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Abstract Many remediation options have been applied to

the heavy metal-contaminated agricultural soils nearby

abandoned mining sites mainly due to hazard effects of

heavy metals to human through agricultural crop dietary.

Hence, the current study was carried to examine the heavy

metal immobilizing effect of biochar produced from rice

hull and subsequent heavy metal uptake by lettuce. Rice

hull biochar was incorporated into a heavy metal-con-

taminated upland soil at six application rates (0, 0.5, 1, 2, 5,

and 10 % (v/v)) and soil biochar mixtures were examined

using both incubation and pot trials for cultivation of let-

tuce. Incubation studies showed that biochar incorporation

induced significant declines ([80 %) in the phytoavailable

metal pool as assessed via 1 M NH4NO3 extraction, pos-

sibly due to increased heavy metal adsorption onto the

applied biochar and increases in soil pH. Similar results

were also observed in pot trials, where the uptake of heavy

metals by lettuce was significantly reduced as biochar ap-

plication rate increased. Despite the significant decline in

soil phytoavailable metal pools, lettuce growth still de-

clined as biochar application rate increased. This was at-

tributed to the adsorption of available nitrogen on to the

biochar resulting in nitrogen deficiency. Therefore, when

the biochar is used for metal immobilization in agricultural

soils, maintaining soil nutrient status should be also con-

sidered to ensure optimum growth of the crop plants be-

sides metal immobilization rate.

Keywords Charcoal � Black carbon � Soil ameliorant �
Plant availability � Immobilization

Introduction

Soils near mining sites are often contaminated by heavy

metals due to deposition of airborne mining dust and inflow

of aqueous runoff from acid mining drainage (Bech et al.

1997; Lee et al. 2001). This becomes a major human health

concern when such soils are used in agriculture to produce

food for human consumption (Lee et al. 2005; Liu et al.

2005). Therefore, many physical-, chemical-, and biologi-

cal-based remediation technologies were developed (Mul-

ligan et al. 2001) to immobilize heavy metals using various

soil amendments such as compost, lime, and phosphate

(Kumpiene et al. 2008; Bolan et al. 2014). Among the

myriad of potential amendments proposed, liming materi-

als are the most popular. These materials increase soil pH
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resulting in declines in available metal pools through three

mechanisms, (1) deprotonation of the soil surface (Kim

et al. 2012), (2) precipitation of metal ions as carbonates

(Lee et al. 2009, 2012), and (3) changes in metal ion

speciation, primarily to hydroxyl species which are pref-

erentially adsorbed by soil components (Lombi et al.

2003). Other alkaline materials, such as fly ash and hy-

droxyapatite, also exhibit similar effects on metal immo-

bilization through increases in soil pH when incorporated

into soils (Kumpiene et al. 2008).

Biochar (BC) can be produced from a wide range of

organic wastes via pyrolysis, where due to its versatility it

has been widely applied in many different research areas,

i.e., for carbon sequestration in soils (Lehmann et al. 2006;

Lehmann 2007), as physicochemical soil amendments

(Glaser et al. 2002; Liang et al. 2006) and to improve of

soil productivity (Lehmann et al. 2003; Chan et al. 2007;

Steiner et al. 2007; Major et al. 2010). In addition, like lime

and fly ash, BC also increases soil pH (Chan and Xu 2009)

and hence can act as an immobilizing agent for heavy

metals, although relatively little research has been con-

ducted in this respect.

Recently, hardwood-derived BC was successfully used

to immobilize heavy metals in soils (Beesley et al. 2011).

Xu et al. (2013) reported that the sorption capacities of the

BC produced from dairy manure at 350 �C were 51.4, 54.4,

and 32.8, mg g-1 for Cd, Cu, and Zn, respectively. In other

studies, BC from orchard prunes reduced DTPA-ex-

tractable Cd, Pb, and Zn by 90, 38, and 24 %, respectively,

when incorporated with mine tailings at 10 % (w/w)

compared to the control (no BC treated) (Fellet et al. 2011).

