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Abstract This paper presents prediction of minimum

factor of safety (FS) against slope failure in clayey soils

using artificial neural network (ANN). Two multilayer

perceptron ANN models were used to predict the minimum

factor of safety using different data sets of geometric and

shear strength parameters and based on the four well-

known methods of Fellenius (Ordinary), Bishop, Janbu,

and Spencer, respectively. The input parameters used to

train and test the two ANN models include the reciprocal of

slope tangent b, angle of internal friction of soil u (o),

height of the slope H (m), cohesion of the soil c (kN/m2),

unit weight of the soil c (kN/m3) and the stability number

m (c/cH). The output parameter for both ANN is the FS of

the slope. The number of hidden layers and the number of

neurons in each hidden layer were determined by trial and

error to achieve the best results. It is observed that both

ANN predictions are very close to the FS calculated by

each of the corresponding four methods, separately.

However, the ANN model with the scaled down number of

input parameters showed better performance and the best

one has a normalized mean square error of 0.0073, mean

absolute percent error (MAPE) of 1.52 % and correlation

coefficient (r) of 0.9966. It is concluded that such ANN

models are reliable, simple and valid computational tools

for predicting the FS and for assessing the stability of

slopes of clayey soil. Six known case studies that are based

on different methods were used to further test and validate

the accuracy of the ANN model. It was observed that the

ANN model predictions of FS of the case studies were very

accurate with MAPE of 3.72 % for all methods combined.

Based on the developed ANN model, a parametric study

was then carried out to investigate the influence of the

slope angle (b), stability number (m) and angle of internal

friction (u) on the factor of safety and slope stability of

clayey soil.
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Abbreviations

FS Factor of safety

b Width of the slice

H Height of the slope

c Cohesion of the soil

c0 Effective cohesion of the soil

m Stability number

h Average height of the slice

ha Height to the center of the slice

Sm Mobilized shear strength

W Weight of slice

Ww Surface water force

hL Height of force ZL

Q External surcharge

N0 Effective normal force

Kh Horizontal seismic coefficient

l Angle of inclination of external load

U Pore water pressure

ZL Left inter-slice force

ZR Right inter-slice force

dL Left inter-slice force inclination angle
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dR Right inter-slice force inclination angle

hR Height of force ZR

a Inclination of slice base

b Inclination of slice top

Introduction

The stability of slopes of clayey soil is an important

characteristic for earth dams, excavation, landfills and earth

moving. The slope stability of clayey soil is mainly

affected by the soil shear strength parameters—cohesion

and angle of internal friction, unit weight of the material,

slope geometry and pore water pressure. Also, rapid

drawdown and fluctuation of water levels in reservoirs is

likely to be a reason for instability and rapid sliding (Pinyol

et al. 2012; Alonso et al. 2010). The performance of a slope

and its susceptibility to failure are usually measured by its

factor of safety (FS). Accurate prediction of factor of safety

of slopes, their stability and performance is not an easy

task. This is mainly due to the difficulty in accurately

determining the mechanical properties of the parameters

that influence the stability of the slopes, their degree of

influence and the complexity of their relationships.

Therefore, assessment of slope stability is influenced by

many sources of uncertainties (Jurado et al. 2012; Tarta-

kovsky 2013). Slope stability and their associated factor of

safety have been investigated by many researchers exper-

imentally, analytically and numerically. The factor of

safety has been calculated using several methods including

limit equilibrium methods of slices and its variations, finite

difference method and finite element method, among oth-

ers. Duncan (1996) presented state-of-the-art review of

limit state equilibrium methods and finite element analysis

for the stability of slopes. He presented a detailed summary

of characteristics of different limit equilibrium methods of

slices and several methods for 3D slope stability analyses

on which limit equilibrium was extended and/or variational

principles were employed. He also provided a detailed

review of deformation analyses of slopes and embankments

with primary focus on the finite element method. For the

finite element methods, four different types of stress–strain

relationships, mainly linear elastic, multi-linear elastic,

hyperbolic, and elasto-plastic were presented together with

their advantages and limitations for use in practical slope

stability problems. The conventional methods discussed

above to predict the factor of safety (FS) against slope

failure are lengthy, time consuming, iterative and require

computer software.

Other methods are also developed either to find the

factor of safety or to determine the critical failure slope.

