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Abstract The long-term mining of mineral resources has

contributed to damaging the geo-environment, drawing

significant attention to the evaluation of geo-environmental

quality. This paper presents an original system for evalu-

ating mining geo-environmental quality in the Changjitu

economic zone, Northeast China. The proposed evaluation

framework considers five criteria, namely basic mining

information, the geo-environmental background of the

mining area, mining-related geological problems, the

importance of the evaluation area, and the difficulty of geo-

environmental recovery. Objective weighting methods,

such as the variation coefficient, entropy, and Kantiray

weighting methods, and subjective weighting methods such

as the analytic hierarchy process are developed to deter-

mine the comprehensive weights of the elements and

indicators. A common comprehensive index method and a

new support vector machine (SVM) model are then pro-

posed and compared to evaluate mining geo-environmental

quality. The findings show that the accuracy of the linear

SVM model is 93.10 %, demonstrating that the SVM is

appropriate for the evaluation of mining geo-environmental

quality. Compared with existing common methods, the

SVM model, which classifies mining geo-environmental

quality into multiple groups, adopts the structural risk

minimization principle. The evaluation results also show

that mining geo-environmental quality tends to rank as

level II in the study area, accounting for 75.86 % of the

total eligible mines compared with 2.59 and 21.55 % for

levels I and III, indicating that most mining geo-environ-

ments are moderately affected by mining activities.

Keywords Comprehensive index method � SVM �
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Introduction

The rapid growth in economic benefits along with the

increased capacity to extract mineral resource around the

globe has contributed to damaging the geo-environment

(Monjezi et al. 2009; Mayes et al. 2009; Jordan and

Project 2009; Schellenbach and Krekeler 2012; Huang

et al. 2012; Howladar 2013). For example, mining and

related industries have long operated in the Changjitu

economic zone (CEZ) of Jilin Province, Northeast China.

However, while the long-term exploitation of mineral

resource has created enormous economic benefits, it has

also caused serious environmental problems such as

geological disasters, resource damage, and environmental

pollution that cannot be ignored (Das 1999; Jiang et al.

2014). Geological disasters caused by underground min-

ing include ground subsidence, ground fissures, and the

inrush of mine water, while open pit mining has led to

collapses, landslides, and debris flows (Xu et al. 2006;

Liu et al. 2008). Further, mining activities have damaged

land/water resources and the local landscape (Brown

2005), while the widespread discharging of mining waste
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residues, wastewater, and waste gas represents a major

source of pollution that threatens the health of residents

(Fessler et al. 2003; Ghose 2003; Mars and Crowley

2003; Pierce et al. 2004; Ryser et al. 2005; Mendez et al.

2006; Krekeler et al. 2008, 2010; Geise et al. 2011;

Schellenbach and Krekeler 2012).

The evaluation of mining geo-environmental quality

(MGEQ) has important theoretical and practical value

based on the comparative analysis of the major geological

problems caused by different types of mineral develop-

ment, different regions, and different mining approaches in

the CEZ. It can provide not only a scientific basis for

restoring the geological environment and rationally

exploiting mineral resources, but also geo-environmental

conditions for the suitable distribution of economic and

social benefits in the CEZ, which in turn promotes the

coordinated development of the economic, social, and

geological environments (Li 2013).

In the past few years, numerous authors have researched

the selection of evaluation factors, establishment of eval-

uation indicators, and choice of evaluation methods (Mejı́a-

Navarro et al. 1994; Sarkar et al. 2007; Turer et al. 2008;

Huang et al. 2012). For example, in China, Cai et al. (1998)

used the analytic hierarchy process (AHP) to determine the

weights of evaluation factors (Cai et al. 1998), while Liao

and Wu (2004) applied a fuzzy mathematics method to

evaluate the mining environment (Liao and Wu 2004). Xu

et al. (2003, 2006) classified mining geo-environmental

problems in Northwest China by applying the multi-level

fuzzy synthetic evaluation, gray situation assessment, and

comprehensive evaluation methods to assess MGEQ (Xu

et al. 2003, 2006). Further, Ma (2013) determined an

MGEQ evaluation system based on five aspects, namely

natural geography, basic geology, mining development

area, mining-related geological disasters, and mining

environment, and selected AHP combined with a fuzzy

mathematics method to evaluate MGEQ in two mining

areas (Ma 2013).

