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Abstract Individually applying intelligent calculating

tools, such as artificial neural network and fuzzy logic

techniques, to a variety of problems is confirmed to be

efficient. Recently, a growing interest in a combination of

these methods has resulted in the neuro-fuzzy calculating

technique. The application of the artificial neural network

(ANN) and the adaptive neuro-fuzzy inference system

(ANFIS) to groundwater level simulation, over 7 years

from 2007 to 2013, in the Langat Basin, Malaysia, is pre-

sented in this paper. Moreover, to the time series of

groundwater levels, the time series of the five most effec-

tive parameters of groundwater level, that is rainfall,

humidity, evaporation, minimum temperature and maxi-

mum temperature, were applied to obtain the best input

parameters for the models. The performances of the dif-

ferent models were studied through evaluating the related

values of the mean squared error and correlation coefficient

to identify an optimal model that can simulate the

decreasing trend of the groundwater level and provide

passable simulation. In the model, excellent performance in

different statistical indices was shown. Finally, a relatively

good agreement between the calculated values and their

corresponding measured values for the groundwater level

were found. Evaluating the results of the various kinds of

models, it has been shown that the obtained results of the

ANFIS model are superior to those obtained from ANNs.

Keywords ANFIS � ANN � Groundwater level �
Hydrological � Modeling

Introduction

Simulating the oscillation behavior of groundwater level is

one of the most important hydrological tasks and is mostly

carried out through various conceptual and deterministic

models. In numerous investigations, researchers have

approximated groundwater level utilizing a water balance

model that correlates the modifications in the water level to

the main water balance elements (Adamowski and Chan

2011; Jones et al. 2001; Mohanty et al. 2010). Parameters,

for instance incoming and outgoing discharges, rainfall,

evaporation, humidity, and temperature, are some the

parameters studied for the ground water simulation.

Implicitly, precipitation causes minor oscillations any-

where where the subsurface losses of rainfall for vertical

penetration are significant. Therefore, in sufficiently per-

meable aquifers, the response of groundwater level to

precipitation can be quick; however, rainfall may be con-

sidered a great indicator for groundwater level oscillation

in such aquifers (Todd and Mays 2005). In previous dec-

ades, artificial intelligence (AI) methods, such as artificial

neural networks (ANNs) and the adaptive neuro-fuzzy

inference system (ANFIS) were applied as strong tools and

accurate solutions to many of the extremely difficult

challenges faced by water sciences and hydrology, and this

usage has increased. The growing AI approaches have the

ability to fill the gaps in the measurements and to forecast

future values without long observational data (Karimi et al.

2012). ANNs characterize remarkably simplified numeri-

cal types of organic neural networks. ANNs are able to

evolve the solutions and process data quickly, to identify a

structure within the information from examples of learning.

ANFIS is a mixture of an adaptive neural network along

with the fuzzy inference system. It has been utilized for a

variety of purposes, as well as being identified as
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generating better outcomes as opposed to some other typ-

ically smooth computing approaches. The ANN and AN-

FIS methods are known as suitable applications for

simulating complicated nonlinear programs and have been

popular in classifying and evaluating groundwater level

fluctuations (Coppola et al. 2005; Feng et al. 2008; Kisi and

Shiri 2012; Mohanty et al. 2010; Nayak et al. 2006;

Ranković et al. 2014). They are generally significant in

learning the underlying relationship between the inputs and

the output connections based solely on the observed data

set. Applications of ANFIS modeling in hydrological based

systems have already been investigated with specific

application to modeling the water level (Chang and Chang

2006). Recently, numerous experts have analyzed the

benefits of ANN and ANFIS models in comparison to

ordinary simulation techniques (Daliakopoulos et al. 2005;

Hong and White 2009; Mohammadi 2008; Trichakis et al.

2009; Zhang et al. 2011; Al-Mahallawi et al. 2012).

The main objective of this paper is to integrate the ANN

and ANFIS methods to develop a hybrid method in esti-

mating the water level fluctuation. The paper also aims to

compare the performance of each method in modeling

water table.

