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Abstract High temperature may lead to the development

of new microcracks or growth of pre-existing microcracks

within granite, varying its physical and mechanical prop-

erties. Experiments were conducted to study the evolution

of the physical and mechanical properties of granite spe-

cimens from room temperature to 800 �C. The specimens

were heated in heating furnace and uniaxial compression

tests were done using MTS servo-controlled testing ma-

chine. The results indicate five phases in the variation of

physical and mechanical properties with temperature: from

room temperature to 100, 100–300, 300–400, 400–600, and

600–800 �C. The first phase corresponds to the vaporiza-

tion-escaping interval of adhered water, bound water,

and structural water. Larger changes of physical and me-

chanical parameters in the temperature range of

300–600 �C, mostly 400–600 �C, are probably caused by

the transition from the brittle state to plasticity (or duc-

tility) of granite, and 400 �C may be a critical threshold of

its thermal damage. These results confirm the important

link among physical and mechanical properties in response

to thermal treatment.

Keywords Thermal damage � Physical and mechanical

properties � Micro-mechanism � Phase transformation �
Critical threshold

Introduction

Thermally induced microcracks can significantly change

the physical and mechanical properties of rock. Knowledge

of the variation of these mechanical and physical properties

with temperature is important to understand and model

many processes in engineering projects, geological disas-

ters, and geological structure formation, such as rock

drilling (Nasseri et al. 2007, 2009), rock fragmentation, ore

crushing, underground oil or gasification (Chen and Wang

1980; Chen et al. 1999; Liu et al. 2005), extraction of

geothermal energy, deep petroleum boring, underground

repositories of nuclear wastes (Zhang et al. 2001, 2008),

protection of rock building or rocky cultural relics (Hajpal

2002), earthquake (Foulger 1995; Yang et al. 1997; Ram-

dani 1998), folding (Shimamoto and Hara 1976; Parish

et al. 1976; Anderson and Bridwell 1980), geothermal ac-

tivity (Mereer 1973), magmatic intrusions (Koide and

Bhattacharji 1975; Knapp and Norton 1981), and plate

tectonics (Pracht 1971; Heuze 1983; Björnsson 2008; Al-

baric et al. 2009; Craig et al. 2012).

Information about the evolution of physical and me-

chanical properties with temperature may be also used to

analyze the thermal damage and identify the critical

thresholds of rocks. Numerous studies have shown that

some properties of granite are correlated to thermal

damage, such as mechanical strength (e.g., compressive

and tensile strength), Poisson’s ratio, elastic modulus,

porosity, acoustic velocities, permeability, wave velocity,

fracture toughness, and fracture roughness (Bauer and
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Johnson 1979; Chen and Wang 1980; Géraud et al. 1992;

Jones et al. 1997; Yang et al. 1997; Xu and Liu 2000; Liu

et al. 2005; Dwivedi et al. 2008; Nasseri et al. 2009; Xu

et al. 2010; Xi et al. 2011; Lokajı́cek et al. 2012; Zhi et al.

2012; Chen et al. 2012; Yin 2012). Furthermore, exposure

of fault planes to increased temperature has been found to

reduce the friction coefficient (Stesky 1978; Lockner et al.

1986; Blanpied et al. 1998). Hence, the growth of cracks

with temperature may lead to different level of thermal

damage.

The important preoccupation of our study is to know the

pattern of variation of physical or mechanical parameters

with temperature in thermally cracked granites, and un-

derstand the underlying mechanism. In this paper, uniaxial

compression tests were conducted on granites mined from

Jining, Shandong, China. Before the tests, the granite

specimens were heated to typical temperatures and then

cooled, and then their stress–strain curves and peak stress

under uniaxial compression, porosity, and P-wave velocity

were measured and analyzed.

Experimental tests and results

Granite samples with average density of 2.76 g/cm3 at

room temperature were cut into u 50 9 100 mm cylinders,

which were then heated up to designated temperatures (25,

50, 100, 200, 300, 400, 500, 600, 700, and 800 �C) in a

high temperature furnace (type MTS652.02). The heating

rate was 30 �C/min, and each designated temperature was

kept constant for about 2 h. The power was cut off and the

specimen was allowed to cool naturally with the tem-

perature of the furnace.

The mass, volume, porosity, and P-wave velocity of

these specimens were tested before and after heating. The

porosity was measured by a Microporous structure

analyzer apparatus (type 9310) produced by Mi-

cromerities equipment Co., Ltd., and P-wave velocity was

collected by TICO test machine, at the same time with

this action.

Uniaxial compression tests of these specimens were

carried out on an electro-hydraulic servo-controlled testing

machine (MTS815). These tests were strain controlled at

the rate of 0.0015 mm/s.

X-ray diffraction (XRD) (type D/Max-3B) analysis

showed that feldspar, illite, and pyroxene are the main

components (Fig. 1), accompanied by a small amount of

other minerals. However, the experimental results of Zhang

et al. (2010) showed that the Luhui granite (mined from

Linyi, Shandong, China) contains feldspar, quartz, illite,

calcite, and siderite.

