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Abstract Water resources are essential to the ecosystem

and social economy worldwide, especially in the desert and

oasis of the Tarim River Basin, whose water originates

largely from the Tianshan Mountains characterized by

complicated hydrologic processes and scarce meteoro-

logical observations. In this study, distributed hydrologic

model of SWAT (Soil and Water Assessment Tool) was

applied to the Kaidu River Basin, a watershed in the

Tianshan Mountains and one of the headwaters of the

Tarim River. To quantify the contribution of meteoro-

logical input to model output, a sensitivity analysis ap-

proach (SDP method, State-Dependent Parameter method)

was applied before and after the model was calibrated. The

sensitivity analysis shows that meteorological input con-

tributes up to 64 % of model uncertainty due to scarcity of

observed meteorological data especially in the alpine re-

gion, and the groundwater flow is the most important hy-

drologic process in this watershed. Model calibration is

robust with Nash–Sutcliffe coefficients (‘‘NS’’s) and ‘‘R2’’s

over 0.80 for both the calibration period and the validation

period where the length of the validation period is five

times longer than the calibration period. The significance is

obvious when compared to the simulation without con-

sidering the effect of spatial variation in meteorological

input (NS = 0.80 and NS = 0.47 for ‘‘with lapse rates’’

and ‘‘without lapse rates’’, respectively). Accurate me-

teorological input is of great importance to the distributed

hydrological model, especially in the mountainous regions.

Keywords Meteorological input � Hydrologic modeling �
Hydrologic process � Sensitivity analysis � Model

calibration

Introduction

The Tarim River (Fig. 1), the longest inland river in China,

is suffering from the ecological degradation, which is

caused by over-consumption of water and its special hy-

drological conditions (Chen et al. 2011; Liu et al. 2011). It

mainly originates from the Tianshan Mountains, runs

through the oasis and finally disappears in the desert. With

critical ecological problems such as the drying of river

channel, weak water reproducible ability, deterioration of

groundwater quality, degradation of natural vegetation and

desertification in recent decades, water is even crucial in

the Tarim River Basin (Wu 2012; Li et al. 2014). As one of

its headwaters, the Kaidu River, provides 78 % water de-

mand of the artificial oasis around the Bosten Lake with a

population of 1.15 million (Chen et al. 2013). Therefore,

the Kaidu River is crucial to the eco-environmental and

economic development of the lower reaches of the Tarim

River.
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In spite of the importance of this watershed, there are

few studies focusing on hydrological process due to the

complicated topographic features and data scarcity (e.g.,

few meteorological data) in the alpine area and almost no

study on the impact of meteorological input. Most studies

either focus on flow forecast (e.g., Kalra et al. 2013; de la

Paix et al. 2012), conducting a short period of flow

simulation (e.g., Huang et al. 2010; Dou et al. 2011), or

simulations with lumped models (e.g., Yang et al. 1987).

As these studies are limited in understanding the watershed

hydrology, distributed hydrologic modeling with a long-

term simulation is appealing. Furthermore, as there is a

data scarcity in meteorological input, which is very crucial

to hydrologic modeling (Bobba et al. 1999; Gourley and

Vieux 2005), it is necessary to study the impact of me-

teorological input. More generally, though it has been

proven that meteorological input influences the hydrologic

model a lot (e.g., Tavakoli and De Smedt 2013), to our best

knowledge, few papers deal with how much this influence

is and how much it affects model calibration. This is the

major goal of this paper.

To achieve this goal, distributed hydrologic model of

SWAT (Arnold et al. 1998) was applied to this watershed.

To handle a large number of distributed parameters and

understand the impact of meteorological input, a sensitivity

analysis approach which combines the Morris method

(Morris 1991) and the SDP method (Ratto et al. 2007) was

conducted to understand dominant hydrologic processes

and quantify the effect of meteorological inputs on model

calibration. The remaining is constructed as follows:

Sect. 2 introduces the hydrologic model and study area;

Sect. 3 describes the sensitivity analysis and calibration

approaches; and then Sect. 4 gives results and discussion,

followed by conclusions in Sect. 5.