Description of the techniques

Artificial neural networks (ANNs)

ANNs are determined as computational models and

inspired by human brain biological neural network (Day-

hoff 1990). ANNs as a machine learning tool are permitted

to fit very general nonlinear functions to experimental data

sets; the accessibility of suitable data is mandatory for any

statistical approach (Dreyfus 2005), which is the actual

target of a trained back-propagation network. A neuron is a

nonlinear algebraic function which obtains a number of

signals from its input links, every one has a weight given to

it (Dreyfus et al. 2002). These kinds of weight load match

synaptic performance within biological neurons. Weight

loads are classified as the basic form of long-term memory

within the ANN. Throughout the training procedure, the

initial estimation weight values are gradually reformed,

resulting in a comparison of the predicted outputs with

target outputs. The connections among the inside activation

levels of the particular neuron along with the results can be

revealed by a transfer function. The sigmoid function is a

common transfer function modifying from 0 to 1 for a

variety of inputs (Caudill and Butler 1992). The data run-

ning paradigm consists of extremely interconnected neu-

rons in which a complicated input structure is mapped with

a related output structure (Hagan et al. 1996). The artificial

neurons are structured in three layers: an input layer, one or

more hidden layers and an output layer. In this study, the

water level with five input variables has been computed by

the construction of a three layer feed-forward neural net-

work with back-propagation learning (Fig. 1). The transfer

function in the hidden layer was set to sigmoid due to the

tansig function, which provides better results than other

transfer functions in the initial assessment, although the

pure linear transfer function has been used in the output

layer. The difference between the various kinds of ANN

generally arises from a variety of methods to set up the

nodes and the several methods to characterize the weights

and functions to train the network. The predicted models

that were achieved by the ANN are more conductive than

linear models. These models are of different types; the two

most usable, especially in hydrological sciences, are the

feed-forward neural network (FNN) and the cascade for-

ward network (CFN) used in this research. The Levenberg–

Marquardt (LM) algorithm, which supplies a solution to

modify the nonlinear functions, is determined for this

research because it is fast, accurate, and reliable (Ada-

mowski and Karapataki 2010; Khaki et al. 2014). The

robustness and quick convergence capability are essential

benefits in applying the LM algorithm in this study.

Adaptive neuro-fuzzy inference systems (ANFIS)

Jang (1993) introduced a novel architecture and learning

product for the fuzzy inference system (FIS), employing a

neural network learning algorithm to provide a set of fuzzy

If–Then rules with proper membership functions which are

obtained from the stipulated input–output pairs (Chang and

Chang 2006). The ANFIS is a fuzzy Sugeno model put in

the framework of adaptive systems to facilitate learning

and adaptation (Jang 1993; Jang et al. 1997). Generally,

Sugeno-type systems may be utilized to model any infer-

ence system in that the result membership functions are

either linear or constant. The FIS under consideration is

assumed to have two inputs, x and y, and one output, f, for a

first-order Sugeno fuzzy model; a common rule set with

two fuzzy If–Then rules may be expressed as

Rule 1 : If x is A1 and y isB1; Then f1 ¼ p1xþ q1yþ r1

ð1Þ
Rule 2 : If x is A2 and y is B2 ; Then f2 ¼ p2xþ q2yþ r2

ð2Þ

where, for inputs x and y, the membership functions (MFs)

are A1, A2 and B1, B2 respectively; and p1; q1; r1 and

p2; q2; r2 are the linear parameters of the output function.

Figure 2 shows the resulting Sugeno fuzzy reasoning sys-

tem and equivalent ANFIS architecture. Nodes at the same

layer have the same function for this ANFIS structure. Ol;i

specifies the output of the ith node in layer l. The five
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layers comprising the ANFIS structure are described as

follows:

Layer 1: Input nodes. Membership grades based on the

appropriate fuzzy set have been produced by each node of

the layers they belong to using MFs

Ol;i ¼ lAiðxÞ for i ¼ 1; 2 ð3Þ

Ol;i ¼ lBi�2ðyÞ for i ¼ 3; 4 ð4Þ

where x; y are the input to the ith node and Ai;Bi�2 is a

fuzzy label (excellent, good and unsuitable) characterized

by the appropriate MFs lAi; lBi, respectively, which can

be triangular, trapezoidal, Gaussian functions or other

shapes. The generalized bell function (5) and Gaussian

membership function (6) generally explain the MFs for A

and B

lAiðxÞ ¼
1

1þ ½x� ci=ai�2bi
ð5Þ

lAiðxÞ ¼ exp½�ðx� ci=aiÞ2� ð6Þ

where ðai; bi; ciÞ is the parameter set of the MFs in the

premise part of the fuzzy If–Then rules, in which case the

shapes of the membership function are variable. Genuinely,

the qualified candidates for the node functions in this layer

can be any continuous and piecewise differentiable func-

tions, such as commonly used triangular-shaped MFs (Jang

1993). Parameters in this layer are referred to as premise

parameters.

Layer 2: Rule nodes. In the second layer, every node is a

fixed node labeled P, where the incoming signals and

output product are multiplied. For example

O2;i ¼ Wi ¼ lAiðxÞlBiðyÞ; i ¼ 1; 2 ð7Þ

The firing strength of a rule is shown by the output of

each node.

Layer 3: Average nodes. Each node in the third layer

denotes N which is a stable node. The main aim of this

layer is to compute the ratio of each ith rule’s firing

strength to the sum of all the rules’ firing strength

O3;i ¼ �Wi ¼
Wi

W1 þW2

; i ¼ 1; 2 ð8Þ

The results of this layer are named the normalized firing

strengths.

Layer 4: Consequent nodes. In this layer, each node pre-

sents an adaptive node, with the following node function

O4;i ¼ �Wifi ¼ �Wiðpixþ qiyþ riÞ ð9Þ

where �Wi is the ith node’s output from the previous layer,

and ðpi; qi; riÞ is the parameter set. Parameters of this layer

are referred to as consequence or output parameters.

Layer 5: Output nodes. The overall output summing all

the incoming signals is computed by the single node.

Therefore, the defuzzification process transforms each

rule’s fuzzy results into a crisp output in this layer

Overall output ¼ O5;i ¼
X

i¼1

�Wifi ¼
P

i WifiP
i Wi

ð10Þ

Consequently, an adaptive network which is function-

ally equivalent to a Sugeno first-order FIS has been carried

out. The ANFIS theory has been discussed in detail in

previous studies (Jang 1993).

Fig. 1 General conceptual

neural network for the water

level computation in the Langat

Basin, Malaysia
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Learning algorithm of ANFIS

Utilizing an understanding algorithm, applying input and

output information units, resulted in adaptable parameters

of the FIS which is the purpose of ANFIS. The duty of

the understanding algorithm for this architecture would

be to tune every one of the adaptable variables, videlicet

ðai; bi; ciÞ and ðpi; qi; riÞ, to create the ANFIS result to

match the training data. The result of the ANFIS type

can be mentioned as Eq. (10) when the assumption

variables ai, bi and ci of the membership function are

axed

f ¼ W1

W1 þW2

f1 þ
W1

W1 þW2

f2 ¼ �W1f1 þ �W2f2

¼ �W1ðp1xþ q1yþ r1Þ þ �W2ðp2xþ q2yþ r2Þ
¼ ð �W1xÞp1 þ ð �W1yÞq1 þ ð �W1Þr1 þ ð �W2xÞp2
þ ð �W2yÞq1 þ ð �W2Þr2

ð11Þ

that is a linear mix of the adaptable consequent variables

p1; q1; r1; p2; p2 and r2. Determination of suitable values of

these variables can be effortlessly carried out by the least

squares technique. These supposition variables within the

fuzzy level and the consequent variables within the de-

fuzzification level were tuned during the ANFIS learning

Fig. 2 Two inputs first-order

Sugeno fuzzy model with two

rules and architecture of ANFIS
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process until the preferred result of the FIS is obtained

(Shahbudin et al. 2009). In this study, a hybrid learning

algorithm was utilized to achieve the best values of the FIS

variables of the Sugeno-type. A combination of the least

squares and the back-propagation gradient descent

approach for training FIS membership function variables to

imitate a given training data set is applicable. It has been

proven that the hybrid algorithm within the training ANFIS

is broadly effective (Jang 1992, 1993).

