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Abstract This article emphasizes landslide susceptibility

mapping along Ghat road of Kolli hills, Tamil Nadu, India,

using frequency ratio, relative effect and fuzzy gamma

operator models with the help of remote sensing data and

GIS technique. The purpose of the study is to generate,

compare and validate landslide susceptibility zones.

Landslide inventory was done with data collected from the

State Highways department. There are nine landslide-

influencing parameters such as slope gradient, slope aspect,

slope curvature, relief, lithology, land use and land cover,

proximity to road, proximity to drainage, and proximity to

lineament, analyzed with help of topo map, existing geol-

ogy map and satellite data to produce landslide suscepti-

bility maps. Landslide susceptibility maps were generated

by calculating relationship between the landslide-influ-

encing factors with past landslide locations using fre-

quency ratio, relative effect and fuzzy gamma operator

models. These landslide susceptibility maps were verified

and compared using the existing landslide inventory data.

The prediction accuracy of frequency ratio model was

87.93 %, for fuzzy gamma operator model was 87.33 %,

and for relative effect model it was 85.26 %. Out of which,

the frequency ratio model provide maximum prediction

accuracy on landslide susceptibility.

Keywords Landslide susceptibility � Frequency ratio

model � Relative effect model � Fuzzy gamma operator �
Kolli hills

Introduction

Landslide is one of the important natural calamities, which

commonly occurred on cut slopes of Ghat roads in

mountainous region, while events are also reported in

residential areas causing risk to human life, property loss,

damage to established road network, and buildings in each

year (Aleotti and Chowdhury 1999; Lee and Pradhan 2007;

Nandi and Shakoor 2008). Landslides also occur in natural

slopes, influenced by various geo-environmental parame-

ters and triggered by rainfall and earthquakes. The natural

slopes converted into cut slopes by human intervention for

the purpose of transportation network, construction of

dams, bridges, and tunnels are more prone to landslide

occurrences (Das et al. 2010; Singh et al. 2013a, b). In

mountainous terrain, landslides are natural denudation

process and its occurrence is subjected to various causative

factors and triggered by several external factors such as

seismicity, rainfall, water level change, storm waves, and

rapid stream erosion (Naranjo et al. 1994; Dai et al. 2002).

Hill slopes in mountainous areas are affected by human

activities such as building road network, urban develop-

ment, deforestation, and rapid land use modification, may

also influence occurrence of landslides (Das et al. 2011).

The demarcation and mitigation of landslide-prone areas

in a region is crucial for future planning and developmental

activities. Many Government organizations and several

research institutions have spent significant funds to evalu-

ate the landslide hazards and their spatial distribution

(Guzzetti et al. 1999). The landslide hazard and suscepti-

bility mapping is an important task for geoscientists,

planners and local administrations, as knowledge about the

socioeconomic worth of landslides has increased globally

(Devoli et al. 2007). Landslide susceptibility refers to the

probability of landslide occurrence in a region based on the
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relationship between causative factors with spatial distri-

bution of landslides (Brabb 1984). Landslide susceptibility

mapping describes the type, spatial extent and intensity of

past and present landslides in the study area to assess the

probable areas for future landsliding, but the frequency or

timing is not incorporated (AGS 2007; Anderson and

Holcombe 2013). Landslide hazard zonation mapping

provides the details about the possible landslide occurrence

of a certain type and magnitude in a particular location

within a set time (Varnes 1984). Landslide susceptibility

maps show the zones, which are stable and possible zones

for future landslide occurrence (Corominas and Moya

2008).

The methods of landslide hazard and susceptibility

assessment techniques by Mantovani et al. (1996)

includes distribution analysis (Wieczorek 1984), quali-

tative analysis (Kienholz et al. 1984; McKean et al.