The extent to which BC increases heavy metal immobi-

lization in soils varies depending on the feed materials used

for BC production (Park et al. 2011a). For example,

chicken manure-derived BC exhibited a relatively high

immobilizing efficiency, showing declines in 1 M NH4-

NO3-extractable Cd and Pb of 89 and 94 % when incor-

porated with contaminated soil at 5 % (w/w), while green

waste-derived BC showed only a 30 and 37 % decline in

1 M NH4NO3-extractable Cd and Pb (Park et al. 2011a).

Chicken manure-derived BC actually increased 1 M NH4-

NO3-extractable Cu by 45 %, while simultaneously de-

creasing the extractabilities of all other metal ions (Cd and

Pb). In contrast, 1 M NH4NO3-extractable Cu was de-

creased by green waste-derived BC even though the de-

crease (23 %) was limited and was concomitant with

decreases in other examined metals (Cd and Pb). Such

studies have demonstrated that appropriate feed materials

for BC production need to be selected prior to practical

application of BC as a metal immobilizing agent. Another

aspect to consider is whether feed materials are easy to

collect and whether bulk production of BC is sustainable,

as substantial amounts of BC would be required for

application to wide areas of contaminated soils in order to

obtain an acceptable immobilizing effect. Taking such

factors into consideration, a particularly good candidate for

BC production are by-products derived from agriculture

such as rice hull in Asia. For instance, 11,600,000 tons of

biomass by-products were generated in 2009 in Korea

among which biomass derived from rice cultivation ac-

counted for 75 % (Park et al. 2011b). Furthermore, rice is a

typical silicon accumulating plant and rice hull contains

15–20 % silica (Sun and Gong 2001; Ma and Yamaji

2006). Silicon (Si) has enhanced the growth and develop-

ment of several crops and Si improved disease resistance in

various plants including horticultural crops (Ma and

Takahashi 1990; Savant et al. 1999; Matichekov and

Bocharnikova 2004). Therefore, rice hull biochar would be

better soil amendment than other materials for cultivation

of crops in heavy metal-contaminated soil.

The current study used rice hull-derived BC as an al-

ternative amendment for heavy metal immobilization to

mitigate plant uptake. Lettuce, a common vegetable crop

was chosen as a suitable test species to assess plant per-

formance when grown in a BC-amended contaminated soil.

Methods and materials

Soil and rice hull-derived biochar

Soil sampling: The soil used for both incubation and pot

studies was collected from a cultivated upland near an

abandoned mining area where previous studies (Kim et al.

2012) had shown that the soils exceeded local environment

guidelines for heavy metal (Cd, Cu, Pb, and Zn). Bulk soil

(0–30 cm) collected from the upland was air-dried and

sieved\2 mm, characterized, and stored in a plastic con-

tainer until used for incubation and pot studies.

Soil characteristics: Soil pH and EC were measured in a

1:5 soil:distilled water suspension using a pH meter

(MP220, Mettler Toledo, UK) and EC meter (MC226,

Mettler Toledo, UK) after 1 h shaking. Soil organic matter

was determined by the Walkley–Black method (Nelson and

Sommers 1996) and clay content was determined using a

micro pipette method (Miller and Miller 1987). For ana-

lysis of total nitrogen, soil was pretreated using the Kjeldal

digestion method (Bremner 1996) and the amount of NH4
?

was determined following distillation of the digested su-

pernatant (Kjeltec 2300, Foss, Sweden). Available phos-

phorus was determined by the ascorbic acid method (Kuo

1996). Exchangeable cations (Ca, K, Mg, and Na) and

cation exchange capacity (CEC), were both determined

following a 1 N ammonium acetate (pH 7.0) soil extract

and subsequent determination of cations in the extract, by

atomic absorption spectrometer (AAS, AAnalyst 400,
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Perkin Elmer, USA) or NH4
? distillation (Sumner and

Miller 1996) for CEC. The pseudo total heavy metal con-

centration in soil was determined by ICP-OES (iCAP 6,000

series, Thermo Scientific, U.K.) following aqua regia di-

gestion of the soil in a commercial trace metal digestion

system (SMA 20A, Gerhardt, UK). Hereafter, the aqua

regia extractable concentration of heavy metals will be

simply referred to as the total metal concentration (Kim

et al. 2012).

Biochar characteristics: Rice hull-derived BC (py-

rolyzed at 500 �C) was obtained commercially (DAEWON

GSI, Korea). The supplied BC was finely milled in a mortar

and pestle and sieved\0.5 mm, prior to use and charac-

terization. The surface characteristics of the BC were ob-

served using scanning electron microscopy (SEM, SUPRA

55VP, Germany). Cation content, pH, and EC of the BC

were determined following extraction of the BC (60 mL)

with distilled water (300 mL) as described by the European

Committee for Standardization (CEN (Committee for

European Normalization) 2001, 2011a, b). Total carbon

and nitrogen contents were determined using a C/N auto-

analyzer (Vario Max CN, Elementar Analysen system

GmbH, Germany). Cation exchange capacity and total

metal concentrations were determined using the methods

described above for soils.