Modeling performance criteria

Two different criteria are applied to investigate the effec-

tiveness of each network and the precision of the simula-

tion ability of each network. First, the mean square error

(MSE) is calculated by

MSE ¼
PN

i¼1ðyi � �yiÞ2

N
ð12Þ

where N is the total number of observation data, and y and

�y are the observed and computed data, respectively. The

MSE reflects the difference between the observed and

computed values; the lower the MSE results the more

precise the simulation.

The correlation coefficient ðRÞ between the network

result and the network target outputs in three training,

testing, and validation groups was the second to be

employed, calculated as

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
P

ðyi � �yiÞ2
P

y2i �
P

�y2
i

N

vuut ð13Þ

where R represents the percentage of the preliminary

uncertainty explained by the model. The best fit between

the observed and computed values, which is unlikely to

happen, would have been MSE = 0 and R = 1.

Study area and data description

Study area

The neural networks and neuro-fuzzy techniques were

employed with data taken from Langat Basin, which is

located in the southeastern part of Selangor state, Malaysia.

The selected well for modeling of groundwater fluctuations

in the study area is displayed in the Fig. 3. It has been

selected due to following reasons: (a) It is located far from

the coastal area, (b) It is not influenced by Mega Steel

Factory which pumps a wide range of water, (c) Data col-

lations are more convenient compared to other wells and

(d) This well is located in the area with lower slope. The

study area is located at the flat lowland in the downstream

part of the Langat Basin with the surface elevation of 10

above mean sea level. Figure 3 also shows the location of

15 wells which were drilled as well as groundwater level

contours in the study area. The main flow directions in the

study area were from north-east towards south-west, and

from south to north. Figure 4 shows the hydrogeological

map of Langat Basin gained from Department of Mineral

and Geosciences of Malaysia (2007). The overall of the

lowlands area and slope for this area was determined to be

5,582 km2 and less than 5 %, using geographical informa-

tion (Mineral and Geosciences Department 2002). Langat

River water source is used for water supply besides various

uses for example entertainment, fishing, effluent discharge,

irrigation as well as sand mining. Different possible uses of

this significant water source attract many industrial facto-

ries to invest in this area. The residual area consists of

wetlands, rain forest and reed swamps. The main geological

coverage of the Langat Basin is Quaternary deposits of

Beruas, Gula, and Simpang formations, overlying the sed-

imentary bedrock of the Kenny Hill Formation (Mineral and

Geosciences Department 2002) which are generally pre-

sented by the geological map of the study area. Based on

drilling data, the gravelly sand (Simpang formation) aquifer

layer is covered by clayey layers and then, at some loca-

tions, by peat layers, which affects the aquifer depending on

the location and makes it confined. The average rainfall in

the Langat Basin ranges from around 2,200–2,700 mm per

annum. The temperature has a mean of 27 �C, with a range

varying from 24 to 32 �C and remains constant during the

year (MMD 2013). The highest and lowest temperature

reached during the noon and night with an average of 24 and

32 �C, respectively. The average monthly relative humidity

in the range of 77–85 % varying from place to place of

research area and from month to month. The minimum

range of average relative humidity is varying from 67 % in

February to 79 % in November. The maximum range of

mean relative humidity is varying from 82 % in June to

89 % in November. In Peninsular Malaysia, the lowest

relative humidity occurs in January and February while the

highest relative humidity normally happens in November

(MMD 2013).

Data description

The data evaluated in this research are those that impact the

water budget in a water catchment. The standard hydrologic

balance formulation in a groundwater system can be given

in terms of the difference between the inflow and outflow:

X � Y ¼ DS ð14Þ

where X shows inflow like precipitation, Y is outflow like

surface run-off, evaporation, infiltration, groundwater flow,

and DS shows water level variations. In the present study,
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monthly groundwater levels, precipitation, evaporation,

humidity, maximum temperature and minimum tempera-

ture data for the selected well were identified and trained

with ANNs and ANFIS. These data are known as efficient

parameters in the fluctuation of groundwater levels

(Lallahem et al. 2005). Figure 5 demonstrates the mea-

sured time series of groundwater level and precipitation in

the research period. In addition, Fig. 5 obviously show that

the depth of groundwater is well-related to the rainfall

depth during a certain period. Temperature has a main

factor within the water budget as it effects evaporation (Te

Chow et al. 1988). Consequently, the input layers include

rainfall, evaporation, humidity and the minimum and

maximum temperature data and the output layers consist of

the fluctuation in water level data. Monthly data values

employed in this simulation exercise are the mean of the

monthly measurements. The applied data comprises the

observations for 7 years from 1st January 2007 to 31st July

Fig. 3 Location of the wells in

the Langat Basin, Malaysia
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2013. The data were randomly included in the training