1991), statistical analysis (Yin and Yan 1988; Gupta and

Joshi 1990; Carrara et al. 1991; Wang and Unwin 1992;

Pachauri and Pant 1992; Sarkar et al. 1995; Mark and

Ellen 1995; Chung and Fabbri 1999; Lee et al. 2002;

Ayalew et al. 2004), deterministic analysis (Skempton

and Delory 1957; Okimura 1982; Okimura and Kawatani

1986; Mostyn and Fell 1997; Singh et al. 2013a, b;

Ahmad et al. 2013), landslide frequency analysis

(Capecchi and Focardi 1988), and distribution-free

methods such as fuzzy and ANN. Several studies have

been carried out for estimating the spatial probability of

landslide occurrences using GIS technique. Many land-

slide studies were conducted using probabilistic models

such as frequency ratio and logistic regression (Atkinson

and Massari 1998; Dai et al. 2001; Dai and Lee 2002;

Ohlmacher and Davis 2003; Lee et al. 2004; Wang and

Sassa 2005; Lee 2005; Lee and Talib 2005; Lee and

Pradhan 2006, 2007; Akgul and Bulut 2007; Akgun et al.

2008; Pradhan et al. 2008; Tunusluoglu et al. 2008;

Yilmaz 2009a; Yilmaz and Keskin 2009; Ehret et al.

2010; Kannan et al. 2013) and some studies adopted

using relative effect model (Ghafoori et al. 2006; Naveen

Raj et al. 2011). As a new approach to assess landslide

hazards such as fuzzy logic (Ercanoglu and Gokceoglu

2001; Lee 2007; Champati Ray et al. 2007; Kavitha et al.

2008; Kanungo et al. 2009; Pradhan et al. 2009; Sri-

vastava et al. 2010) artificial neural network models were

adopted (Lee et al. 2003, 2006; Caniani et al. 2008;

Pradhan and Lee 2007, 2010a; Yilmaz 2009b; Poudyal

et al. 2010; Chauhan et al. 2010; Choi et al. 2012). In the

present study, landslide susceptibility mapping along

Ghat road section of Kolli hills was carried out using

frequency ratio (FR), fuzzy gamma operator and relative

effect (RE) models. The resultant susceptibility maps

were compared and prediction accuracies of each map

were derived for further evaluation.

Study area

Kolli hills is one of the important tourist spots in Tamil

Nadu situated in the tail end of the Eastern Ghats in Na-

makkal district of Tamil Nadu, India (Fig. 1). The hills

cover an area of 283 km2 with an elevation ranges between

1,000 and 1,390 m above mean sea level (MSL). It has

mild climate and the location is known for herbal culti-

vation. Recently, the region of Kolli hills became taluk

(administrative boundary) and the total population is

63,888 according to 2001 census covered in 14 villages.

The geological assessment in the study area has shown that

charnockitic group of rocks, widely present in the north-

eastern part of Tamil Nadu State, are well exposed in many

prominent hill ranges such as Pallavaram–Chengleput,

Javadi, Shevaroy, Chitteri, Kalrayan, Kollimalai (Kolli

hills), Pachchaimalai and Nilgiri. In the central part of the

State, Kolli hills is situated as a residual plateau-topped

charnockitic hill surrounded by pediments and pediplains.

Laterite associated with reddish brown ferruginous clayey

soil caps on the crystalline rocks at high altitude of Kolli

hills derived by the sub-aerial weathering of charnockites

and exposed as patches. Irregular lenses and pockets of

bauxite and lateritic bauxite are occurring over charnock-

ites at 1,148–1,386 m altitudes above mean sea level (GSI

2006).

The Ghat road with 20 km stretch along 70 hairpin

bends connects the foot hills at Karavallikkombai to hill

top at Sholaikkadu and is chosen for the present work as

study area. The Ghat road falls in between 11�18029.7200N
and 11�19050.3800N latitudes and 78�19030.9900E and

78�2106.4900E longitudes. At present, this Ghat road is the

main route to reach the Kolli hills and it aligned in the

western slope of Kolli hills. The Ghat road was constructed

along cut slopes by modifying the original natural slope

condition. Hence, most of the hairpin bends are associated

with vertical slope cut rock and soil profiles. These profiles

are being exposed to weathering and soil erosion continu-

ously. The major rock types along this Ghat road are

charnockites and gneisses, which are mostly fractured and

highly weathered. Anbazhagan et al. (2008) have studied

the developments of fractures and land subsidence in the

south-eastern fringe of Kolli hills due to change of natural

slope and drainage condition for cultivation practices

indicating frequent slope failure. The structural (disconti-

nuities) and geological (lithology and weathering condi-

tion) parameters are the main causative factors, which

influence the occurrence of landslides. The topographical

factors such as slope gradient, slope aspect, slope curvature

and relief are equally important in landslide occurrences.