Hydrologic model and study area

SWAT model

SWAT (Arnold et al. 1998), developed at the Agriculture

Research Service of the United States Department of

Agriculture, has been used for comprehensive modeling of

the impacts of management practices and climate change

on water and sediment yield and water quality at a water-

shed scale. It is a distributed hydrological model that runs

on a daily step. To represent the spatial variability, a wa-

tershed is firstly divided into subbasins and each subbasin

is then divided into hydrologic response units based on soil

and landuse data. In SWAT, the simulation is based on

water balance theory and runoff is predicted separately for

each subbasin, which is illustrated in Fig. 2, and routed to

obtain total runoff for the basin.

The climatic data required consists of daily precipita-

tion, maximum/minimum air temperature, wind speed,

relative humidity and solar radiation. SWAT uses elevation

bands to represent the topographic effects on precipitation

and temperature. Within each elevation band, the

Fig. 1 The location,

topography and river system of

the Kaidu River Basin
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precipitation and temperature are estimated based on their

lapse rates and elevation. For more details, refer to SWAT

manuals (http://www.brc.tamus.edu/).

Study area and data collection

The Kaidu River Basin, with a drainage area of 18,634 km2

above the Dashankou hydrological station, is located on the

south slope of the Tianshan Mountains, Northwest China.

The basin extends from 82�580 to 86�050E, and from 42�140
to 43�210N (Fig. 1). The altitude ranges from 1340 to

4796 m above sea level (asl) with an average elevation of

2995 m and an average slope of 23 %. This watershed has

a complex topography including grassland, marsh, and

surrounding mountainous alpine areas (Dou et al. 2011).

This watershed is characterized as temperate continental

climate with alpine climate characteristic. The average

annual temperature at the Bayanbulak meteorological sta-

tion is -4.16 �C and annual precipitation is 287 mm, and

generally precipitation falls as rain from May to September

each year and as snow from October to April of the next

year. The average daily flow at the Dashankou hydrological

station is around 110 m3 s-1 (equivalent to 185 mm run-

off), ranging from 15 to 973 m3 s-1. Watershed hydrology

is driven by snowmelt in spring and rainfall/snowmelt in

summer. Data used in this study include:

Meteorological data and hydrologic data

Daily meteorological data of two stations are from China

Meteorological Data Sharing Service System (http://cdc.

cma.gov.cn/) from 1980 to 2010. One station is the

Bayanbulak Station (2458 m asl), which lies in the valley

of mountainous regions in the watershed, and the other is

the Baluntai Station (1740 m asl), which is near the study

region. Discharge data at the Dashankou hydrologic station

are from Xinjiang Tarim River Basin Management Bureau.

Available data include daily discharge from 1980 to 2002

and monthly discharge from 2003 to 2010.

Digital elevation model (DEM)

The 90 m DEM is from the Shuttle Radar Topography

Mission (NASA, http://www2.jpl.nasa.gov/srtm/). DEM

forms the basis for determining the drainage area, flow

direction, basin boundary, etc.

Soil data

Soil map, with a scale of 1:1000,000 is from Xinjiang In-

stitute of Ecology and Geography, Chinese Academy of

Sciences. The spatial distribution of soil is shown in Fig. 3

(top) and the corresponding proportions are listed in

Table 1 (left). Soil texture, soil depth and other information

of each soil type were from Agricultural bureau and soil

survey office of Xinjiang (1996).

Landuse data

Landuse map with a scale of 1:100,000 is from the Envi-

ronmental and Ecological Science Data Center for West

China. Spatial distribution of landuse type is shown in

Fig. 3 (bottom) and relevant proportions are listed in

Table 1 (right).

Model setup and initial parameter selection

After pre-processing these data in ArcSWAT (swat.-

tamu.edu/software/arcswat/), the SWAT model (version

2009) was set up with the following options: (1) Elevation

band and lapse rate were used to represent the topographic

effects on precipitation and temperature in the mountainous

region; (2) Penman–Monteith method (Monteith 1965) was

utilized to calculate potential evapotranspiration; (3) The

degree-day approach, which is generally deemed as an

effective method to handle snow pack and snowmelt in

data scarce mountains (Li and Williams 2008), was used to

model snowmelt; (4) Variable storage routing method

(Williams 1969) was used for river routing.