Incubation study

Soil (2 kg) was incorporated with BC at six different

soil:BC (SBC) ratios; 0 (control), 0.5 (BC0.5), 1 (BC1), 2

(BC2), 5 (BC5), and 10 (BC10) % (w/w) and stored in

opaque plastic containers (9 L) at a moisture content of

70 % of the mixture’s maximum water holding capacity

(Kim et al. 2010b). Each treatment consisted of four

replicates. The moist soil mixtures were lidded and incu-

bated at 25 ± 2 �C for 8 weeks, while maintaining the

moisture content through periodic weighing and occasional

supplement of moisture as necessary. During incubation,

sub-samples (100 g) were periodically collected from each

container at 2 weeks intervals (0, 2, 4, and 8 weeks), air-

dried and assessed for the effect of incorporated BC on

heavy metal immobilization.

Plant growth study

As described for the incubation studies, SBC mixtures were

prepared at six treatment levels of BC [0, 0.5, 1, 2, 5, and

10 % (w/w)]. Prior to use in the plant growth study, the

SBC mixtures were moistened at 70 % of their maximum

water holding capacity and incubated at 25 ± 2 �C for

1 week. A portion of each treatment soil (400 g) was dis-

tributed to five plastic pots (diameter 10 cm 9 height

10 cm) and 28-days-old lettuce seedlings of uniform size

were transplanted into each pot. Lettuce (Lactuca sativa L.)

was subsequently cultivated for 30 days in a growth

chamber (day time, 16 h; night time 8 h; temperature,

25 �C; light, 500 mol m-2 s-1) and then harvested for

assessment of the effect of BC on plant metal uptake and

growth. During cultivation nutrient solution was supplied

once every 3 days in the early stage (\2 weeks) and then

every other day in the later stage ([2 weeks) through the

bottom of each pot by adding the nutrient solution to the

saucer of each pot. The nutrient solution contained, major

nutrients (6, 0.5, 1.5, 4, 2, 1 mg L-1 for NO3-N, NH4-N, P,

K, Ca, and SO4-S, respectively), and minor nutrients (2,

0.01, 0.2, 0.2, 0.2, and 0.5 mg L-1 for Fe, Cu, B, Mn, Zn,

and Mo, respectively).

Analysis of soil and plant

Incubated soils: Soil pH and total metal contents were

determined as described above (Sect. 2.1). Phytoavailable

metal contents (DIN (Deutches Institute für Normung)

1995) were determined using 1 M NH4NO3 extraction

(Kim et al. 2010a). Briefly, soil (10 g) was extracted with

1 M NH4NO3 (25 mL) and shaking on an end-over-end

shaker for 2 h and the metal content in the extracted so-

lution determined by Inductively Coupled Plasma Optical

Emission Spectroscopy (ICP-OES, iCAP 6,000 series,

Thermo Scientific, UK). The surface area of the SBC

mixtures was measured by the Brunauer-Emmett-Teller

(BET) method using a surface area analyzer (NOVA-1200,

Quantachrome Corp., USA). All analysis was conducted in

triplicate.

Pot trial soils: Soils used in the pot trial were analyzed

before and after lettuce cultivation. Soil pH and the phy-

toavailable metal content were determined using the

methods described above for incubated soils. Inorganic

nitrogen content, as NH4–N and NO3–N, was determined

following extraction with 2 M KCl. The NH4–N in the

extract was initially determined, via nitrogen distillation

and titration after adding MgO, while the NO3–N contents

in the extract were determined by nitrogen distillation and

titration after adding Devarda’s alloy (Mulvaney 1996).

Dissolved organic carbon (DOC) was determined follow-

ing extraction of soil (5 g) with distilled water (25 mL) and

shaking for 2 h. The extract solution was filtered

(\0.45 lm) prior to DOC determination using a TOC

analyzer (2100S, Analytik Jena, Germany).