Cheng et al. (2007) obtained the factor of safety of slope by

limit equilibrium and strength reduction approach. Kah-

atadeniya et al. (2009) used the ant colony optimization to

determine the critical slip surface. His results were found to

be compatible and in agreement with the results obtained

from other well-known methods. Sengupta et al. (2009)

determined the location of the critical slip surface in slope

stability analysis using genetic algorithm approach. He

found this approach to be superior to other optimization

routines.

In the last few decades there was a growing interest in

using intelligent computational systems such as artificial

neural network (ANN) in geotechnical engineering (Goh

1995; Juang and Elton 1997; Juang et al. 1999; Cheng et al.

2007; Shahin et al. 2008) in general and in predicting the

behavior of slopes and their susceptibility to failure under

static and dynamic loading in particular. There are several

successful applications of ANN that investigated slope

stability and evaluated slope failure characteristics (Ni

et al. 1996; Sakellariou and Ferentinou 2005; Wang et al.

2005; Ferentinou and Sakellariou 2007; Ural and Tolon

2008; Cho 2009; Lin et al. 2009). Ni et al. (1996) combined

fuzzy sets theory with artificial neural networks to evaluate

the stability of slopes and to predict the slope failure

potential. The results of the ANN were in good agreement

with the analytical results. Sakellariou and Ferentinou

(2005) used back-propagation learning algorithm to esti-

mate the factor of safety of slopes and their stability status

based on several geotechnical and geometrical input

parameters. The performance of the network was measured

and the results were compared to those obtained by means

of standard analytical methods. Wang et al. (2005) used a

Back-Propagation Neural Networks model with four layers

and a training data set of landslide samples to predict the

stability and safety factor of slopes. Ferentinou and Sak-

ellariou (2007) combined ANN tools with generic inter-

action matrix theory to estimate slope stability controlling

factors. They developed an integrated method for esti-

mating the factor of safety, slope stability and for pre-

dicting the slope performance under static and seismic

loading. They concluded that computational intelligence

tools are promising and should be further exploited in

tackling such complex problems. Ural and Tolon (2008)

used ANN to predict factor of safety of saturated slopes

under earthquake. They studied the importance of the

seismic coefficients for a slope stability safety and assessed

the importance of the slope and dynamic input parameters

in stability of slopes in the event of earthquake. Cho (2009)

integrated finite difference method into a probabilistic

analysis of slope stability and employed artificial neural

network-based response surface to calculate the probability

of failure through the first-order and second-order reli-

ability methods and a Monte Carlo simulation technique.
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He carried out a probabilistic stability assessments for a

hypothetical two-layer slope for validation of the devel-

oped method. Based on results from two examples, he

indicated that the ANN-based response surface can be

successfully applied to slope stability probabilistic prob-

lems. Lin et al. (2009) used neural network-based model

for assessing failure potential of highway slopes. They

explored the degrees of influence of several factors (vari-

ables) on slope stability and used the developed ANN

models to investigate the slope failure characteristics

before and after earthquake. Kaunda et al. (2010) use back-

propagation artificial neural network architecture to predict

slip or failure surface of active landslides, among other

parameters. They concluded that the neural network mod-

els predict slip surfaces better than the limit equilibrium

slip surface search using the most conservative criteria.

Chang et al. (2011) used Artificial Evolution Neural Net-

work (AENN) to learn from past slope failure records and

their results showed that the developed AENN can accu-

rately predict the occurrence of slope failure with a success

rate of 99 %. They further used the AENN model to

accurately predict the slump rate of slopes in the study area

based on the precipitation data that consisted of daily

rainfall and effective rainfall. Das et al. (2011) developed

several neural network models to classify the slope as

stable or unstable and for prediction of the factor of safety.

They compared their results with other models based on

support vector machine and genetic programming and they

observed that ANN model is very accurate. As presented,

different variations of ANN methods have been used to

predict the factor of safety and they were successful with

different level of accuracy. These ANN methods were

based on training data resulted from some experimental

data or generated by some specific method of analysis. In

this study, all the four major classical methods were used in

generating the training data for the ANN and therefore its

results are more inclusive than the previous ANN attempts.

