with center at the wellbore and diameter

equal to reservoir thickness Hf (Furui et al. 2003; Guo et al.

2009).

The Galerkin formulation of the strong-form Eq. 10 is

given by

Z

X0
dpf qFuFCtF

opf

ot
�r00 r

qFKF

lF
r00pf

� �	 

dX0

þ
Z

C/

dkTðpf � pwf ÞdC/ +

Z

C/

kTdðpf � pwf ÞdC/ ¼ 0

ð16Þ

The second row of Eq. (16) is introduced to load the

Dirichlet boundary condition on the internal boundary of

the reservoir according to the method of the Lagrangian

multiplier.

Equation 16 can be solved by the application of the

Divergence theorem and the assumption (e) which can lead

to simplification, as indicated by Eq. 17.

Z

X0
r0dpf

qFKF

lF
r0pf dX

0 ¼
Z

Cd

odpf
ox0

wdqFkx0F
lF

opf

ox0
dC:

ð17Þ

Assuming that at any point on the macroscale fracture li-

nes, the pressures of the two-scale fracture media are the

same, couple the flow in the micro-mecro scale fracture

network and the macro-fractures by canceling the fluid

transfer terms in Eqs. 12 and 14, and finally the coupled

governing equation of gas flow in the fracture system can

be derived.

Calculation formula of productivity

The total productivity of multi-fractured horizontal well

can be predicted by adding together the productivity of all

the hydraulic fractures.

Q ¼
X2nF

i¼1

prwkFwF

lBg

opF

or

����
r¼rwð Þi

ð18Þ

Skin factor S can be easily taken into account by substi-

tuting the effective wellbore radius for the actual wellbore

radius rw or adopting the equivalent permeability in the

near-wellbore region of hydraulic fracture.

Discretization formulation

The extended finite element method

According to assumption (c), both the matrix pressure field

and the fracture pressure field are assumed to be weak

Table 1 Reported reservoir and well data

Name of parameters (unit) Value

Reservoir thickness (m) 50

Length in the x direction (m) 240

Length in the y direction (m) 240

Matrix intrinsic permeability (D) 5.3 9 10-7

Matrix porosity 0.05

Micro-mecro fracture intrinsic permeability (D) 2 9 10-3

Micro-mecro fracture porosity 4 9 10-3

Macro-fracture intrinsic permeability (D) Infinite

Macro-Fracture porosity 0.3

Wellbore radius (m) 0.068

Skin factor 0

Half fracture lengths (m) 60

Fracture width (m) 0.005

Distance between main fractures (m) 100

Shape factor 10

Initial pressure (MPa) 21.4

Bottomhole flowing pressure 6.9

Temperature in the reservoir (K) 333.33

Langmuir gas volume (std m3/kg) 0.01

Langmuir gas pressure (MPa) 7.5

Fig. 3 Matrix pressure distribution (0.1 day)
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discontinuous across the main fracture line. The fluid flow

jump across the main fracture line can be reflected by using

the improved weak-discontinuity enrichment function

given by Moës et al. (2003).

The fracture pressure is approximated as the linear

combination of the standard and enriched shape function as

phðxÞ ¼
X

i2N
NiðxÞPi þ

X

j2Nenr
s

NjðxÞ U xð Þ � UðxjÞ
� �

aj; ð19Þ

where NiðxÞ is the classical finite element shape function;

Pi is the nodal value; and aj is the additional degree of

freedom at the enriched nodes. I is a set of all nodes, while

J is a set of all enriched nodes. Nodes in J are such that

their support are bisected by a single fracture. The first

term on the right-hand side of Eq. 19 represents the clas-

sical finite element approximation, while the second term

denotes the weak-discontinuous enrichment.

In the second term, the improved enrichment function is

utilized to avoid a decrease in the convergence rate of the

blending element. The shape enrichment function and its

gradient are given by

UðxÞ ¼
X

I

/ðxIÞj jNIðxÞ �
X

I

/ðxIÞNIðxÞ
�����

�����
; ð20Þ

Fig. 4 Matrix pressure distribution (10 days)

Fig. 5 Matrix pressure distribution (1000 days)

Fig. 6 Fracture pressure distribution (0.1 day)

Fig. 7 Fracture pressure distribution (10 days)

Environ Earth Sci (2015) 73:6035–6045 6041

123



rUðxÞ � nCd
¼
X

I

/ðxIÞj jrNIðxÞnCd

þ H /ðxÞð Þ �
X

I

/ðxIÞrNIðxÞnCd
;

ð21Þ

The general Heaviside function H /ðxÞð Þ (Eq. 22) makes

the gradient of the enrichment function discontinuous

across the fracture line, while the enrichment function itself

is continuous.

H xð Þ ¼ 1 if ðx� x�Þ � nCd
[ 0

�1 else

	
: ð22Þ

Discretized form of the governing equations

Based on the extended finite element method, the dis-

cretized form of the governing Eqs. (11), (12) and (14) is

as follows:

Qmm
_Pm þ CmmPm þ TmmPm � TmfPf ¼ 0; ð23Þ

Qff
_Pf þ CffPf þ TffPf � TfmPm � Fint ¼ Fext: ð24Þ

The definition of the coefficient matrices and the flux

vectors is given in ‘‘Appendix’’.