Plant material: At harvest, lettuce leaves were washed

once with tap and twice with distilled water to remove any

adhering soil and dried in a fan-forced oven at 65 �C for

48 h. The dried plant tissues were weighed and then

powdered using a commercial blender prior to determina-

tion of metal content following acid digestion. As previ-

ously described (Kim et al. 2010a), dried plant tissue
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(0.5 g) was digested with concentrated HNO3 (5 mL) using

a digester (Tecator 2020, Foss, Sweden), diluted 50 mL

using distilled water and filtered through Whatman No. 42

filter papers prior to determination of total metal content by

ICP-OES.

Data treatment and statistics

In order to assess the relative effect of BC on metal im-

mobilization, the percentage of immobilized metal was

calculated using Eq. 1 (Park et al. 2011a).

For ease of visualization, all data presented in tables and

figures correspond to mean values with errors corre-

sponding to one standard deviation of the mean. Any sig-

nificant differences among treatments were determined by

ANOVA using SAS 9.3 software (SAS for Windows v. 9.3,

SAS Institute Inc., Cary, NC).

Results and discussion

Properties of soil and biochar

Soil: The selected physiochemical properties of the upland

soil are presented in Table 1. The soil was slightly acidic

(pH 5.7) and highly contaminated with heavy metals, with

levels of Cd, Pb, and Zn exceeding the Korean standard

guideline values of 4, 200, and 300 mg kg-1 for Cd, Pb,

and Zn, respectively (MoE (Ministry of Environment)

2010). Other soils properties commonly associated with

heavy metal availability, such as organic content

(8.4 g kg-1) and clay content (8.4 %), were relatively low

compared to the average values reported for Korean cul-

tivated upland soils (Rim et al. 1997; Jo and Koh 2004).

Nutrient status, as indicated by available P (23 mg kg-1)

and total N (1.3 g kg-1), indicated that the soil was nutrient

poor and that additional nutrient supplements were re-

quired for optimal plant growth.

Biochar: Heavy metal concentrations in the BC were

very low compared to those in the soil and hence the

amount of each metal added to the soil through BC

application was negligible (Table 1). The pH was 10.2

implying potential for an increase in soil pH when incor-

porated into soil. The BC surface exhibited many porous

areas (Supplementary Fig. 1) inducing elevated surface

area where more heavy metal ions could potentially be

adsorbed (Beesley and Marmiroli 2011). The potential for

higher metal adsorption to the BC surface was also evi-

denced by the high CEC (50 cmolc kg
-1).

Incubation study

Soil incorporation of BC resulted in a decrease in total

metal concentration proportional to the amount of BC ap-

plied indicating a simple dilution effect. For instance, for

BC10, the total concentrations of Cd, Cu, Pb, and Zn were

4, 103, 2,421, and 610 mg kg-1, respectively, which was

84, 82, 87, and 89 % of the corresponding metal content in

the control soil.

Biochar soil incorporation increased soil pH immedi-

ately after BC application proportional to the amount ap-

plied. The highest increase of 1.4 pH units, relative to the

pH of the control soil (pH 5.7), was observed in BC10

(Fig. 1). Following BC incorporation, a gradual increase in

soil pH was observed for all soil treatments as incubation

time increased. For example, for BC10, soil pH increased

from 7.1 to 7.7 over 8 weeks. During the production of BC,

pyrolysis of organic substances at elevated temperatures

results in an increase in carbonate contents and generation

of a wide range of additional functional groups, such as

-COŌ and Ō, on the BC surface. Thus, as a direct result of

pyrolysis, BC becomes an alkaline material (Yuan et al.

2011), which induces soil pH increases when applied to

soils and provides a negatively charged surface where ca-

tions can be absorbed. Application of various biochars to

an ultisol soil (initial soil pH 4.0) at a rate of 10 g kg-1 saw

soil pH increase by 0.32–1.28 units, which was attributed

to the high pH and alkalinity of the BC exhibiting a liming

effect (Yuan and Xu 2011). In agreement with that study,

the increased soil pH observed here after BC application

was most likely directly due to the high pH and alkalinity

of the rice hull-derived BC. It was consequently expected

that the observed increases in soil pH would be a key factor

influencing metal phytoavailability.

Phytoavailable (1 M NH4NO3 extractable) metal pools

decreased with the initial amount of BC application and

continued to decrease during the 8 week incubation

(Fig. 2). In order to evaluate the effect of BC on the metal

immobilization, the immobilization rate was calculated

using the phytoavailable metal pools determined in both

Immobilized metal ð%Þ ¼ ðNH4NO3 metal for the control � NH4NO3 metal for treated sampleÞ � 100

NH4NO3 metal for the control
ð1Þ
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control and BC10 soils after 8 weeks incubation. At 10 %

(w/w) BC application, high immobilization rates were

observed for all metals tested; 97 % for Cd, 90 % for Cu,

and 100 % for Pb and Zn.