In the UK, Legg (1990) used remote sensing technology

to qualitatively evaluate the environmental and land rec-

lamation problems caused by surface mining (Legg 1990).

In the mid-1970s, the famous operational research expert

Saaty (1980) proposed the AHP (Saaty 1980), which

combines quantitative and qualitative analysis, to calculate

the weights of the elements in a pairwise manner and

ultimately evaluate MGEQ. Similarly, Zadeh (1965) cre-

ated a fuzzy evaluation method based on the maximum

membership and fuzzy transform principles to evaluate

MGEQ (Zadeh 1965). In addition, various researchers have

examined a number of other methods for evaluating

MGEQ such as graphics overlay, scoring superposition,

comprehensive index method (CIM), and Delphi methods

(Ma 2013).

While significant achievements and progress in mining

geo-environmental assessment have been made by previous

studies, some questions remain to be resolved. First, the

evaluation results presented thus far are not objective

enough, because the selection of the evaluation factors has

not been sufficiently comprehensive (Liang 2012). Second,

previous works have focused on the qualitative research of

mining geo-environments and there has been a lack of

quantitative studies (Wang and Chen 2011). Third, unrea-

sonable comprehensive evaluation methods with subjective

factors and complex weight calculations have led to the

evaluation results lacking comparability. Finally, the

complex mapping between the evaluation factors and

MGEQ has not been processed well. Therefore, it is of

upmost importance to formulate a scientific, comprehen-

sive, reliable, and practical quantitative evaluation system

as well as a multi-index, multi-level evaluation model that

can handle the complex mapping between the evaluation

factors and MGEQ.

The present study establishes such a quantitative eval-

uation system for the CEZ based on the approaches of

previous researchers and the characteristics of the mining

geo-environment. Based on the CIM, which was developed

to evaluate MGEQ, we propose a new model termed the

support vector machine (SVM) model. Objective weighting

methods (e.g., the variation coefficient, entropy, and Kan-

tiray assignment methods) and subjective weighting

methods (e.g., the AHP) are combined to determine the

integrated weights of the evaluation indicators. The pro-

posed SVM model is capable of mapping out the rela-

tionship between input and output variables by using a

kernel function in a high-dimensional space (Liang 2009)

as well as treating pattern recognition. SVM has been

widely used in the fields of human face recognition, signal

processing, the prediction of rainfall runoff (Dibike et al.

2001), water quality assessment, text classification, remote

sensing image analysis (Vapnik 1995; Yoon et al. 2011),

stream flow or stage (Liong and Sivapragasam 2002; Asefa

et al. 2006; Yu et al. 2006), and lake water level assessment

(Khalil et al. 2006; Khan and Coulibaly 2006). However, it

has not thus far been applied in the field of MGEQ eval-

uation. Consequently, the present study applies the SVM

model to assess MGEQ and explores the modeling process

to evaluate its effects.

Specifically, the aims of the present study are fourfold:

(1) to rationally construct a more holistic and scientific

evaluation framework; (2) to compare the advantages and

disadvantages of the CIM and SVM models for the MGEQ

evaluation in the study area, where the geo-environment

has been damaged over the past decade because of mining

activities; (3) to provide some guidance and be of practical

importance for the popularization and application of SVM

technology in the field of MGEQ assessment; and (4) to
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provide reliable data and a basis for the reasonable

exploitation and sustainable utilization of mineral resource

in the CEZ.

This research is novel in the following three ways. First,

the evaluation framework constructed in this study is ori-

ginal. Second, we apply the SVM model to assess MGEQ

and obtain good evaluation results. Third, the variation

coefficient, entropy, and Kantiray weighting methods as

well as the AHP are combined to determine the optimal

weights, which not only reflect expert knowledge and

opinions, but also use objective information.

Study area

The study area is located in the east of Jilin Province,

Northeast China, which includes the cities of Changchun,

Dehui, Jiutai, Jilin, and Jiaohe, the counties of Nongan and

Yongji, and the Yanbian Korean Autonomous Prefecture. It

lies between the geographic coordinates of 42�0002000N and

44�5602400N latitude, and 124�3202400E and 131�1803600E
longitude (Fig. 1), with an area of 73,000 km2. The study

area is characterized by a temperate continental monsoon

climate. Average annual temperature is 2–6 �C and aver-

age annual rainfall is 600–1,400 mm, with 80 % or more of

the rainfall occurring between June and September. Mining

has become a pillar industry of economic development in

the Changjitu region, but it also causes complex and seri-

ous mining-related geological problems, which can be

divided into three categories: mining-related geological

disasters, resource damage, and environmental pollution.