(70 % of all data), testing (15 % of all data) and checking

(15 % of all data) of the data sets. The statistical properties

of the data used are represented in Table 1. Therefore, the

numbers of input and output data were arranged at five and

one, respectively. The models were implemented using

Matlab 2012a.

Results

ANN and ANFIS models have developed to estimate

water level with applying the database of 79 months of

test data from 2007 to 2013. For developing the models a

three-layer back propagation ANN with five input nodes

in the input layer and two hidden layers have been cho-

sen. The numerous network structures were examined to

identify the ideal number of hidden layers and the number

of nodes. The processing was applied to the FNN and

CFN for various epoch numbers. Similar sets of input and

output data were applied in the ANFIS modeling,

including Gaussian and generalized bell MFs for each

input, which were found to be satisfactory for the pro-

cessing of the model. The number, step-size and shape of

the MFs as predefined internal ANFIS elements were

effective, making it possible for the ANFIS model to

achieve the efficiency objective. The data is normalized in

order to make it appropriate for the training process which

was carried out by mapping each term to a value between

0 and 1.

Fig. 4 Hydrogeological and potential aquifer map of Selangor State, Department of Mineral and Geosciences of Malaysia (2007)

Environ Earth Sci (2015) 73:8357–8367 8363

123



Figure 5 shows that the maximum precipitation

(480 mm) was recorded in December of 2012 and the

minimum in June 2009 (27 mm). Usually the groundwater

level rose and feels as a function of rainfall. The best case

of where this occurred was September 2010 when the

groundwater level was near its highest level (1 m) and

after a large rainfall event (470 mm). Thereafter it fell to

one of its lowest levels in February 2011 (2.5 m) and

after a prolonged period of low rainfall (\300 mm per

month).

Selected values of learning parameters to obtain the best

performance of network when R is highest and MSE error

is the lowest are illustrated in Table 2. The total data set,

all training and checking related to the R and the MSE,

between the target unit and the output of the ANN and

ANFIS for the observation well, are shown in Table 2. The

best overall performance was resulted from the achieve-

ment of ANFIS trained with the Generalized bell MFs

which were presented in Table 2 and by the ANFIS trained

with the Gaussian MFs as the second best was demon-

strated by their small MSE error and higher correlation.

The obtained results from Table 3 interpret that ANFIS

with the Gaussian MFs and generalized bell was efficiently

comparable with the FNN and CFN in the entire data set. It

clearly shows that ANFIS model performance provides

improvement over that ANN models performed. The

scatter plot shown in Fig. 6 presents the analysis of the

capability of the ANN and ANFIS models, comparing the

various networks and MFs (referring to the training steps).

This demonstrates the groundwater level simulation and

also MSE error of each model in the training step in

achieving the greatest input admixture in the form of hy-

drographs. The predicted values of the models and the real

value were matched. Figure 7 shows the results of the

ANN and ANFIS groundwater level over the period

2007–2013. All indices confirmed the same results and

show sensitivity to the fluctuation in groundwater levels.

The figure shows that the observed and simulated

groundwater levels for the ANN and ANFIS are very well-

matched. Predicted values from ANFIS models well-mat-

ched the measured values much better than those obtained

from the three methods. Hydrographs and scatter plots

verified that the ANFIS simulation is closer to the related

observed values compared to the FNNs and CFNs. Nev-

ertheless, the values of groundwater level proposed in this

research generate a more stringent output. Table 3 and

Figs. 6 and 7 confirm the perfect capability of the ANN and

ANFIS models for groundwater level simulation at the

Langat Basin, Malaysia. In general, for this research AN-

FIS is more beneficial compared to ANN since ANFIS

model trains are considerably faster with supplying better

predictions. As a result, the ANN and ANFIS models can

be successfully employed to simulate the fluctuations of

groundwater level.