Model parameters related to flow simulation were ini-

tially selected based on literature review and SWAT user

manual (Arnold et al. 2011). When calibrating distributed

model parameters, a factor which denotes a way to change

a group of parameters was used to avoid confusion with

model parameters (e.g., factor r__CN2 is to relatively

change all distributed parameters CN2, and v__Tlaps is to

Fig. 2 Hydrologic flow chart of SWAT. Boxes donate different

hydrological processes, ellipses different water storages and arrows

water flow directions (Adapted from Arnold et al. 1998)
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replace all parameters Tlaps), as proposed in Yang et al.

(2007). Table 2 lists these factors along with their mean-

ings of their underlying parameters and ranges, among

which v__Tlaps and v__Plaps, the values of the lapse rates

of temperature and precipitation, are two factors to mea-

sure the topographical variation of meteorological input.

Fig. 3 The spatial distribution

of soil (top) and landuse

(bottom) in the Kaidu River

Basin

Table 1 Proportions of the soil

types (left) and the landuse

types (right) in the watershed

Soil type Proportion (%) Landuse type Proportion (%)

Alpine meadow soil 38.0 Pasture 61.3

Subalpine steppe soil 21.4 Water and ice 20.9

Alpine frost desert soil 16.0 Unexploited land 11.0

Brown desert soil 12.4 Wetland 6.1

Meadow steppe soil 7.0 Forest 0.5

Chestnut soil 2.6 Rural Settlements 0.1

Meadow-boggy soil 1.9 Cultivated land 0.1

Fluvo-aquic soils 0.4

Gray cinnamonic soil 0.1
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This work studied the contribution of meteorological input

through these two factors. To investigate the impact of

spatial variation of meteorological input, another simula-

tion was set up without these two lapse rates (i.e., ex-

cluding v__Tlaps and v__Plaps), and refer this to ‘‘without

lapse rates’’ and the previous to ‘‘with lapse rates’’,

respectively.

A warm-up period is normally used to eliminate the

influence of initial state variables (e.g., soil moisture,

groundwater storage, etc.) on simulation, and the longer the

warm-up period, the less effect initial state variables will

have on the simulation (Yang et al. 2012). In this study, a

seven-year period (1979–1985) was used for model warm-

up after some tests. To calibrate the model, the split sample

procedure was used: daily data from 1986 to 1989 were

used for model calibration, and daily data from 1990 to

2002 (first validation period) and monthly data from 2003

to 2010 (second validation period) were used to test the

model performance. Both calibration and validation con-

tain dry and wet years, and longer validation period was

used to show the robustness of the calibrated model.

Methodology

Sensitivity analysis

Sensitivity analyses are valuable tools for identifying im-

portant model parameters (in this case is ‘‘factors’’). In this

study, a sensitivity analysis approach combining the Morris

method (Morris 1991) and the SDP method (Ratto et al.

2007) was applied to screen out unimportant factors and

identify the most important ones. Its applications range

from simple conceptual model (e.g., HYMOD in Yang

2011) to physical and distributed models (e.g. TOPMO-

DEL in Ratto et al. 2007; Wetspa in Yang et al. 2012;

Table 2 Selected factors and their initial values and ranges for sensitivity analysis, and their estimated values

No. Factora Rangeb Underlying SWAT parameter Initial

value

Estimated

value

1 v__Tlaps [-10, 0] Tlaps: Temperature lapse rate (�C km-1) 0 -9.23

2 v__Alpha_bf [0, 1] Alpha_bf: Baseflow alpha factor 0.048 0.94

3 v__Plaps [100, 200] Plaps: Precipitation lapse rate (mm km-1) 0 165.00

4 v__Gwqmn [0, 1000] Gwqmn: Threshold water level in shallow aquifer for baseflow (mm) 00 72.00