Materials and methods

MGEQ evaluation system

The MGEQ evaluation system is a complex system

involving many factors. Mining, dressing, smelting, and

other types of engineering activities can induce and

Fig. 1 Location of the study area
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aggravate various types of geological problems at different

levels, while geological background and natural conditions

are additional factors that may lead to mining-related

geological problems. Simultaneously, the difficulty of

mining geo-environmental recovery and management is a

key factor for MGEQ evaluation (Liu et al. 2008).

The MGEQ evaluation system proposed herein was

established based on the comparative analysis of the major

mining-related geological problems in the CEZ. The

evaluation framework considers five criteria, namely basic

mining information, the geo-environmental background

conditions of the mining area, mining-related geological

problems, the importance of the evaluation area, and the

difficulty of mining geo-environmental recovery, along

with 15 indicators such as production scale, mining

methods, topography, geological conditions, and mining-

related geological disasters (Fig. 2).

The determination of geological environment elements

and indicator weights

Objective weighting methods, such as the variation coef-

ficient, entropy, and Kantiray weighting methods, and

subjective weighting methods such as the AHP were used

to determine the comprehensive weights of the elements

and indicators. The comprehensive weights not only

include expert knowledge and opinions, but also use

objective information. Therefore, this method reflects the

diversity of the practical data, overcoming the shortcom-

ings of using either objective or subjective weights, making

subjective and objective weights consistent, and leading to

evaluation results that are sound and scientific (Zhu 2012).

Variation coefficient method

The variation coefficient evaluation method can be used

when each factor is relatively independent. Suppose

there are n participating samples, with each sample

described by p indicators (X1 ;X2 ; � � � ;XP). The mean

(Xi) and variance (S2i ) are calculated by using Eqs. (1)

and (2):

Xi ¼
1

n

Xp

j¼1

Xji ð1Þ

S2i ¼
1

n� 1

Xp

j¼1

ðXji � XiÞ
2
: ð2Þ

The variation coefficient of each indicator is

Vi ¼ Si
�
Xi i ¼ 1 ; 2 ; . . .; p: ð3Þ

The weight of each indicator Wi is obtained after normal-

izing Vi:

Wi ¼ Vi

,
Xp

j¼1

Vj j ¼ 1 ; 2 ; . . .; p: ð4Þ

Entropy method

The entropy method determines its weights based on the

amount of information that the various indicators trans-

mit to policymakers. The greater the difference in the

evaluation indicators, the smaller is the entropy, while

the weights scale is proportional to the information

content of the indicators. The detailed steps are as

follows:

Production scale 

Mining methods 

Topography 

Geological conditions 

Average rainfall 

Land use Environmental pollution 

Geological disasters 

Resource damage 

Population density 

Important buildings 

Nature reserve 

Water resources 

Types of destructed land Security deposit

Geological background 
Environmental 

geological problems 
The importance of 

evaluation area 

Mining geo-environmental evaluation 

Difficulty of mining geo- 
environment recovery Basic information 

Fig. 2 The MGEQ evaluation system
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Step 1. Normalize the value of the indicators:

aij ¼ Xij

,
Xn

i¼1

Xij i ¼ 1; 2 ; . . .; n j ¼1; 2 ; . . .; m: ð5Þ

Step 2. Calculate the entropy of the evaluation

indicators:

H ¼ �K
Xn

i¼1

aij ln aij ðK ¼ 1=ln nÞ: ð6Þ

Step 3. Transfer the entropy into the weight:

Wi ¼ ð1� HiÞ
,

ðm�
Xm

j¼1

HjÞ: ð7Þ

Although the entropy method requires a certain number

of sample units, it has a strong mathematical theory and

provides a close relationship between the entropy and

indicator value itself (Ma 2009).