The high levels of metal immobilization observed fol-

lowing BC application which was primarily attributed to

BC-induced increases in soil pH, which has previously

been shown to be the most important soil environmental

factor influencing metal solubility (Walker et al. 2004;

Kumpiene et al. 2008; Kim et al. 2010a). Many previous

studies, have also reported that a wide diversity of alkaline

materials including limestone, beringite, red mud, and

furnace slag have increased soil pH and subsequently in-

creased heavy metals immobilization when incorporated

into soils (Lombi et al. 2003; Gray et al. 2006; Lee et al.

2009). Increases in soil pH result in deprotonation of the

soil surface resulting in an increase in soil surface negative

charge, thus facilitating increases metal ion absorption.

Also hydroxyl species of metal cations, which have higher

affinity for the soil surface, are generated under alkaline

conditions (Naidu et al. 1994; Bolan et al. 2003). BC-in-

duced pH increases resulting in increased metal immobi-

lization in soil seem to be a common occurrence

independent of the source of BC feed materials. Beesley

et al. (2010) reported an increase in soil pH and decreases

in both Cd and Zn soil pore water concentrations following

application of hardwood BC to a multi-element polluted

soil. Jiang et al. (2012) also reported decreases in acid

soluble Cu and Pb following application of rice straw BC

to an artificially contaminated soil concomitant with an

increase in soil pH. In close agreement, with these two

previous studies, here, the application of rice hull-derived

BC to a contaminated soil increased soil pH proportional to

the amount of BC applied and subsequently decreased

phytoavailable metal pools (Fig. 3). In addition to pH-in-

duced immobilization of metals to soil surfaces; BC itself

provides an additional high surface area with a wide range

of functional groups that can directly decrease phy-

toavailable metal pools by absorption onto the BC surface.

This interpretation is supported by examination of the data

circled in Fig. 3. The BC5 soil when incubated for

\2 weeks showed a similar soil pH to those of the BC1

and BC2 soils which had incubated for[4 weeks. How-

ever, phytoavailable Cd, Pb, and Zn pools were much

lower in the BC5 soil than those in the BC1 and BC2 soil

despite similar soil pH. This implied that, for the same pH,

the larger amount of BC in the BC5 soil compared to either

BC1 or BC2 soils provided more sorption sites for Cd, Pb,

and Zn cations, and consequently decreased metal phy-

toavailability. This is also supported by the observed in-

creases in BET surface area with increased BC

Table 1 Physicochemical properties of the soil and biochar used in

this study (n = 3, ±standard deviation)

Property Soil Biochar

pH 5.7 ± 0.02 10.2 ± 0.02

EC (dS m-1) 0.15 ± 0.02 0.82 ± 0.01

Exchangeable cations (cmolc kg
-1)

Ca2? 6.91 ± 0.15 –

Mg2? 2.22 ± 0.05 –

Na? 0.09 ± 0.03 –

K? 0.50 ± 0.01 –

Water soluble (mg L-1)

Ca2? – 0.72 ± 0.06

Mg2? – 0.65 ± 0.05

Na? – 46.6 ± 6.5

K? – 1,120 ± 70

CEC� (cmolc kg
-1) 11.7 ± 0.2 50.4 ± 1.3

Available P (mg kg-1) 24 ± 3 –

Water soluble P (mg L-1) – 22.7 ± 0.5

Organic matter (g kg-1) 8.4 ± 0.8 –

Total C (g kg-1) – 205 ± 9

Total N (g kg-1) 1.27 ± 0.29 2.6 ± 0.5

Total (mg kg-1)

Cd 4.8 ± 0.3 0.02 ± 0.01

Cu 125 ± 11 2.47 ± 0.15

Pb 2,780 ± 80 0.48 ± 0.04

Zn 687 ± 9 3.29 ± 0.34

Texture (%)

Sand 71.4 –

Silt 20.2

Clay 8.4

� Cation exchange capacity

pH

5

6

7

8

9
C
BC 0.5
BC 1
BC 2
BC 5
BC 10

40 2 86
Incubation time (week)

Fig. 1 Variation in soil pH with incubation time at six biochar (BC)

application rates (0, 0.5, 1, 2, 5, and 10 % (w/w))
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incorporation. For instance, after 4 weeks incubation, the

BET of SBC mixtures increased from 15 m2 g-1 in the

control to 16 and 23 m2 g-1 in BC2 and BC10,

respectively.