The anthropogenic activities such as deforestation, wid-

ening of roads are the common causative factors. Finally,

rainfall is the major triggering factor in occurrence of
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landslides in Kolli hills (Anbazhagan and Ramesh 2014).

Landslips, rock fall and debris slides are the common type

of mass movements observed in the Ghat road section.

Geospatial database

Identification of suitable landslide causative factors and its

mapping need prior knowledge about the major causes of

landslides (Guzzetti et al. 1999). Landslide susceptibility

mapping needs data collection and construction of a geo-

spatial database to derive landslide-influencing factors.

Slope gradient, slope aspect, slope curvature, relief,

lithology, land use and land cover, proximity to road,

proximity to lineament, and proximity to drainage are the

major landslide-influencing factors considered for the

landslide susceptibility mapping along Ghat road of Kolli

hills.

Landslide inventory

The inventory about the past landslide locations consists of

the information about the existing landslides in an area,

which is helpful to validate the landslide susceptibility

map. An understanding of conditions and processes which

influences past landslide occurrences and their evidences is

the most significant aspect in the prediction of future

landslides (Yilmaz et al. 2012). In the present study,

landslide inventory mapping has been carried out by col-

lection of existing historical reports and photographs from

highways department, newspaper records, and enquiry

made from local people. Through data collection, it was

inferred that about 74 major and minor landslide events

with different intensity occurred at 54 locations. These 54

past landslide locations were collected and plotted as point

feature along Ghat road section digitized from high-reso-

lution satellite image. In the present case, it is difficult to

represent the landslide areal extent in the form of polygon

feature, because the landslide areas are too small to high-

light in the current scale (Yilmaz 2009a). Hence, the

inventory locations are entered as point feature. The

inventory map depicts that occurrence of landslides was

distributed all along the Ghat road (Fig. 1). Debris slide

and rock fall are the most common types of landslides

along the Ghat road (Fig. 2).

Factors derived from digital elevation model

Surface topography decides the flow sources and controls

the run-off direction, which limits the density and spatial

extent of landslides (Sujatha et al. 2012). A digital eleva-

tion model (DEM) with 10 m resolution was generated

from 20 m interval contours digitized from 1:50,000 scale

topographic map. From DEM, the slope gradient, slope

Fig. 1 Location and digital elevation model (DEM) of Kolli hills Ghat road section along with distribution of past landslide locations
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aspect, slope curvature and relief were derived using the

Spatial Analyst tool of ArcMap 9.1 � ESRI.

Slope gradient

Slope gradient is an important factor in assessment of slope

stability, which measures the rate of change of elevation in

the direction of steepest fall and gravity supports the flow

of water and other material in the direction of slope. It is

having great importance in hydrology and geomorphology,

which disturbs the speed of surface and subsurface flows

(Anbalagan 1992; Ercanoglu and Gokceoglu 2004; Kannan

et al. 2013). The slope gradient map (Fig. 3a) was reclas-

sified into five classes viz.,\13�, 13–22�, 22–32�, 32–45�,
and[458, following the Jenks natural breaks classification

method (Jenks 1967).