Kantiray weighting method

This approach was proposed by Kantiray (1989). The

weight of each indicator can be derived using the following

equation:

ðRS� kIÞW ¼ 0; ð8Þ

where R is the correlation matrix of the original variables, S

is the diagonal matrix of the standard deviation, and k is the
largest eigenvalue. W is the eigenvector that corresponds to

the maximum eigenvalue, which is affected by the standard

deviation and correlation coefficient. Therefore, the matrix

RS contains both the interaction information between the

indicators in the original data and the degree of indicator

variation (Kantiray 1989; Ma 2009).

AHP

The AHP has been proven to be an effective decision

analysis method in multiple-criteria assessment. The pres-

ent study uses the AHP to determine the subjective weights

of the elements and indicators. First, a judgment matrix is

used and then the weights of the indicators are obtained

after calculating the eigenvalue and eigenvectors. Next, the

normalized eigenvector that corresponds to the maximum

eigenvalue-passed consistency check is taken as the weight

of each index factor (Hao 2011). The equations describing

the above-mentioned procedures are as follows:

AW ¼ kmaxW ; ð9Þ

CI ¼ kmax � N

N � 1
; ð10Þ

CR =
CI

RI
; ð11Þ

where W is the eigenvector as well as the weight vector,

kmax is the maximum eigenvalue of matrix A, CI is the

consistency index, N is the order of the judgment matrix,

RI is the average random index of the order of the matrix,

and CR is the consistency ratio. CR should be lower than

0.1 to consider the eigenvector W to be an acceptable

weight. Otherwise, the comparison and calculation should

be redone.

Comprehensive weight method

First, an appropriate objective and subjective weighting

method is chosen based on the samples and data and then

comprehensive weights are calculated according to a cer-

tain ratio of the column (Wang 2013). The equation is

written as follows:

w� ¼ awþ ð1� aÞ/; ð12Þ

where w� is the comprehensive weight, w is the subjective

weight, / is the objective weight, and a is the subjective

preference factor. In this study, the value of a is set as an

empirical value of 0.5, while the comprehensive weight is

the average of the subjective and objective weights.

Proposed evaluation model

The developmental characteristics, distribution, and extent

of damage of mining-related geological problems are

analyzed comprehensively based on the investigation of

typical mine fields and data collection in the CEZ. Spe-

cifically, the CIM and SVM are used to evaluate MGEQ.

CIM

According to this method, we first determine the level of

the mining geo-environment by using a weighted sum. This

sum is calculated based on the status of the geological

environment after assigning basic mining information, the

geo-environmental background of the mining area, mining-

related geological problems, the importance of the evalu-

ation area, and the difficulty of mining geo-environmental

recovery as well as the other 15 indicators. The grading

standards for the MGEQ evaluation criteria are given in

Table 1.The mathematical formulation is as follows (Liu

et al. 2008):

F ¼
Xn

i¼1

FiWi; ð13Þ

where Fi is the individual score for each indicator andWi is

the comprehensive weight of each indicator.

Mines that have a comprehensive quality index greater

than or equal to 6.0 are classified into level III, between

Environ Earth Sci (2015) 73:7945–7955 7949

123



3.32 and 6.0 level II, and less than 3.32 level I. The

influence degree corresponding to each class is shown in

Table 2.

SVM model

(1) Theory of SVM

SVM (Vapnik 1995) is an emerging machine learning

technology that has been extensively used as a classifica-

tion tool. The theory is based on the structural risk mini-

mization principle (Liang et al. 2011; Yoon et al. 2011).

SVM attempts to find the optimal separating hyperplane

between classes by maximizing the class margin (Harris

2013). SVM can be divided into linear and nonlinear

models, with the former a special case of the latter.

Therefore, this article only describes the nonlinear SVM.

Nonlinear problems can be transformed into linear

problems by using a kernel function and finding the opti-

mal separating hyperplane in the transform space. Because

the kernel function that corresponds to an inner product

function is Kðxi; xjÞ¼wðxiÞ � wðxjÞ, Kðxi; xjÞ can avoid

this so-called ‘‘dimension disaster,’’ which primarily

relates to the large number of possible nonlinear mappings

and to the computational complexity associated with any

high-dimensional space (Baly and Hajj 2012).