Therefore, the aim of this study is to develop an ANN

model to predict the factor of safety (FS) of slopes using

results of different classical methods and use the developed

model to carry out sensitivity analysis to investigate the

influence of several parameters on the FS of slopes and

their susceptibility to failure. A total of 160 data sets with

different geometric and shear strength parameters were

used to generate minimum factor of safety based on four

well-known methods of Fellenius, Bishop, Janbu, and

Spencer, respectively. The input data and the results

obtained from the analysis were used to train and test two

Multilayer Perceptron (MLP) ANN models to predict the

minimum FS for each method. Three parameters were used

as input for the first ANN—the slope angle b (o), angle of

internal friction u (o) and the stability number m (c/cH),
while five parameters were used as input for the second

ANN which are the slope angle b (o), height of the slope

H (m), angle of internal friction u (o), cohesion of the soil

c (kN/m2) and the unit weight of the soil c (kN/m3). The

output parameter for both ANN is the FS of the slope. A

parametric study was then carried out to investigate the

influence of these parameters on the factor of safety of

slope and the stability of slopes of clayey soil.

Slope stability of clayey soil: background

According to Mohr’s failure theory, the shear strength of

the soil is a function of cohesion, angle of internal friction,

and the applied normal stress. Based on this theory, the

shear strength of the clayey soil is given by Eq. (1) (Cer-

nica 1982):

sf = c0þr0tan/0 ð1Þ

where, sf is the shear strength, c0 is the effective cohesion

of the soil and r0 is the normal stress and u0 is the effective
angle of internal friction of the soil.

Figure 1 shows a typical slip or failure surface and forces

acting on a typical slice for a slope stability problem based

on the method of slices. The main purpose of slope stability

analysis is to find the minimum FS and the corresponding

location of the slip surface. Many methods in the literature

have been used to analyze and find the minimum FS. All the

methods deal with the shear strength parameters developed

along the potential slip surface in their analysis.

In general, the FS with respect to strength of slope is

given by Eq. (2) (Das 2008) as the ratio between the

resisting and driving force.

FS =
Resisting force

Driving force
¼ Shear strength

Shear stress

FS =
sf
sd

¼ c0 þ r0 tan/0

c0d þ r0 tan/0
d

ð2Þ

where, sf is the Shear strength of the soil, sd is the average
shear stress developed along the potential failure surface, c0

is the effective cohesion of the soil, r0 is the effective

normal stress on the potential failure surface, /0 is the

Effective angle of internal friction, cd
0 is the Effective

cohesion that develop along the potential failure surface,

/d
0 is the Angle of friction that develop along the potential

failure surface.

The FS for an infinite slope can be written as given by

Eq. (3) (Das 2008) and it is a function of five parameters

(c0, /0, c, H, b).

FS ¼ c0

cH cos2 b tan b
þ tan/0

tan b
ð3Þ

where, H is the height of the slope and b is the angle of the

slope.
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Or alternatively as given by Eq. (4) (Das 2008) which is

a function of thee parameters (m, /0, b).

FS ¼ m

cos2 b tan b
þ tan/0

tan b
ð4Þ

where, m is the stability number and is given by m = c0

cH :
There are several methods developed for analysis of

slopes, excavations and embankments. The most widely

used method for computing the FS of finite slopes is the

limit equilibrium method of slices and its variations which

can be classified into two categories (Nash 1987): (1) lin-

ear methods; and (2) nonlinear methods. Linear methods

include wedge analysis, circular arc methods (ordinary

method) (Fellenius 1936). Nonlinear methods include

Bishop’s simplified method (1955), Janbu’s simplified

method (1954), Spencer’s method (1967), Morgenstern-

Price’s method, Janbu’s generalized analysis, among oth-

ers. Duncan and Wright (1980) assessed the accuracy of

limit equilibrium methods and Fredlund et al. (1981, 1984)

showed the relationship among limit equilibrium methods

of slices. In addition, several 3D nonlinear methods were

developed thereafter by Seed et al. (1990), Leshchinsky

and Huang (1992) and Michalowski (1995). Among these

methods Fellenius or ordinary method, Janbu simplified

method, Bishop simplified method and Spencer method

will be used in this study.

Ordinary method (Fellenius method)

The FS for the Ordinary Method of slices is given by

Eq. (5) (Malkawi and Hassan 2003):

where, FS is the factor of safety, B is the width of the slice,

c0 is the effective cohesion of the soil, h is the Average

height of the slice, ha is the height to the center of the slice,

W is the Weight of slice, Ww is the Surface water force, Q

is the External surcharge, Kh is the Horizontal seismic

coefficient, l is the Angle of inclination of external load,

U is the Pore water pressure, a is the Inclination of slice

base, b is the Inclination of slice top.