Slope aspect

Slope aspect describes the direction of slope. Aspect shows a

strong inheritance from bedrock structure and influences the

exposition to sun and thereby changes in vegetation and

evapotranspiration (Fernandez Merodo et al. 2004). The

slope aspect (Fig. 3b) is divided into eight directional clas-

ses as N (337.5�–22.5�), NE (22.5�–67.5�), E (67.5�–
112.5�), SE (67.5�–157.5�), S (157.5�–202.5�), SW (202.5�–
247.5�), W (247.5�–292.5�), and NW (292.5�–337.5�).
Apart from that few pixels are fall in Flat (-1) region. Slope

aspect in eight directional classes is generally adopted by

many workers (Sarkar and Kanungo 2004; Kanungo et al.

2006; Pradhan and Lee 2010a). In the present study, most of

the landslide locations fall in NW and W slope directions.

Slope curvature

In general, curvature is defined as the curvature of a line

formed by intersection of a random plane with the surface

(Duman et al. 2006; Ramani et al. 2011). In the present

study, the combo curvature which is the combination of

plane and profile curvature is taken into consideration. The

characterization of slope morphology and flow can be

analyzed with the help of combo curvature map (Catani

et al. 2013). In the case of curvature map, the negative

values were classified as concave, the positive values were

classified as convex, and zero values classified as flat

(Fig. 3c). The major part of Ghat road section is covered by

convex slope, followed by concave and flat condition. The

maximum numbers of (24) past landslides were located in

convex slope, and then 18 landslide locations were fall in

flat slope.

Relief

Elevation is useful to understand the local relief and

determines the maximum and minimum heights within the

study area. In the present study area, the relief varies from

280 to 1,220 m. On the basis of Jenks natural breaks

classification (Jenks 1967), the relief range was classified

into five classes viz., 280–426, 426–618, 618–841,

841–1,040, and 1,040–1,220 m (Fig. 3d).

Geological parameters

The lithology map of the study area is prepared from a

1:50,000 scale geological map published by GSI (1995).

Fig. 2 Field photographs show past landslide occurrences

cFig. 3 Landslide causative factors; a slope gradient, b slope aspect,

c slope curvature, d relief, e lithology, f land use and land cover,

g road buffer, h proximity to drainage, i proximity to lineament

8012 Environ Earth Sci (2015) 73:8009–8021

123



Environ Earth Sci (2015) 73:8009–8021 8013

123



The charnockite and hornblende–biotite gneiss are the

major lithological units shown in Fig. 3e. The land use and

land cover were interpreted from IRS-P6 LISS IV satellite

image with 5.8 m spatial resolution acquired in the year

2006. The remotely interpreted details were verified in the

field. The presence of vegetation increases erosion resis-

tance while barren slopes are susceptible to landslides (Dai

and Lee 2002). Fairly dense forest, dense forest, forest

plantation, and settlement are the various land use and land

cover units recognized (Fig. 3f). Most of the road section is

covered by structural hill system.

Proximity analysis

Modification of natural slope as cut slope in road con-

struction is the most significant anthropogenic activity

which causes slope instability. Road sector acts as a barrier

or a path for water flow, depending on its location in the

basin, may trigger occurrence of landslide (Pradhan and

Lee 2010b). Since, most of the landslides were located at

short distance from the road, a 5 m buffer zone was gen-

erated and considered in the present study (Fig. 3g).

The drainage map of the study area was prepared with

the help of Survey of India topographical map on 1:50,000

scale. The influence of drainage on occurrence of landslide

may vary in space depending upon the distance of the

source area from the original stream flow (Srivastava et al.

2010). Numerous local planes of weakness were inter-

preted from high-resolution satellite imagery as lineaments.

The occurrences of landslides are expected more in zones

that fall close to these planes and less away from them. The

distance from drainage and lineament was calculated using

euclidean distance method in ArcGIS 9.1, and reclassified

into five classes (Fig. 3h, i), based on Jenks natural breaks

classification (Jenks 1967).

Methods

Frequency ratio (FR) model

Frequency ratio approach is based on the observed rela-

tionships between landslide distribution and each land-

slide-influencing factor. The relationship provides the

correlation between landslide occurrence location and the

factors influencing landslide in the study area. The fre-

quency ratio of each class in a thematic layer was calcu-

lated from their relationship with past landslide events. In

the relationship analysis, the ratio is that of the area where

landslides occurred to the total area, so that a value of 1 is

an average value. If the value is greater than 1, it means a

higher correlation, and a value lower than 1 means lower

correlation. The frequency ratios of each thematic layer

were then summed to estimate the landslide susceptibility

index (LSI) (Eq. 4) (Lee and Talib 2005; Lee and Pradhan

2007).