The method can be described as follows. Input vector x

is first mapped to a high-dimensional feature space by

using the nonlinear mapping pre-selected / and then

finding the optimal separating hyperplane in the high-

dimensional space (Keerthi et al. 2000; Cristianini and

Shawe-Taylor 2000; Sun et al. 2009; Wu and Wang 2009).

The sample set is ðxi; yiÞ; i ¼ 1; 2; . . .; n; y ¼ f1; �1g are

class labels. The hyperplane can thus be expressed by the

following equation:

x � xi þ b ¼ 0: ð14Þ

Next, we add a slack variable to the constraints ni � 0, so

that the maximum interval hyperplane is now called the

generalized optimal separating hyperplane (Leng et al.

2007; Baly and Hajj 2012; Harris 2013). The constraint

becomes

s:t yi½ðx � xiÞ þ bÞ� 1� ni: ð15Þ

The optimization problem is written as

Table 1 Indicator scores and ratings of the MGEQ evaluation criteria

Elements Indicators assignment Scores

2 6 10

Basic information Production scale Small scale Medium scale Large scale

Mining methods No mining Open pit Underground

mining

Geological

background

Topography Simple Moderate Complex

Geological conditions Simple Moderate Complex

Average rainfall Less than 400 mm 400–800 mm Greater than

800 mm

Land use Wasteland, barren

land

Grassland, woodland,

and construction

sites

Arable land

Environmental

geological

problems

Geological disasters Lighter Moderate Serious

Resource

damage

Destruction of land resource Lighter Moderate Serious

Destruction of water resource Lighter Moderate Serious

Destruction of landform

landscape

Lighter Moderate Serious

Environmental pollution Lighter Moderate Serious

The importance of

evaluation area

Population density, important buildings, nature

reserve, water source, and the types of

destruction land

General Moderate Important

Difficulty of mining

geo-environment

recovery

Security deposit Less than 1 million 1–5million More than 5 million

Table 2 The influence degree of each class

Level I II III

Influence degree Lighter Moderate Serious
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min
1

2
ðx � xÞ þ C

Xn

i¼1

ni

s:t yi½ðx � xiÞ þ bÞ� 1� n i ¼ 1; 2; . . .; n;

ð16Þ

where x is the weight vector, b is the bias, and ni is the

slack variable. In addition, C[ 0 is the penalty factor,

where the larger the C, the greater is the penalty. To

develop the dual form of the problem, we introduce the

Lagrange multipliers a; b

Lðx; n; b; a; bÞ ¼ 1

2
ðx � xÞ þ C

Xn

i¼1

ni

�
Xn

i¼1

ai½yiðx � xi þ bÞ � 1þ ni� �
Xn

i¼1

bini:

ð17Þ

Equation (17) is then minimized with respect to x, n, and b
by taking the partial derivatives with respect to x, n, and b

and setting them to zero. Hence, the dual problem is as

follows:

max
a;b

QðaÞ ¼ Lðx; n; b; a; bÞ

¼
Xn

i¼1

ai �
1

2

Xn

i¼1

Xn

j¼1

aiajyiyjðwðxiÞ � wðxjÞÞ

¼
Xn

i¼1

ai �
1

2

Xn

i¼1

Xn

j¼1

aiajyiyjKðxi; xjÞ

s:t
Xn

i¼1

aiyi ¼ 0; ai � 0:

ð18Þ

The optimal judgment function is

f ðxÞ ¼ sgnð
Xn

i¼1

a�i yiKðx; xiÞ þ bÞ: ð19Þ

Many types of kernels have been used to establish the SVM

model, such as the linear, polynomial, Gaussian radial basis

function (RBF), and sigmoid kernels (Chen et al. 2013).

The respective equations are listed as follows:

Linear kernel,

Kðx; xiÞ ¼ ðx � xiÞ: ð20Þ

Polynomial kernel,

Kðx; xiÞ ¼ ðgðx � xiÞ þ rÞd: ð21Þ

RBF kernel,

Kðx; xiÞ ¼ exp �g x� xik k2
� �

: ð22Þ

Sigmoid kernel,

Kðx; xiÞ ¼ tanhðgðx � xiÞ þ rÞ: ð23Þ

(2) Construction, application, and validation of the SVM

model

According to the classification standard of MGEQ in

this study, random training samples were generated by

using the rand function in MATLAB. There are three levels

of MGEQ, and each of the elements can be evaluated by

the following standard levels: less than or equal to 2.0 is

level I, between 2.0 and 6.0 is level II, and between 6.0 and

10.0 is level III. We randomly generated 200 pairs of

training samples under these three levels (i.e., 600 pairs of

training samples), while the test samples were 116 groups

of data on the important mines in the CEZ.