The porosity and stress–strain curves of granite speci-

mens heated up to different temperatures are shown in

Table 1, Figs. 2 and 3. With the increase of temperature,

especially above 400 �C, the mass loss continues to in-

crease, as shown in Fig. 4.

Fig. 1 XRD spectrum of granite sample (under 25�)

Table 1 Porosity under different temperature

Temperature �C Porosity/%

Sample 1 Sample 2 Sample 3 Average value

25 0.97 0.96 0.72 0.88

50 0.73 0.81 0.70 0.75

100 0.87 0.68 0.66 0.74

200 0.91 1.06 1.05 1.01

300 1.04 1.11 1.37 1.17

500 1.49 1.37 1.82 1.56

800 2.62 2.42 2.68 2.57
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Fig. 2 Porosity of stress–strain of granite samples after different

temperature

2342 Environ Earth Sci (2015) 74:2341–2349

123



The results of uniaxial compression tests are shown in

Figs. 3 and 5. Generally, the peak stress decreases and the

peak strain increases as the temperature increases. Figure 3

demonstrates the variation of stress–strain curves with

heating temperature. In each stress–strain curve of heated

granite, four stages can be identified: (1) the compaction

stage, when microcracks are folded by external loads; (2)

the elastic stable cracking stage with continuous com-

paction at the beginning and micro-fractures developed

later; (3) the yielding stage, when the stress reaches the

maximum value at the end; (4) the softening stage, when

the stress–strain curve declines steeply and the rock spe-

cimen fractures rapidly. Figure 5 shows that when the

heating temperature is below 400 �C, the effect of tem-

perature on the peak stress and elastic modulus of the

specimen is relatively small; when the heating temperature

exceeds 400 �C, the peak stress and elastic modulus of the

specimen decreases significantly with the increase of

heating temperature.

Analysis and discussion

This decrease in the strength of heated granite is caused by

the variation of internal structure induced by heat. Since

granite is composed of mineral particles with different

thermal expansion coefficients and thermo–elastic charac-

teristics, high temperature may lead to inhomogeneous

thermal expansion of mineral particles or phase transition

of some mineralogical components, generating internal

stress and microcracks in granite.

With the increase of temperature, internal defects would

grow and change the physical and mechanical properties of

granite. Moreover, in the process of heating, the water

inside granite changes its existing form, i.e., the absorbed

water, bounded water, and mineral water (e.g., crystal

water, structural water, or zeolite water) would escape from

granite under different temperature. It is known that the

absorbed water would escape around 100 �C; the bounded

water escape between 100 and 300 �C; crystal water would
escape below 400 �C; and structural water of mineral

would escape above 300 �C (Sun et al. 2013). The loss of

crystal water and structural water leads to the damage of

mineral crystal lattice skeleton, increasing the defects of

granite.

Accordingly, variation of the measured compressive

strength, P-wave velocity, and mass quality with tem-

perature may be divided into five phases (as shown in

Figs. 4, 5):

1. Room temperature -100 �C. In this phase, the ab-

sorbed water would be lost and the mineral grains of
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Fig. 3 Curves of stress–strain of granite samples after different

temperature
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granite be expanded, so porosity and P-wave velocity

decrease slightly.

2. 100–300 �C. In this phase, bounded water and crystal

water escape, porosity increases slightly, and P-wave

velocity decreases slightly.

3. 300–400 �C. In this phase, the crystal water and

structural water of mineral escape, so porosity increas-

es significantly and P-wave velocity decreases. A

review of previous work on thermally treated granites

found that the permeability has increased significantly

(as shown in Fig. 6, Etienne and Poupert 1989), which

was considered to be caused by increased defects and

connectivity due to the loss of crystal and structural

water. Moreover, in this phase, the water reaches its

critical temperature (i.e., 374 �C), at which the water

may turn into supercritical fluid, causing internal stress

in the granite and increased thermal damage.

The existing form of water around the critical

temperature has significant influence on the solubility,

physical, and chemical properties of granite minerals.

The test of Zhang et al. (2008) showed fluctuation in

the dissolution rates when passing the critical state of

water, i.e., over the temperature range of 300–400 �C.
Experiments show that the maximum release rate of Si

is released at 300 �C. Variation of the water properties

and kinetic behavior of water–rock interactions also

affect other features of granite mineral, such as the

release of Silica, and breaking of silicate framework of

minerals.

4. 400–600 �C. In this phase, the physical and chemical

features of granite minerals would change (shown in

Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18).

Between 400 and 600 �C, especially 500 and 600 �C,
the minerals (such as ankerite, siderite, magnetite,

pyrrhotite, pyrite, illite, and kaolinite) of granite have

chemical changes (Jana and Agnes 2012). At roughly

573 �C and under atmospheric conditions, quartz has a

phase transformation from a phase to b phase, which

can be used to explain the large variation of me-

chanical and physical properties.

5. Above 600 �C. Under the influenced of solid mineral

inflation and fracture of metallic bonding (such as Al–

O, K–O, Na–O, and Ca–O), the strength and wave

velocity continue to reduce, and the permeability and

porosity continue to increase. In this phase, part of the

minerals would melt, leading to enlarged defects.