Frequency ratio ¼ Slide ratio

Class ratio
ð1Þ

where,

Slide ratio ¼ Number of landslide grids in class

Total number of landslide grids

ð2Þ

Class ratio ¼ Number of grids in individual class

Total number of grids in whole class

ð3Þ
LSI ¼ RFR ð4Þ

(LSI landslide susceptibility index; FR frequency ratios

of each influencing factor)

The landslide susceptibility value represents the relative

susceptibility to landslide occurrence. So the greater the

frequency ratio value, the higher the susceptibility to

landslide occurrence and the lower the value, the lower the

susceptibility to landslide occurrence.

Relative effect (RE) model

The relative effect model is based on the observed loga-

rithmic relationships between distribution of landslides and

each landslides-related factor. The main advantage of

logarithmic function is in domain determination for output

data which provides equal opportunity for plus and minus

domains of calculated relative effect values (Ghafoori et al.

2006; Naveen Raj et al. 2011). Using the relative effect

model (Eq. 5), the spatial relationships between landslide

occurrence location and factors contributing to landslide

occurrence were derived for each class in a landslide-

influencing factor map.

RE ¼ Log
SR

AR
þ e

� �
ð5Þ

AR ¼ a

A
ð6Þ

SR ¼ sld

SLD
ð7Þ

where RE is the relative effect, a is the total number of

grids in individual class, A is the total number of grids in

the study area, sld is the total number of landslide grids in

the individual class, SLD is the total number of landslide

grids in the study area and e is a very small positive value

near zero

LSI ¼
X

RE ð8Þ
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In the present relationship analysis, there are following

three cases for estimating relative effect of each class,

based on its RE.

Negative effect—when the slide ratio is less than its

class ratio, the RE value is less than zero. The case indi-

cates that, it has an effect of decreasing landslide

susceptibility.

Positive effect—when the slide ratio is greater than its

class ratio, the RE value is greater than zero. The case

indicates that, it has an effect of increasing landslide

susceptibility.

Zero effect—when the slide ratio is equal to class ratio,

the RE value is zero. This means that it has no effect of

landslide susceptibility.

Fuzzy set theory

Fuzzy set theory was first suggested by Zadeh (1965),

which differs from the conventional Boolean set theory in

such a manner objects within a set is definite. In the case of

conventional set, the membership is 1 if the object is

completely present in the set; if not in the set then the

membership is 0. In fuzzy set, the extent of membership

values of an object can have values ranges between 0 and

1, instead of having complete membership 0 or 1 as in a

conventional set. The assignment of membership values

between 0 and 1 is an important part in the fuzzy logic

analysis. There is no regulation to assign the fuzzy mem-

bership values. The only thing is that the selected values

must imitate the extent of membership of a set. It can be

user defined based on subjective investigation (Bonham-

Carter 1994) or the values can be derived from statistical

analysis like information value (Yin and Yan 1988) and

from frequency ratio (Lee 2007) or it can be assigned by

various functions representing the reality such as J-shaped,

sigmoidal and linear (Eastman 1995) or using analytical

hierarchical method (Saaty 1978). With respect to a given

data set (a thematic map), a membership can be assigned to

each map category according to its direct/indirect rela-

tionship with the phenomena in consideration (Champati

ray et al. 2007). The purpose of the integration of data is to

combine various parameters collectively to explain and

investigate relations to make conclusion about the problem

under consideration. The method of integration of data may

be based on complete statistical/quantitative approach, may

be absolute knowledge based/qualitative method, where the

lack or non-existence of sufficient data and may be the

combination of both statistical as well as knowledge-driven

method (Srivastava et al. 2010). A variety of operators can

be employed to combine the membership values for the

given two or more thematic maps with fuzzy membership

functions for the same set. Bonham-Carter (1994)

discussed five operators, viz., the fuzzy AND, fuzzy OR,

fuzzy algebraic product, fuzzy algebraic sum, and fuzzy

gamma operator. This study uses the fuzzy gamma operator

for combining the fuzzy membership values.