5 r__Sol_k [-0.5, 2] Sol_kl: Saturated hydraulic conductivity (mm h-1) 0 0.87

6 v__Gw_delay [0, 500] Gw_delay: Groundwater delay time (day) 31 340.60

7 v__Esco [0, 1] Esco: Soil evaporation compensation factor (–) 0.95 0.36

8 r__Slsubbsn [-0.3, 0.3] Slsubbsn: Average slope length (m) 0 0.15

9 v__Ch_k2 [0, 500] Ch_k2: Effective hydraulic conductivity in main channel alluvium (mm h-1) 0 253.10

10 r__Sol_awc [-0.5, 0.5] Sol_awc: Available water capacity of the soil layer (–) 0 -0.21

11 r__CN2 [-0.15, 0.15] CN2: SCS runoff curve number for moisture condition 0 0.04

12 v__Smfmx [-0, 10] Smfmx: Snowmelt factor on June 21 (mm �C -1 d-1) 4.5 7.71

13 r__Sol_z [-0.5, 0.5] Sol_z: Depth from soil surface to bottom of layer (mm) 0 –

14 v__Gw_revap [-0.02, 0.2] Gw_revap: Groundwater ‘‘revap’’ coefficient 1.0 –

15 v__Surlag [0, 24] Surlag: Surface runoff lag time (day) 4 –

16 v__Revapmn [0, 500] Revapmn: Threshold depth of water in shallow aquifer for revap (mm) 1.0 –

17 r__Slope [-0.1, 0.1] Slope: Average slope steepness (–) 0 –

18 v__Ch_k1 [0, 300] Ch_k1: Effective hydraulic conductivity in tributary channel alluvium (mm h-1). 0 –

19 v__Smfmn [0, 10] Smfmn: Snowmelt factor on Dec. 21 (mm �C-1 d-1) 4.5 –

20 v__Epco [0, 1] Epco: Plant uptake compensation factor 1.0 –

21 v__Ch_n2 [0, 0.3] Ch_n2: Manning’s ‘‘n’’ for main channel (–) 0.18 –

22 r__OV_N [-0.5, 0.5] OV_N: Manning’s ‘‘n’’ for overland flow (–) 0.15 –

23 r__Sol_alb [-0.2, 0.2] Sol_alb: Moist soil albedo (–) 0 –

24 v__Sftmp [-1, 1] Sftmp: Snowfall temperature (�C) 1.0 –

25 v__Smtmp [-1, 1] Smtmp: Snow melt base temperature(�C) 0.5 –

a Here, ‘v__’ or ‘r__’ means a replacement or a relative change to the initial parameter values
b The ranges for the factors are based on literature data (e.g., the range of v__Plaps is from Zhou 1999) and SWAT user’s manual (Arnold et al.

2011)
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MOBIDIC in Yang et al. 2014), and it has been proven to

be effective and efficient. Firstly the Morris method was

used to screen out insensitive hydrological factors and thus

to reduce the number of factors for next sensitivity analy-

sis. In the second step, the SDP was implemented to

quantitatively compute the main effect and first-order in-

teractions between these reduced factors.

Morris method

The Morris method is a qualitative method to measure

factor sensitivity and factor interaction or nonlinearity. For

a n-dimensional random variable X ¼ ðx1; . . .; xi; . . .; xnÞ at
its jth sampleðx1j; . . .; xij; . . .; xnjÞ, the local sensitivity

measure (elementary effect) dij for xi at jth sample is

computed based on OAT (One-At-a-Time) as follows:

dij ¼
f x1j; . . .; xij þ D; . . .; xnj
� �

� f x1j; . . .; xij; . . .; xnj
� �

D
; i

¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m

ð1Þ

where f(.) is the model output (or relevant objective func-

tion), X are model factors with xi normalized to [0,1] to

eliminate the scale effect, and D ¼ p
2ðp�1Þ is the predefined

increment and normally p takes the value within the range

of [4,10] (Saltelli 1999) and in this study p was set to 10

meaning D = 5/9. Local sensitivity measures of each input

factor are estimated by randomly sampling in the factor

space, by which a finite distribution of the local sensitivity

measures obtained. For example, for basic sample size m,

one can obtain a group of elementary effects dij (i = 1,…,

m) for factor xi. From these values, two statistics are ob-

tained: one is the mean of absolute values of the elemen-

tary effects (l�), which measures the factor sensitivity

(e.g., for xi, l�i ¼
Pm

j¼1 dij
�� ���m), and the other is the stan-

dard deviation of the elementary effects (r), which mea-

sures the degree of factor interaction or nonlinearity (e.g.,

for xi, ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

j¼1 dij �
Pm

j¼1
dij

m

� �2
,

ðm� 1Þ

vuut . The

higher l� is, the more important the factor is to model

output, and the higher (r), the more interactions are with

other factors or more nonlinear to the model output. To-

tally, the Morris method needs m*(n ? 1) model runs to

estimate these two sensitivity indices for each factor, and

normally m = 50 is sufficient (Yang et al. 2012).

State-dependent parameter method (SDP)

For independent input factors, SDP method is based on the

idea of the decomposition of variance of model output Y to

factors X:

V ¼ RiVi þ RiRj[ iVij þ :::þ V1;2;...n ð2Þ

where,

Vi ¼ VðE Y jXið ÞÞ

Vij ¼ V EðYjXi;XjÞ
� �

� Vi � Vj

and so on. Herein, V(.) and E(.) denote variance and ex-

pectation operators, V is the total variance, and Vi and Vij

are total variance and partial variances of the ith factor.

Normalize these variances with V, the following sensitivity

indices can be obtained:

Si ¼
Vi

V
; 1� i� n ð3Þ

Sij ¼
Vij

V
; 1� i\j� n ð4Þ

STi ¼ Si þ
X

j

Sij þ
X

j

X

k

Sijk þ � � � þ S1;2;...;n; 1� i� n

ð5Þ

where Si is the main effect, which represents the average

achieved reduction of output variance when factor Xi is

fixed, Sij is the second-order interaction between Xi and Xj,

and STi is the total effect representing the average output

variance when Xi stays unfixed. In practice, Si is used to

measure the average variance in the output that can be

reduced when Xi is fixed and STi is used to measure the

average variance in the output remains when Xi stays un-

fixed (Tarantola et al. 2002).

The SDP method is based on recursive filtering and

smoothing estimation and can estimate these main effects

(Si) and first-order interactions (Sij) based on its ap-

proximation to second-order ANOVA regression model.

And ‘‘quasi-total effect’’, SDi ¼ Si þ RjSij, is used to ap-

proximate STi when R2 of second-order ANOVA is high

enough (e.g., larger than 0.80).

Model calibration and evaluation

To calibrate the distributed hydrological model, SCE-UA

method (Duan et al. 1992) was used. This algorithm has

been proven to be consistent, effective, and efficient in

locating the globally optimal model parameters of a hy-

drologic model (Gupta et al. 1999).

The objective function for calibration is Nash–Sutcliffe

coefficient (NS) (Nash and Sutcliffe 1970):

NS ¼ 1�
Pn

i¼1 Yobs
i � Y sim

i

� �2
Pn

i¼1 Yobs
i � Ymeanð Þ2

ð6Þ

where Yobs
i and Ysim

i are the ith observed and simulated

flows, Ymean is the mean of observed data, and n is the

number of observations. NS donates how well the

2418 Environ Earth Sci (2015) 74:2413–2424
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simulation matches the observation. NS ranges between -

? and 1.0, with NS = 1 meaning a perfect fit. The higher

this value, the more reliable the model is.

To evaluate model performance, in addition to NS,

percent bias (PBIAS) and coefficient of determination (R2)

were also used. PBIAS is computed as:

PBIAS ¼
Pn

i¼1 Y sim
i � Yobs

i

� �

Pn
i¼1 Yobs

ið Þ ð7Þ

PBIAS measures the average deviation of the simulated

data from their observed counterparts. Positive values

indicate an overestimation of the observation, while

negative values indicate an underestimation. The smaller of

PBIASj j, the smaller deviation of the simulation. Generally,

PBIASj j\ 10 % shows good modeling. R2 describes the

degree of collinearity between simulated and measured

data. Normally NS[ 0.50, PBIASj j\ 25 % and R2[ 0.6

are taken as the criteria of satisfactory modeling of the

river discharge, and model performance can be evaluated

as excellent if NS[ 0.75 and PBIASj j\ 10 % (Moriasi

et al. 2007).