The SVM model was built as follows:

Step 1. Normalize the data (Eq. 24)

~Xi ¼
Xi �minðXiÞ

maxðXiÞ �minðXiÞ
: ð24Þ

Step 2. Determine the structure of the SVM model. In

this study, basic information (X1), geological background

(X2), mining-related geological problems (X3), the impor-

tance of the evaluation area (X4), and the difficulty of

mining geo-environmental recovery (X5) are the input

variables, with the level of MGEQ as the output variable.

Step 3. Determine the parameters. The present study

uses the C-support vector classification model, while the

penalty parameter C and kernel parameter g need to be set.

To optimize the two SVM parameters (C and g) simulta-

neously, a cross-validation parameter optimization pro-

gram was performed. First, training data were separated

into several folds. Sequentially, a fold is considered to be

the validation set and the rest are used for training. The

average accuracy for predicting the validation sets repre-

sents the cross-validation accuracy. We provided a possible

interval of log2C (or log2g) with the grid space (-10, 10).

Then, all the grid points of (C; g) were examined to assess

which one provided the highest cross-validation accuracy.

After training, the optimal penalty parameter C and optimal

kernel parameter g were obtained with values of 1,024, and

64, respectively. Then, we used the best parameter to train

the whole training set and generated the final model.

Step 4. Determine the kernel function and establish the

evaluationmodel.Byusing theMATLABprogram to train the

random learning samples, the optimal penalty and optimal

kernel parameters as well as the linear, polynomial, Gaussian

RBF, and sigmoid kernels were developed to establish the

SVM model to evaluate MGEQ. The 116 groups of test

samples were then placed into the evaluation model to obtain

the MGEQ evaluation results, and the evaluation results were

compared by using these different kernel functions.
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Results and discussions

Results of the MGEQ evaluation based on the CIM

Because each evaluation indicator is relatively independent,

the Kantiray weighting method is unsuitable in this case;

therefore, the variation coefficient and entropymethodswere

applied as the objective weighting methods and the AHP as

the subjective weighting method. The five evaluation ele-

ments of the MGEQ were correlated in some areas, but also

showed certain differences. The Kantiray weighting method

was more appropriate than the variation coefficient method.

Therefore, we selected the Kantiray and entropy weighting

methods as the objective weighting methods and the AHP as

the subjective weighting method to determine the compre-

hensive weights of the five elements. The weights of the

elements and indicators are listed in Table 3. We finally

obtained the evaluation results of CIM using Eq. 13.

The vector represented the relative importance of the

assessment criteria for the geological environment:

A3[A5[A1[A4[A2. The assessment for the indi-

cators under level A1 (i.e., basic information) was

B2[B1, that for the indices under level A2 (i.e., geo-

logical background) was of the order of

B3[B4[B5[B6, and that under level A3 (i.e., min-

ing-related geological problems) was of the order of

B7[B9[B8. In the present study, we thus determined

the optimal weights that not only reflect expert knowledge

and opinions, but also use objective information.

Results of the MGEQ evaluation based on the SVM

model

The accuracy of the four SVM models with their different

kernel functions is illustrated in Fig. 3. The selection of

kernel function was significant for pattern recognition.

Figure 3 also shows that the accuracy of the linear, poly-

nomial, RBF, and sigmoid SVM models was 93.10, 92.24,

52.59, and 0 %, respectively, illustrating that the linear

SVM model is slightly more accurate than the polynomial

SVM model, with both well ahead of the RBF and sigmoid

SVM models. Therefore, this finding proves that the most

appropriate method for evaluating the mining geo-envi-

ronment in the study area is the linear SVM.

Discussion

Conventional evaluation methods such as the CIM, fuzzy

mathematics method, and gray clustering method cannot

address the complex relationships between the evaluation

elements and MGEQ, and the evaluation results are greatly

affected by subjective factors (Liao and Wu 2004; Huang

et al. 2012). Compared with conventional evaluation

methods, SVM is a small-sample machine learning method

based on statistical learning theory that uses the structural

risk minimization principle. This approach allows gener-

alization and can map the evaluation elements and MGEQ

using a kernel function in a high-dimensional space.