The fuzzy algebraic product is defined as:

lcombination ¼
Yn
i¼1

li ð9Þ

The fuzzy algebraic sum is defined as:

lcombination ¼ 1�
Yn
i¼1

ð1� liÞ ð10Þ

where, li is the fuzzy membership function for the ‘i’ th

map, and i = 1, 2, 3,…, n maps to be combined.

lcombination ¼ ðFASÞc � ðFAPÞ1�c ð11Þ

where, c is a value chosen in the range 0–1; FAS-fuzzy

algebraic sum; FAP-fuzzy algebraic product.

In the present study, the membership values for each

thematic layer were derived by normalizing the probability

frequency ratio values. However, the zero membership

values have been assigned as 0.0001 to avoid the complete

slackness of a class in a thematic map landslide hazard

zonation analysis (Srivastava et al. 2010).

Results and discussion

The frequency ratio (FR) and relative effect (RE) values

were calculated using Eq. 1 and Eq. 5 and fuzzy member-

ship values were normalized from frequency ratio values for

all the classes present in entire parameter maps based on the

relationship with past landslide locations (Table 1).

Landslide susceptibility zonation

Landslide susceptibility analysis has been carried out

through various methods. In the present study, the fre-

quency ratio, fuzzy gamma operator, and relative effect

models were adopted. For the application of frequency

ratio, fuzzy gamma operator, and relative effect model, all

the nine landslide causative factors were converted to a

raster format with 10 9 10 m size grids to calculate the

landslide susceptibility index (LSI). The total number of

study area grids was 18,645, and the total number of

landslide grids in the study area was 54. All the influencing

factors were taken to the spatial analysis extension of the

ArcGIS software for integration. The LSI was calculated

based on the integration rules as shown in Eqs. 4, 8, and

11. The integration was carried out using the raster cal-

culator option of the ArcGIS software. If the LSI value is

high, it means a higher susceptibility to landslide; a lower
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value means a lower susceptibility to landslides. For fre-

quency ratio model, the minimum, mean, maximum and

standard deviation of LSI are 2.590000153, 9.679908202,

23.31999969, and 3.924949664, respectively. For relative

effect model, LSI values had a minimum value of -4.25,

mean value of -0.614627511 and a maximum value of

Table 1 Frequency ratio, relative effect and fuzzy membership values for landslide causative factors