In this study, the simulation ‘‘with lapse rates’’ and

simulation ‘‘without lapse rates’’ were analyzed separately

following the same procedure. Firstly, the Morris method

was applied to initially selected factors (Table 2) to screen

out the unimportant factors, and then the sensitivities of the

sensitive ones were quantified by the SDP method. Se-

condly, the calibration was applied to the important factors,

followed by another sensitivity analysis with the SDP

method. The contribution of the meteorological input was

analyzed based on the sensitivity and calibration results,

and the comparison between the simulation ‘‘with lapse

rates’’ and simulation ‘‘without lapse rates’’.

Results and discussion

In this section, we mainly presented and discussed the re-

sult of the simulation ‘‘with lapse rates’’, and the result of

simulation ‘‘without lapse rates’’ was only for the com-

parison purpose. Hereafter, results and discussion are based

on the simulation ‘‘with lapse rates’’ unless otherwise

specified.

Sensitivity analysis

With m = 50, the Morris method took 1300 model runs.

Figure 4 shows the sensitivity result for each factor based

on the Morris method, where l� represents its sensitivity

and r its interaction with other factors or nonlinearity of

the factor. These twenty-five factors were grouped into

three classes visually based on their ‘‘l�’’s: extremely

sensitive, medially sensitive and insensitive. v__Tlaps,

v__Alpha_bf and v__Plaps are the extremely sensitive

factors with strong nonlinearity in the meanwhile. v__Tlaps

and v__Plaps influence the temperature and precipitation

input in each elevation band, and have intense impact on

water yield and water balance. v__Alpha_bf, representing

the baseflow recession constant, describes the response of

groundwater to recharge change and is an important factor

that influences groundwater flow. The medium sensitivity

class includes 7 factors: v__Gwqmn and v__Gw_delay are

factors related to groundwater flow and groundwater–

stream water interactions; v__Ch_k2, r__Sol_k and

r__Sol_awc dominate the infiltration of surface water into

groundwater; v__Esco, with its underlying parameter Esco

being the compensation factor of soil evaporation, controls

the actual evapotranspiration; r__Slsubbsn is factor indi-

cating the changes of average slope length. Factors at the

bottom left of Fig. 4 including r__CN2 and v__Smfmx are

insensitive. Note that r__CN2 is not sensitive in this study

while it was extremely sensitive in many previous studies

(e.g., Van Griensven et al. 2006; Saha et al. 2014). This

might be attributed to the hydrological characteristics of

the Kaidu River Basin: it has a large area of wetland

(1137 km2) and flatland (37 % of the study area with a

slope under 8.7 %). The high proportion of wetland and

flatland resulted in the low sensitivity of r__CN2 as iden-

tified by Schmalz et al. (2009). All snowmelt-related fac-

tors, e.g., v__Smfmx, v__Sftmp, v__Smtmp, are not

sensitive, which indicates that snow process is not so im-

portant in the Kaidu River Basin. This is corroborated with

an analysis of average monthly precipitation allocation: the

precipitation from October to March (winter season) only

consists of 9 and 4 % of the yearly precipitation at

Bayanbulak and Balutai, respectively.

After excluding insensitive factors identified by the

Morris method, the SDP method was applied to estimate

the main effect (Si) and first-order interaction (Sij) of the

sensitive factors. To ensure that all potential sensitive

Fig. 4 Factor sensitivity based on the Morris method (diamond

denotes extremely sensitive, triangle medially sensitive, and closed

circle insensitive)

Environ Earth Sci (2015) 74:2413–2424 2419

123



factors are quantified, another two factors, i.e., r__CN2 and

v__Smfmx, the most sensitive ones in the insensitive group,

were also included. Therefore, 12 factors were analyzed

using SDP method. It took 600 model runs and the R2 of

the second-order ANOVA model is 93.0 %, which means

it explains over 90 % of the model uncertainty (i.e., var-

iation of NS). The result is shown in Table 3. The most

sensitive factor is v__Tlaps, followed by v__Plaps and

v__Alpha_bf. Other factors are not so sensitive for both Si
and SDi. v__Tlaps and v__Plaps control the driving force

(i.e., precipitation and temperature), and the main effect of

these two factors is 64.0 % (i.e. sum of main effects of

v__Tlaps and v__Plaps, and their first-order interaction),

contributing to over half of the model uncertainty. v__Al-

pha_bf influences the groundwater flow and its main effect

is 13 %. This suggests that fixing of these three factors

(e.g. through calibration) leads to over 77 % reduction of

model uncertainty. This result is the same as that based on

the Morris method. It is worth noting that the low sensi-

tivity indices of other factors do not mean that they are not

sensitive but that their contribution to the model output is

not as significant as these three factors.