Ignoring the effect of surface water force (Ww), external

surcharge (Q), horizontal seismic force (kh) and pore water

pressure (U), the FS of slope can be written as shown in

Eq. (6) (Das 2008):

FS ¼
Pn¼p

n¼1 ðc0bn= cos an þWn cos an tan/
0Þ

Pn¼p
n¼1 Wn sin an

ð6Þ

12
n

n+1

β

H

r

r

r

Wn

bn

r sin αnO

A

C

αn
Tr

NrR = Wn
ΔLn

Tn

Pn

Tn+1

Pn+1

Slip or failure Surface

nth slice

Fig. 1 Stability of slope of

clayey soil (Das 2008)

FS ¼
Pn

i¼1 ½c0:b sec aþ ½W cos aþ Q cosðu� aÞ þWw cosðb� aÞ þ khW sin a� Ub� tan/0�
Pn

i¼1 ðW þWw cos bþ Q cos lÞ sin a�
Pn

i¼1 ðWw sin bþ Q sin lÞ cos a� h
R

� �
þ
Pn

i¼1 khW cos a� ha
R

� � ð5Þ
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Janbu simplified method

Janbu (1954) developed a method presented in Eq. (7)

which satisfies the vertical force equilibrium for each slice

and the overall horizontal equilibrium force for the entire

mass slices and the method is applicable to failure surfaces

of any shape.

FS ¼
Pn

i¼1 ðc0b sec aþ N 0 tan/0Þ cos a
Pn

i¼1 ðub sin aþWkh �WW sin b� Q sin lÞ þ
Pn

i¼1 N
0 sin a

ð7Þ

where, N’ is the effective normal force. Ignoring the effect

of surface water force (Ww), external surcharge (Q), hori-

zontal seismic force (kh) and pore water pressure (U), the

factor of safety of slope can be written as shown in Eq. (8)

(Das 2008):

FS ¼
Pn

i¼1 ðc0b sec aþ N 0 tan/0Þ cos a
Pn

i¼1 ðN 0 sin aÞ ð8Þ

Bishop simplified method

Bishop (1955) developed a modified method of slices for

calculating the FS. It satisfies the equation of equilibrium

with respect to moment only (Das 2008). The FS for the

Bishop Method is given by Eq. (9):

Ignoring the effect of surface water force (Ww), external

surcharge (Q), horizontal seismic force (kh) and pore water

pressure (U), the FS of slope can be written as shown in

Eq. (10) (Das 2008):

FS =

Pn¼p
n¼1 ðc0bn þWn tan/

0Þ 1
maðnÞPn¼p

n¼1 Wn sin an
ð10Þ

where maðnÞ is given by:

maðnÞ ¼ cos an þ
tan/0 sin an

FS
ð11Þ

Spencer method

Spencer (1967) developed a method of slices that satisfies

both the equation of equilibrium with respect to both

moments and forces. Spencer’s method (1967) assumes

that the angle of inclination of the inter-slice forces is

constant for all slices. It is a special case of the Morgen-

stern-Price method. According to Spencer’s assumptions

for all slides as shown in Fig. 2.

where, FS is the factor of safety, Q is the external sur-

charge, dL is the left inter-slice force inclination angle,

dR is the Right inter-slice force inclination angle, a is the

inclination of slice base.

Ignoring the effect of surface water force (Ww), external

surcharge (Q), horizontal seismic force (kh) and pore water

pressure (U), the factor of safety of slope can be written as

shown in Eq. (13).

ZR ¼ ZL þ
FS�W sin a� c0:b sec a�W cos a tan/0

sinðd� aÞ tan/0 � FS cosðd� aÞ
ð13Þ

FS ¼
Pn

i¼1 ðc0b sec aþ N 0 tan/0Þ
Pn

i¼1 ðW þWw cos bþ Q cos lÞ sin a�
Pn

i¼1 ðWw sin bþ Q sin lÞ cos a� h
R

� �
þ
Pn

i¼1 khW cos a� ha
R

� � ð9Þ

dR ¼ dL ¼ d (for all slices)

ZR ¼ ZL þ
FS�W sin a� c0:b sec a�W cos a tan/0

sinðd� aÞ tan/0 � FS cosðd� aÞ þ ub sec a tan/0 þWkhðFS� tan/0 tan aÞ cos a
sinðd� aÞ tan/0 � FS cosðd� aÞ

þ Q FS sinða� uÞ � cosða� uÞ tan/0½ �
sinðd� aÞ tan/0 � FS cosðd� aÞ þWW FS sinða� bÞ � cosða� bÞ tan/0½ �

sinðd� aÞ tan/0 � FS cosðd� aÞ

ð12Þ
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where, ZL is the left inter-slice force, ZR is the right inter-

slice force.