Causative

factors

Classes No. of pixels

in a class

% of pixels

in a class

No. of landslide

pixels in a class

% of landslide

pixels in a class

FR Fuzzy

values

RE

Slope

gradient

\13� 4,749 25.47 5 9.26 0.36 0.07 -0.44

13�–22� 5,109 27.40 16 29.63 1.08 0.54 0.03

22�–32� 4,877 26.16 19 35.19 1.35 0.71 0.13

32�–45� 2,509 13.46 13 24.07 1.79 1.00 0.25

45�–73� 1,401 7.51 1 1.85 0.25 0.00 -0.61

Slope aspect Flat 752 4.03 1 1.85 0.46 0.32 -0.34

North 1,088 5.84 2 3.70 0.63 0.43 -0.20

Northeast 119 0.64 0 0.00 0.00 0.00 0.00

East 503 2.70 1 1.85 0.69 0.48 -0.16

Southeast 322 1.73 0 0.00 0.00 0.00 0.00

South 164 0.88 0 0.00 0.00 0.00 0.00

Southwest 1,693 9.08 1 1.85 0.20 0.14 -0.69

West 6,867 36.83 19 35.19 0.96 0.66 -0.02

Northwest 7,137 38.28 30 55.56 1.45 1.00 0.16

Curvature Concave (-) 6,917 37.10 12 22.22 0.60 0.00 -0.22

Flat (0) 4,644 24.91 18 33.33 1.34 1.00 0.13

Convex (?) 7,084 37.99 24 44.44 1.17 0.77 0.07

Relief 280–426 m 5,488 29.43 3 5.56 0.19 0.00 -0.72

426–618 m 3,012 16.15 10 18.52 1.15 0.37 0.06

618–841 m 2,604 13.97 21 38.89 2.78 1.00 0.44

841–1,040 m 3,131 16.79 17 31.48 1.87 0.65 0.27

1,040–1,220 m 4,410 23.65 3 5.56 0.23 0.02 -0.63

Land use and

land cover

Fairly dense forest 9,729 52.18 43 79.63 1.53 1.00 0.18

Dense forest 7,260 38.94 10 18.52 0.48 0.31 -0.32

Forest plantation 1,499 8.04 1 1.85 0.23 0.15 -0.64

Settlement 157 0.84 0 0.00 0.00 0.00 0.00

Geology Charnockite 10,639 57.06 41 75.93 1.33 1.00 0.12

Hornblende-Biotite Gneiss 8,006 42.94 13 24.07 0.56 0.00 -0.25

Proximity to

road

Road Buffer 1,967 10.55 54 100.00 9.48 1.00 0.98

Other area 16,678 89.45 0 0.00 0.00 0.00 0.00

Proximity to

drainage

0–64.03124237 m 4,427 23.74 3 5.56 0.23 0.00 -0.63

64.03124238-

130.3840485 m

5,068 27.18 11 20.37 0.75 0.34 -0.13

130.3840486-

194.1648712 m

4,328 23.21 22 40.74 1.76 1.00 0.24

194.1648713-

266.8332825 m

3,497 18.76 17 31.48 1.68 0.95 0.22

266.8332826-

388.3297424 m

1,325 7.11 1 1.85 0.26 0.02 -0.58

Proximity to

lineaments

0–80.62257385 m 5,285 28.35 5 9.26 0.33 0.18 -0.49

80.62257386–164.0121918 m 5,020 26.92 27 50.00 1.86 1.00 0.27

164.0121919–252.3885956 m 4,175 22.39 19 35.19 1.57 0.84 0.20

252.3885957–364.0054932 m 2,675 14.35 3 5.56 0.39 0.21 -0.41

364.0054933–565.6854248 m 1,490 7.99 0 0.00 0.00 0.00 0.00

FR frequency ratio values, RE relative effect values, Fuzzy values fuzzy membership values
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2.769999981, with a standard deviation of 1.258164037. In

the case of fuzzy gamma operator, the value of c was set to
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.975, and 0.98 to

observe its effect on the landslide susceptibility map. The

integrated result with the gamma value (c = 0.975) was

produced showing highest accuracy than other values tes-

ted in the present study. In the case of applying the gamma

operator (c = 0.975), the minimum, mean, maximum, and

standard deviation values of LSI are 0.070383042,

0.530481696, 1, and 0.150946113, respectively.

The landslide susceptibility maps (Fig. 4a, b, c) were

classified into five susceptibility classes based on Jenks

natural breaks classification method viz., very low, low,

moderate, high and very high. The 54 known landslide

locations were overlaid on the landslide susceptibility

maps produced by frequency ratio, relative effect, and

fuzzy gamma operator models, and the percentage of

pixels of known landslides under various susceptibility

classes was calculated. The frequency ratio model

identified 92.59 % of the known landslides were con-

centrated in the high and very high susceptibility classes,

whereas relative effect model predicted 94.44 % of the

known landslides in the high and very high susceptibility

classes. The fuzzy gamma operator model (c = 0.975)

possesses 96.30 % of the known landslides in the high

and very high susceptibility classes. The percentage of

landslide occurrence in each susceptibility class for all

the three models is shown in Table 2 and as a bar dia-

gram in Fig. 5.