Fig. 5 Monthly precipitation

(mm) and depth to groundwater

level (m) for observation well

from 2007 to 2013 in Langat

Basin, Malaysia

Table 1 The statistics of characteristic parameters variable in the study area

Data sets Unit Mean Minimum Maximum Standard deviation Coefficient of variation Skew Kurtosis

Rainfall mm 190.81 26.9 480 105.5 55.29 0.7 0.16

Humidity % 81.78 72 88.7 3.06 3.74 -0.58 1.25

Evaporation mm 4.21 3.1 5.8 0.48 11.51 0.4 0.44

Minimum temperature �C 24.1 23.3 25.5 0.47 1.95 0.61 0.22

Maximum temperature �C 31.78 30.3 34.3 0.78 2.45 0.66 0.67

Water level m 1.72 0.9 2.7 0.41 24 0.08 -0.48
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Table 2 Learning factors at the maximum R and minimum MSE of data set

ANFIS

(generalized bell MFs)

Epoch Structure All Training Testing Checking

R MSE R MSE R MSE R MSE

500 2 0.99 0.0043 0.99 0.0001 0.9 0.018 0.94 0.005

Table 3 Comparison of performance of models developed for all, training, testing and checking periods

Structure Epoch All Training Testing Checking

R MSE R MSE R MSE R MSE

FNN (8–10–1) 500 0.9 0.044 0.99 0.009 0.76 0.229 0.87 0.098

CFN (9–11–1) 500 0.84 0.05 0.95 0.015 0.75 0.245 0.82 0.131

ANFIS (Gaussian MFs) 2 500 0.99 0.0076 0.99 0.0001 0.87 0.024 0.92 0.008

ANFIS (generalized bell MFs) 2 500 0.99 0.0043 0.99 0.0001 0.9 0.018 0.94 0.005

Fig. 6 Scatter plots of the observed and simulated water levels at training period for FNN, CFN and ANFIS (Gaussian and generalized bell MFs)
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Conclusions

Adaptive neuro fuzzy and neural networks system are

known as extremely useful method of empirical forecasting

of hydrological parameters. Identification of the most sta-

ble and efficient neural network and neuro fuzzy configu-

ration to predict groundwater level in the Langat Basin,

Malaysia was targeted in current research. The perfor-

mance of this method has been examined using a database

of groundwater variation covering a 7-year period. Using

appropriate variables in the model is a key to achieve at

successful ANN and ANFIS modelling. The correct pre-

diction of water level fluctuations at a well site is the

advantage of employing ANN and ANFIS water level

prediction models. These ANN and ANFIS models are

capable to be used for running the past data to fill up the

missing period of the water level depth measurements at a

well site. As a result, much more complete data sets for

water resource research can be provided by these models.

The most suitable structure for ANN proved to be a

9–10–1 and 9–11–1 feed forward network trained with the

LM algorithm as it demonstrated the most precise predic-

tions of the groundwater level. However, the ANFIS

models show the best performance in comparing the cor-

relation coefficient R and MSE, followed by the FNN and

CFN models, respectively. Furthermore, the simulated

depth for groundwater in all the observation data, with

MSE of 0.0043–0.0500 m2, was successfully represented

by the obtained results. The minimum reported error

belonged to the ANFIS model. In comparing the fewer

computational complexities in training the network and

quicker convergence to a solution, ANFIS shows the better

result than FNN and CFN. Besides, the accuracy of the

groundwater level simulation with minimum calculations

compared to the FNN and CFN is improved by the ANFIS

model.

In general, the outcomes of the research are acceptable

and show that neural networks and neuro fuzzy system can

be a helpful tool for simulation in the case of groundwater

hydrology studies. Consequently, the investigation dem-

onstrated in this research supplies us with a reliable tool to

understand the various management strategies and how

various climatic tools cause groundwater levels to respond.

These tools can be applied to determine the optimal poli-

cies that can promote sustainable management of accessi-

ble water resources when complete data on the

hydrological system is not available.
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