Model calibration and evaluation

Calibration was then carried out on these twelve factors

using SCE-UA method. With daily NS = 0.80 during the

calibration period, the optimal values are given in Table 2.

The calibrated v__Plaps is 165 mm km-1, which is very

close to other studies in this region (e.g., 162 mm km-1 in

Lin 1985; 156.4 mm km-1 in Zhao et al. 2011). v__Tlaps

is -9.23 �C km-1, within the range of the study of Chen

(2012) (i.e., from -11.8 to -7.3 �C km-1) based on

temperature data from several stations in the south slope of

Tianshan Mountains. This temperature lapse rate, which is

close to the dry adiabatic lapse rate (-9.8 �C km-1), is

related to the characteristics of our study region, i.e., a

mountainous watershed located in the arid area with low

pressure, low humidity and high wind speed (e.g., Bland-

ford et al. 2008). The mean pressure and relative humidity

are 0.828 9 105 Pa and 42 % at Baluntai Station, and

0.758 9 105 Pa and 69 % at Bayanbulak Station. Besides,

there are over 12 % of days with wind speed higher than

5 m s-1 (strong wind) and 38 % of days higher than

3 m s-1 (moderate to strong wind) at Bayanbulak Station.

As discussed above, the hydrologic response is

dominated by the meteorological input. By fixing two

factors v__Tlaps and v__Plaps to their optimal values,

another SDP application was performed to the remaining

ten factors to study the important hydrologic processes

without the influence of meteorological input. As it turns

out, the most sensitive factors are v__Alpha_bf (Si = 0.57)

and v__Gw_delay (Si = 0.29), less sensitive factors are T
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r__Sol_k (Si = 0.02) and v__Smfmx (Si = 0.02) and other

factors are only sensitive through the interaction with these

factors. Factors related to groundwater process (i.e.

v__Alpha_bf, v__Gw_delay) account for more than 80 %

of the model uncertainty (sum of main effects of these two

factors and first-order interactions between them).

Although by the Morris method, v__Smfmx is an insensi-

tive factor, it is a relatively sensitive one by the SDP

method when fixing v__Tlaps and v__Plaps. It is indicative

that the dominant hydrological process is the groundwater

flow, and then the snowmelt flow and evapotranspiration.

To verify the importance of groundwater, a baseflow

separation was done to the observed discharge using the

digital filter technique (Arnold et al. 1995), which shows

that groundwater contributes to 72–86 % of the total flow

(or runoff). The high percentage of groundwater might be

due to the large flat valley area between steep mountains,

i.e., large area of wetland and flatland as is indicated in

Sect. 4.1.

Table 4 and Fig. 5 show agreement between the

simulated and observed flow series. As indicated by the

statistics in Table 4, the model performs well for both the

calibration period (1986–1989) and validation periods (first

validation period 1990–2002 and second validation period

2003–2010), in spite of the length of the validation period

is five times longer than the calibration period. The ‘‘NS’’s,

‘‘PBIAS’’s, ‘‘R2’’s are 0.80, 0.01 %, 0.80 for the calibration

period, 0.81, 2.94 %, 0.81 for the first validation period,

and 0.86, 1.31 %, 0.87 for the second validation period.

These ‘‘NS’’s, ‘‘PBIAS’’s, and ‘‘R2’’s are within the ex-

cellent range proposed by Moriasi et al. (2007).