Fig. 4 Landslide susceptibility maps. a Based on frequency ratio

model, b based on fuzzy gamma operator (using c = 0.975), and

c based on relative effect model

Table 2 Percentage of known landslides falling into the different

landslide susceptibility classes, determined by the frequency ratio,

fuzzy gamma operator and relative effect models

Landslide

susceptibility

class

No. of

pixels in

class

% of

class

pixels

No. of

landslides

in class

% of landslide

pixels in class

Frequency ratio (FR) model

Very low 4,371 23.44 0 0.00

Low 6,371 34.17 1 1.85

Moderate 5,076 27.22 3 5.56

High 1,126 6.04 5 9.26

Very high 1,701 9.12 45 83.33

Fuzzy gamma operator (FGO) model

Very low 3,537 18.97 0 0.00

Low 5,510 29.55 1 1.85

Moderate 2,914 15.63 1 1.85

High 3,629 19.46 11 20.37

Very high 3,055 16.39 41 75.93

Relative effect (RE) model

Very low 2,786 14.94 0 0.00

Low 5,082 27.26 3 5.56

Moderate 4,908 26.32 2 3.70

High 4,181 22.42 11 20.37

Very high 1,688 9.05 38 74.07
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Comparison and validation of the models

The Area Under Curve (AUC) is one of the most com-

monly used qualitative accuracy assessment method for the

prediction models in natural hazard assessment (Begueria

2006; Pradhan and Lee 2009). The success rate describes

how well the model and factor predict the landslide (Chung

and Fabbri 1999). The accuracy of frequency ratio, fuzzy

gamma operator, relative effect models in landslide sus-

ceptibility mapping in the Kolli hills was evaluated by

calculating ‘‘area under the curve (AUC)’’. The validation

of landslide susceptibility analysis result was achieved by

comparing the known landslide location data with the

landslide susceptibility maps. The success rate curves were

produced and the ‘‘area under the curve (AUC)’’ was cal-

culated for all the three susceptibility maps using the

existing landslide location data. To obtain a relative land-

slide susceptibility index ranks for each prediction model,

the calculated index values of all grids in the study area

were sorted in descending order. Then the ordered cell

Fig. 5 Relationship between

landslide frequencies with

susceptibility classes

Fig. 6 Illustration of success rate curve showing landslide susceptibility index rank (x-axis) occurring in cumulative percent of landslide

occurrence (y-axis)
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values were divided into 100 classes, with accumulated

1 % intervals. An ideal model shows an AUC value close

to 1.0, whereas a value close to 0.5 indicates inaccuracy in

the model (Fawcett 2006). The AUC value of success rate

curve for relative effect model was found to be 0.8526. The

AUC value for landslide susceptibility map produced by

fuzzy gamma operator (using c = 0.975) was calculated as

0.8733. The AUC value for frequency ratio model showed

highest accuracy of 0.8793. The comparison result of

success rate curve is shown as a line graph in Fig. 6. These

results point out that frequency ratio model shows good

prediction pattern than fuzzy gamma operator and relative

effect model of landslide susceptibility in the study area.

Moreover, the success rate curve for frequency ratio model

had a greater steepness in the first part of the curve, sig-

nifying its greater predictive capability (Nandi and Shakoor

2009).

Conclusions

In the present study, frequency ratio, fuzzy gamma oper-

ator, and relative effect models were adopted for the

landslide susceptibility mapping along Ghat road section of

Kolli hills, Tamil Nadu. Landslide susceptibility maps have

been produced using the relationship between each land-

slide-influencing parameters and known landslide loca-

tions. The results have shown that the occurrence of

landslides were more prominent along cut slope, slope

gradient in 32�–45�, convex curvature, and relief in

618–1,040 m categories. The validation results show that

the frequency ratio model has better prediction accuracy

(AUC = 0.8793) than the fuzzy gamma operator model

(AUC = 0.8733) and relative effect model

(AUC = 0.8526). The landslide susceptibility maps are the

source for decision making and developmental activities in

an area. Hence, the output results of the present study can

help the developers, planners, and engineers for slope

management and land-use planning in the study area.
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