Pot trial

Soil pH and phytoavailable metal pools

As was shown in the incubation study, BC incorporation

with soil 1 week before transplantation of lettuce increased

soil pH proportional to the BC application rate and this

increase was maintained throughout growth until harvest.

For instance, the soil pH of BC10 was 7.5 at harvest

compared to only 5.8 in the control. Increased soil pH

resulting from BC application also induced decreases in

phytoavailable metal pools (Fig. 4). Before lettuce culti-

vation, the immobilization rates for Cd, Cu, Pb, and Zn for

BC10 were 86, 85, 96, and 93 %, respectively. After let-

tuce cultivation, while the immobilization rates for Cd, Pb,

and Zn were similar to those determined prior to lettuce

cultivation, the Cu immobilization rate had significantly

declined from 85 to 49 %, implying that Cu phytoavail-

ability had been significantly increased during lettuce

cultivation. Indeed, phytoavailable Cu pools for BC1, BC2,

BC5, and BC10 increased by 28, 41, 156, and 124 % from

those determined before lettuce cultivation. This was par-

tially attributed to increased soil DOC concentrations

following lettuce cultivation due to root exudation (Kim

et al. 2010c). Cu is known to form strong metal complexes

with organic constitutes in soil solution which elevates Cu

solubility. DOC concentrations after 4 weeks cultivation

were 119, 139, 151, 151, and 143 mg kg-1 for control,

BC1, BC2, BC5, and BC10, respectively (Table 2).

Metal uptake by lettuce and its growth

As expected from the observed decrease in soil phy-

toavailable metal pools following BC application, the let-

tuce tissue concentration of all metals, except Cu,

decreased with the amount of BC applied (Fig. 5). At a

treatment rate of only 1 % (w/w), BC application was ef-

fective in decreasing the concentration of Cd, Pb, and Zn in

lettuce relative to the control, with the biggest decrease

being observed for BC10. The accumulated Cd, Pb, and Zn

concentrations in lettuce cultivated in BC10 were respec-

tively, 88, 60, and 66 % lower than those of the control

soil. For these three metals, the lowered metal accumula-

tion by lettuce was attributed principally to increases in pH

which induced a concomitant decrease in their phy-

toavailable pools following BC application. Similar de-

creases in metal uptake have previously been reported in

the literature following application of a pH ameliorant. For

example, application of red mud resulted in a pH increase

which induced immobilization of heavy metals in soil, and

subsequently decreased translocation of heavy metals to
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Fig. 2 Variation in NH4NO3-extractable metal contents with incubation time at six biochar (BC) application rates (0, 0.5, 1, 2, 5, and 10 %

(w/w))

1254 Environ Earth Sci (2015) 74:1249–1259

123



the above ground tissues of Festuca rubra (Gray et al.

2006). Application of rice-derived biochars also resulted in

increased metal immobilization during rice cultivation as

evidenced by declines in Cd, Pb, and Zn concentration in

rice by 98, 72, and 83 % (Zheng et al. 2012).

In contrast to these three metals, the variation of Cu

uptake by lettuce following BC application was very dif-

ferent. The concentration of Cu in lettuce cultivated in soils

receiving\5 % BC was not significantly different from the

control and only at a BC application rate of 10 % was a

significant decrease (28 %) in accumulated Cu observed.

This was due to an increase in the phytoavailable Cu pool

in soils following lettuce cultivation (Fig. 4) since irre-

spective of the amount of BC applied; all soils experienced

an increase in phytoavailable Cu following cultivation of

lettuce for 4 weeks. The Cu solubility in soils is primarily

governed by DOC concentrations, rather than soil pH,

when the soil pH is above 7.5, so that Cu solubility in-

creases as DOC concentrations increase, resulting in in-

creased metal uptake by plants (Kim et al. 2009, 2012). In

addition, many plants exude a wide range of organic sub-

stance from their roots into to the rhizosphere, which

contributes to elevated DOC concentration in the soil (Kim

et al. 2010b, c). While the incubation study had shown that

BC was effective in Cu immobilization over an 8 weeks

period, in direct contrast, the pot trial immobilization of Cu

by BC was retarded within only 4 weeks of lettuce culti-

vation. This strongly suggested that lettuce was responsible

for the increased DOC concentration in soil, most likely

due to increased production of root exudates which in-

creased the amount of phytoavailable Cu in the soil and

consequently offset the beneficial immobilization effects of

BC. As described in 3.3.1, lettuce cultivation for 4 weeks

increased DOC concentrations, with the largest increases

(18–70 mg kg-1) observed with BC-treated soils compared

to only 14 mg kg-1 in the control for DOC concentrations

(Table 2).