Hence, it can overcome the shortcoming of conventional

methods when evaluating MGEQ as well as the defects of

slow training speed, poor network generalization, and low

learning accuracy in artificial neural networks (Liao et al.

2012). In addition, the SVM model calculates weights

automatically and the evaluation results are comparable.

Therefore, as an important pattern recognition method,

SVM is appropriate for MGEQ evaluation, which is a

typical pattern recognition issue.

Table 3 The comprehensive weights of the elements and indicators

Evaluation

elements

Weights Indicators Weights

Basic information

[A1]

0.1500 Production scale [B1] 0.4507

Mining methods [B2] 0.5493

Geological

background

[A2]

0.0942 Topography [B3] 0.4602

Geological conditions

[B4]

0.2467

Average rainfall [B5] 0.1608

Land use [B6] 0.1323

Environmental

geological

problems [A3]

0.4263 Geological disasters [B7] 0.5091

Resource damage [B8] 0.2244

Environmental pollution

[B9]

0.2665

The importance of

evaluation area

[A4]

0.0966 Population density,

important buildings,

nature reserve, water

source, and types of

destruction land [B10]

Ease of mining

geo-

environment

recovery [A5]

0.2329 Security deposit [B11] 0
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Fig. 3 The accuracy of linear SVM, polynomial SVM, RBF SVM,

and sigmoid SVM
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According to the CIM and SVM evaluation results

presented herein, Figs. 4 and 5 show that the majority of

the MGEQ in the study area ranks as level II, which

corresponds to moderately affected, accounting for

75.86 % of total eligible mines and 52.6 % of those located

in coal mining areas. By contrast, level III (seriously

Fig. 4 The levels of the mining geo-environment in the CEZ

Fig. 5 The statistical results of the MGEQ evaluation
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123



affected) accounts for 21.55 % (87.50 % in coal mining

areas) and level I (lightly affected) 2.59 %, located in

mineral water, zeolite, iron, and geothermal mines.

’In summary, these results indicate that most mining

geo-environments in the region are moderately or seri-

ously affected by mining activities, especially coal

mining areas (Fig. 5). The long-term exploitation of

coal in the study area has created enormous mined-out

areas, causing surface collapses and ground fissures.

Indeed, there are more than 35 collapsed areas of dif-

ferent sizes, the largest up to 2.346 km2. These surface

collapses and ground fissures have damaged the mining

geo-environment, threatening the safety of residents and

destroying the local landscape. Therefore, related

recovery and management measures should be

implemented.

Conclusions

Based on the findings of domestic and foreign research and

the characteristics of the mining geo-environment of the

CEZ, a new MGEQ evaluation system was proposed in this

study. The evaluation framework considered five criteria,

namely basic mining information, the geo-environmental

background conditions of the mining area, mining-related

geological problems, the importance of the evaluation area,

and the difficulty of mine geo-environmental recovery. The

evaluation framework established in this study is thus a

relatively comprehensive system for evaluating MGEQ in

the CEZ.

CIM and SVM models based on different kernel func-

tions were developed to evaluate MGEQ. The results

showed that the accuracy of the linear, polynomial, RBF,

and sigmoid SVM models was 93.10, 92.24, 52.59, and

0 %, respectively, confirming that the linear SVM is the

most appropriate method for evaluating the mining geo-

environment in the CEZ.

The study also demonstrated that the SVM model was

appropriate for MGEQ assessment. Compared with exist-

ing MGEQ assessment methods, SVM adopts the structural

risk minimization principle, which classifies quality into

multiple groups. This research thus provides some guid-

ance and is of practical importance for the popularization

and application of SVM technology in the field of MGEQ

assessment.

The evaluation results also showed that most of the

MGEQ is classified into level II in the study area

(75.86 % of total eligible mines), with levels I and III

accounting for 2.59 and 21.55 %. This finding suggests

that the mining geo-environment in the region is moder-

ately affected by mining activities. The results also pro-

vide reliable data and a basis for the reasonable

exploitation and sustainable utilization of mineral

resource in the CEZ.
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