The statistics above are corroborated by Fig. 5. In

Fig. 5, the simulated flow matches the observation very

well except for some peaks in summer seasons in 1987,

1999 and 2002. This might be due to the glacier melt in

summer which is not accounted for in this model. Gener-

ally, the model can simulate the flow response to the

rainfall and snowmelt. Notice there is a fluctuation in the

baseflow since 1992 when the Dashankou hydropower

station (4 km above the Dashankou hydrological station)

started to operate. However, this hydropower station does

not seem to have too much effect on the daily outflow.

To demonstrate the effect of the meteorological input,

the results of the simulation ‘‘without lapse rates’’ are also

shown in Table 4 and Fig. 5a. Compared to simulation

‘‘with lapse rates’’, simulation ‘‘without lapse rates’’ was

unable to capture most of the discharges in the Kaidu River

Basin, with NS equals to 0.47 for the calibration period,

0.49 for the first validation period and 0.35 for the second

validation period. Snowmelts in spring (e.g., in 1986, 1987

and 1989) were underestimated, peaks in summer (e.g., in

1988) were not captured, and baseflow was extremely un-

derestimated. For ‘‘without lapse rates’’, the underestima-

tion of the baseflow is mainly related to over-simplification

of spatial distribution of precipitation and temperature. As

a result, this leads to less average annual precipitation

(252 mm) and higher average temperature (5.1 �C) than

these of ‘‘with lapse rate’’ whose average annual pre-

cipitation is 378 mm and average temperature is -1.9 �C.
When driving the hydrologic model, it will cause less

precipitation input and higher evapotranspiration, and this

leads to less groundwater recharge, and eventually less

groundwater discharge. Figure 6 shows how different the

spatial variation of annual average precipitation using

precipitation lapse rate (Fig. 6a) from the one without

precipitation lapse rate (Fig. 6b). This shows the impor-

tance of spatial variation of meteorological input in

calibrating a distributed hydrological model and confirms

the conclusion that high quality of distributed rainfall data

contributes to good hydrological model performance

(Tavakoli and De Smedt 2013; Lee et al. 2013).

Conclusions

This paper implemented a combined sensitivity analysis

approach to the application of SWAT in the Kaidu River

Basin to investigate the contribution of meteorological

input in calibrating distributed hydrologic model. The

following conclusions can be drawn:

Table 4 Model performances

for the calibration and

validation periods

Statistics NS PBIAS (%) R2

‘‘With lapse rates’’

Calibration period 1986–1989 (daily data) 0.80 0.01 0.80

First validation period 1990–2002 (daily data) 0.81 2.94 0.81

Second validation period 2003–2010 (monthly data) 0.86 1.31 0.87

‘‘Without lapse rates’’

Calibration period 1986–1989 (daily data) 0.47 -30.22 0.66

First validation period 1990–2002 (daily data) 0.49 -32.22 0.71

Second validation period 2003–2010 (monthly data) 0.35 -36.51 0.80
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1. Our model is an effective tool to simulate the

hydrologic processes. Simulated daily flow series are

in agreement with the observed ones, with ‘‘NS’’s and

‘‘R2’’s over 0.80 and |PBIAS|\ 3 % for both calibra-

tion period and validation period. This calibration is

robust and tested by the validation period whose length

is five times longer than the calibration period.

2. Sensitivity analysis shows v__Tlaps and v__Plaps are

the two most important factors with main effects of

64.0 %. This indicates the model uncertainty largely

Fig. 5 Observed and simulated

outflow series at the Dashankou

hydrological station during the

calibration period (a daily

streamflow) and the validation

period (b, c daily streamflow

and d monthly streamflow)
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results from the meteorological inputs due to the

scarcity of observed meteorological data, especially in

the alpine regions.

3. Groundwater flow is the most important hydrologic

process in this watershed. Fixing v__Tlaps and

v__Plaps to their optimal values, factors related to

groundwater process account for over 80 % of the

model uncertainty, which is consistent with the result

of baseflow separation using digital filter technique.

4. Compared to the simulation ‘‘without lapse rates’’, the

simulation ‘‘with lapse rates’’ shows significant im-

provement on daily flows, especially in baseflow

simulation (groundwater discharge), which suggests

high spatial resolution meteorological data (e.g.,

satellite data) should be used for hydrologic modeling

in this region.
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