The direct solution procedure is used to discretize

Eqs. 23 and 24 in the time domain, and the iterative al-

gorithm is implemented to linearize the nonlinear system of

equations.

Numerical example

In this section, a case is utilized to determine the reliability

of the improved XFEM–DPM model for multi-scale flow

in fractured shale gas reservoir. The basic data (Table 1) of

the case are from Civan et al. (2011) and Guo et al. (2012).

A horizontal well with two vertical hydraulic fractures

in shale is producing gas in a condition of constant well-

bore flowing pressure.

Figures 3, 4 and 5 show the pressure contours of the

matrix system corresponding to the production time 0.1, 10

and 1000 days, respectively. Figures 6, 7 and 8 show the

pressure contours of the fracture system corresponding to

the production time 0.1, 10 and 1000 days, respectively.

Fig. 8 Fracture pressure distribution (1000 days)

Fig. 9 Impact of the Langmuir

gas volume qL on the production

rate (PR) and the accumulated

production (AP)
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Figures 9, 10 and 11 show the transient production rate and

the accumulated production versus time.

As the production time increases, both the matrix pres-

sure and the fracture pressure decrease, but the fracture

pressure falls faster.

Figures 3, 4 and 5 indicate that for a long period, the

matrix pressure inside the SRV domain decreases faster

than that outside the SRV where the matrix pressure hardly

decreases. So in the early to middle production period, it

can be inferred that the SRV domain determines the main

contribution of gas production, and to some extent, the

contribution of the matrix domain outside the SRV can

even be negligible. After a long period, the matrix pressure

drop somewhere outside the SRV domain becomes

obvious.

Figures 6, 7 and 8 show a dramatic change in the frac-

ture pressure distribution. Because the micro-mecro scale

fracture networks are directly linked to the macroscale

fractures and the permeability of the fracture system is

higher than that of the matrix, it is reasonable that the

pressure of the fracture system falls faster than the matrix

pressure for a long time. However, as the porosity of the

fracture system is lower, the fall of the fracture pressure

slows down.

Figures 9, 10 and 11 separately show the impact of

Langmuir gas volume, matrix–fracture transfer shape

Fig. 10 Impact of the matrix–

fracture transfer shape factor on

the production rate (PR) and the

accumulated production (AP)

Fig. 11 Impact of the micro-

mecro scale fracture

permeability on the production

rate (PR) and the accumulated

production (AP)
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factor and micro-mecro scale fracture permeability on

production rate and accumulated production.

Figure 9 shows that when Langmuir gas volume in-

crease, both production rate and accumulated production

increase. Moreover, the gap of the accumulated produc-

tions resulted from the different Langmuir gas volume in-

creases rapidly with time.

Figures 10 and 11 indicate that matrix–fracture transfer

shape factor and micro-mecro scale fracture permeability

have a similar impact. As the influential factor decreases, the

decline curve tends to be gentle. The bigger the influential

factor, the higher the initial production. However, for a long

time in the later stage, there is an opposite situation. In ad-

dition, the different accumulated production curves tend to

merge in the final stage, which indicates that the two influ-

ential factors do not influence the ultimate shale gas recovery.

Concluding remarks

This paper presents an improved XFEM–DPM model for

multi-scale flow in fractured shale gas reservoir and the

corresponding solution scheme.

Due to their different effects on shale gas flow, fractures

are subsumed under two scales (micro-mecro scale frac-

tures and macroscale hydraulic fractures). The notion of

SRV is highlighted to reflect the coverage area (namely

inner reservoir) of micro-mecro scale fracture networks

and its impact on the drainage of shale gas.

The Lagrangian multiplier method is integrated to in-

troduce the internal well boundary condition so that the

physical condition can be asymmetrical.

The case study illustrates the reliability of the improved

model and its favorable prospect in engineering applica-

tion. Sensitivity analyses are conducted to quantify the

effects of Langmuir gas volume, matrix–fracture transfer

shape factor and micro-mecro scale fracture permeability

on production rate and accumulated production.
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Appendix

The coefficient matrices in the discretized governing

Eqs. 23 and 24 are defined as follows:
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The existence of the enrichment terms in the above ma-

trices depends on the support domain of the enriched

nodes.
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Moës N, John Dolbow, Belytschko T (1999) A finite element method

for crack growth without remeshing. Int J Numer Methods Eng

46(1):131–150
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Réthoré J, Borst RD, Abellan MA (2008) A two-scale model for fluid

flow in an unsaturated porous medium with cohesive cracks.

Comp Mech 42(2):227–238

Sheng M, Li G, Shah SN, Jin X (2012) Extended Finite Element

Modeling of Multi-scale Flow in Fractured Shale Gas Reser-

voirs. Society of Petroleum Engineers
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