In the first three phases, the variations of compressive

and tensile strength are different from what was found in

previous studies. Uniaxial compressive strength and elastic
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modulus decrease with temperature until 400 �C, while

porosity, permeability, and AE significantly increase

(Bauer and Johnson 1979; Etienne and Poupert 1989;

Géraud 1994; Du et al. 2004; Chaki et al. 2008).

However, interestingly, numerous studies have shown

that when the temperature is over 400 �C, some physical

and mechanical properties of granite, such as density of

microcracks, porosity, permeability, wave velocity, frac-

ture roughness, fracture toughness, and peak strength (as

shown in Figs. 5, 16), would change significantly, consis-

tent with our experimental result. Bauer and Johnson

(1979) pointed out that although microcracking starts in

granite at about 80–120 �C, most of the mineral grains are

microcracked at about 400 �C. Chaki et al. (2008) observed
a small increase in porosity between 105 and 500 �C, and a
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significant increase between 500 and 600 �C (anisotropic

expansion linked to the a/b quartz transition which occurs

at 573 �C). Géraud et al. (1992) showed that the porosity of
granite increases above 300 �C. The largest increase of

surface roughness occurred between 450 and 600 �C, cor-
responding to the largest decreases in both Vp and KIC.

Bauer and Johnson (1979) observed that the strength of

granite heated up to 400 �C was slightly lower than that of

the granite at room temperature. Etienne and Poupert

(1989) pointed out that the Remiremont granite showed

slightly higher strength at 200 �C, but the Sennones granite
showed a larger increase in strength at 400 �C. The in-

crease of strength at 400 �C was also observed by Alm

et al. (1985), although Rao and Murthy (2001) showed that

the strength of granite at 400 �C and room temperature is

comparable.

The mechanical behavior of rocks essentially depends

upon their mineralogy, structure, temperature, and stress

history (Etienne and Poupert 1989). Granite is polycrys-

talline containing minerals with different thermal expan-

sion coefficients, so inter-granular compressive and tensile

forces are generated under heating. When these forces

exceed the local strength, microcracks are generated.

Depending on the temperature, thermal cracking can occur

either between adjacent crystalline grains (inter-granular

cracks) (Jason et al. 1993) or within grains (intra-granular

cracks) such as the case of a/b phase transition in quartz

(Glover et al. 1995). Analysis of mineral–mineral contact

types along the test fracture path in thermally treated

granite specimens showed that pre-existing thermal dam-

age mainly around grain boundaries leads to a larger vol-

ume of rock affected by fracture propagation (Fredrich and
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Wong 1986; Nasseri et al. 2007). With the growth of mi-

crocracks due to thermal damage, the mechanical strength,

elastic modulus and wave velocity decrease, plastic de-

formation, acoustic emission (AE), and permeability

increase.

Chen et al. (2012) pointed out that 400 �C may be a

critical value for the strength of granite. Nasseri et al.

(2007, 2009) reported that above 450 �C, grain boundary

opening and cracking, and intra-granular cracking and

mineral grain dissection linked to the quartz a/b phase

transition, induced a significant increase in the total density

of cracks.

Our experimental results also suggest that 400 �C could

be a critical threshold of the thermal damage of granite,

corresponding to the transition from the brittle state to

plasticity (or ductility). Therefore, significant changes in

the physical and mechanical properties of granite speci-

mens were observed in the temperature range of

300–600 �C, especially 400–600 �C.

Conclusion

In order to find out how the mechanical and physical

properties of granite vary with temperature, uniaxial

compression tests of granite specimens were conducted to

measure the mechanical properties of granite rocks heated

up to 800 �C, and their physical properties such as poros-

ity, permeability, and ultrasonic wave propagation are also

measured.

Based on the results and the data reported in previous

studies, the process and critical threshold of the thermal

damage of granite are discussed, and the following con-

clusions can be drawn:

1. temperature has a significant impact on the physical

and mechanical properties of granite.

2. Generally, the temperature range of 300–600 �C,
especially 400–600 �C, corresponds to the transition

from the brittle state to plasticity (or ductility) of

granite, and 400 �C maybe a critical threshold of the

thermal damage of granite.

3. The results indicate five phases in the variation of

physical and mechanical properties with temperature:

from room temperature to 100, 100–300, 300–400,

400–600, and 600–800 �C. The first phase corresponds
to the vaporization-escaping interval of adhered water,

bound water, and structural water. Larger changes of

physical and mechanical parameters in the temperature

range of 300–600 �C, mostly 400–600 �C, are prob-

ably caused by the transition of granite from the brittle

state to plasticity (or ductility). Between 400 and
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600 �C, especially from 500 to 600 �C, the minerals

(such as ankerite, siderite, magnetite, pyrrhotite, pyrite,

illite, and kaolinite) in granite have chemical changes,

which are demonstrated as volume increase, reduction

of bearing capacity, increased connectivity, and abrupt

change of wave velocity.
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