Despite decreases in metal accumulation in the above

ground tissue of lettuce, the growth of lettuce, as deter-

mined by the total dry weight yield, was hindered as BC

application rate increased above 0.5 % and the maximum

dry weight yield of lettuce (1.07 g) was observed at 0.5 %

(w/w) BC (Fig. 6). While the positive effects of BC as soil

amendment to enhance plant growth have been evidenced

in many previous studies (Atkinson et al. 2010; Major et al.

2010), in agreement with this study, some researchers have

reported detrimental effects of BC application on plant

growth. Rajkovich et al. (2012) found that for corn, irre-

spective of the type of BC, no growth promotion was ob-

served when the BC application rate was[2 %. This lack
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of any beneficial effect at higher application rates has been

attributed to a decline in available nutrients. For example,

BC incorporated with soil for 25 days decreased nitrate

concentrations in soil leachate proportional to the amount

of BC applied indicating that BC application was likely to

hinder plant growth by decreasing available inorganic ni-

trogen due to adsorption of nitrogen on to the BC surface

(Novak et al. 2010).

In agreement with this previous study, a decline in soil

inorganic nitrogen concentration was also observed here

following BC incorporation (Fig. 6). During the pot trial,

while the same amount of nutrient solution, containing

91 mg L-1 N, was supplied to all treatment, residual soil

concentrations of inorganic N following lettuce cultivation

were higher in the soils which received more BC. This

indicated that while lettuce was able to readily utilize the

supplied nitrogen in the soil when BC contents were low, at

higher BC application rates ([5 %) it became increasingly

difficult for the lettuce to access the supplied nitrogen due

to increased partitioning of nitrogen to the BC surface. The

change in soil nitrogen content (DN) which was equivalent

to (N concentration after lettuce cultivation—N concentra-

tion before lettuce cultivation) increased with elevated BC

application rate resulting in retardation of lettuce growth

(Fig. 6). Indeed, the growth of lettuce was hindered with
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Table 2 Changes in dissolved organic carbon (mg kg-1) from soil

before and after lettuce cultivation as affected by percent biochar

(w/w) treatment

Treatments (%) Before cultivation After cultivation

0 105 ± 0.6 119 ± 2.2

0.5 108 ± 2.3 126 ± 5.7

1 92 ± 7.9 139 ± 3.5

2 81 ± 3.4 151 ± 5.5

5 77 ± 3.3 139 ± 12.3

10 85 ± 6.4 140 ± 3.5
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[5 % BC application than with \1 % BC application

being indicative with significantly higher dry weight of

lettuce appeared with \1 % BC treatment. This result

highlights the importance of accounting for the possibility

of adsorption of inorganic nitrogen by BC as a limiting

factor when BC is used as an amendment for agricultural

soils, suggesting that appropriate nitrogen management

should accompany with BC application.

Conclusion

When considering application of BC for heavy metal im-

mobilization to agricultural soils, the immobilization effi-

ciency of the BC and the availability of feed materials for

producing bulk BC are important issues. Rice hull-derived

BC is a promising material for agricultural soil amendment

because it is an abundant agricultural by-product and as

shown here an effective heavy metal (Cd, Pb, and Zn)

immobilization agent. Incorporation of BC into soils be-

tween 1 and 10 % (w/w) induced significant declines in

soil phytoavailable metal pools and consequential de-

creases in lettuce metal uptake. The decline in metal phy-

toavailability was attributed to rice hull-derived BC-

induced elevation of soil pH and also increased surface

area for metal sorption. Despite the beneficial effects of

increased metal immobilization, no significant increases in

yield were observed at high BC application rates due to

concomitant decreases in phytoavailable soil nitrogen.

Thus, soil nutrient status together with BC application rate

need to be both managed to ensure optimum growth of the

species of interest.
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