Artificial neural network model and methodology

Artificial neural networks are computational systems that

can be trained to model physical phenomenon. There are

several ANN architectures that have been used in civil

engineering applications in general (Flood and Kartam

1994; Abdalla et al. 2013) and in geotechnical engineering

in particular Shahin et al. (2001, 2008). In this study, after

several trials of different ANN architectures using Neuro-

solutions (Neurodimensions 2011) and upon comparisons

of their performance criteria, two Multilayer Perceptron

(MLP) ANN models with an input layer, one hidden layer

and an output layer were used. The hidden layers of the two

ANN have four nodes. The first ANN model (ANN1) has

three input parameters—slope angle, angle of internal

friction and stability number (Fig. 3a) and the second ANN

model (ANN2) has five input parameters—slope angle,

slope height, angle of internal friction, cohesion and soil

unit weight (Fig. 3b). The output parameter for each ANN

is the factor of safety. A tangent hyperbolic (tanh) transfer

function and four processing elements are used for the

hidden layer. A linear bias transfer function was used for

the output layer. Each of the ANN was trained using 10

runs with 5,000 epoch for each run Neurodimensions

(2011). A total of 160 9 4 data sets, for the four methods

Ordinary (Fellenius), Bishop, Janbu and Spencer, with

different input and output parameters were used to train

and test the ANN models. The training and testing data

were randomly chosen as 80 % (128 data set) and 20 % (32

data set) of the total data, respectively. The trained ANN

models were presented with the test data of the four

methods and values of FS were predicted. These values

were then compared with the FS values using Fellenius,

Bishop, Janbu, and Spencer methods based on certain

performance criteria.

Tables 1 and 2 show the range of input parameters for

the training and testing data, respectively for both ANN

models. For the given range of slope run to unit rise ratio,

the angle of slope ranges from 18.43o to 33.69o. The range

of slope height is from 7 m to 10 m, the angle of internal

friction from 15o to 30o, the cohesion from 10 to 18 kN/m2,

the soil unit weight from 12 to 16 kN/m3 and the stability

number from 0.074 to 0.275.

Results and discussion

As previously indicated, the two ANN models (ANN1 and

ANN2) were trained with 10 cycles with 5,000 epochs in

each training cycle. The performances of the learning rate

of each ANN model for the first 100 epochs are shown in

Fig. 4. There is sharp drop in the training NMSE of the best

runs during the first 10 epochs, especially for ANN1.

The performance of the four method based on the per-

formance criteria shown in Tables 3 and 4 indicates that

Bishop simplified method has better performance than the

other methods. It has the lowest Mean Square Error (MSE),

Normalized Mean Square Error (NMSE), Mean Absolute

Error (MAE), Mean Absolute Percent Error (MAPE) and

better correlation coefficient than Ordinary, Janbu, and

Spencer when ANN1 model with three input parameters

(b, u, m) is used. It should also be noted from Table 3 that

Ww

ZR

Q

ZL

Sm

N’+U

δL

δR

βμ

α
W

kh

b

h
hR

ha
hL

Fig. 2 Forces acting on one slice (Malkawi A and Hassan 2003)

(a) ANN1

(b) ANN2

Height H

Angle of Friction φ

Slope angle β

Cohesion c

N1

N2

N3

N4

N5

Ni

Nn

Unit Weight γ

Factor of 
Safety FS

Angle of friction φ

Slope angle β

Factor of 
Safety FS

N1

N1

N1

Ni

Nn

Stability number  c/γH

Fig. 3 Architecture of the two MLP ANN models
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the Janbu simplified method outperformed the other three

methods in these performance criteria (MSE, NSME, MAE

and MAPE) when ANN2 model with five input parameters

(b, u, c, c, H) is used.
Figure 5 shows a comparison between the calculated

and predicted ANN1 and ANN2 FS for the data generated

by the four methods (Ordinary, Janbu, Bishop and Spencer)

for the test data. It is observed from Fig. 5 that ANN1

model predictions for all methods are very close to the

calculated ones as compared to the ANN2 predictions. The

scaling and the reduction of the number of parameters in

ANN1 resulted in better performance which could be

attributed to the number of sufficient data in the solution

space of ANN1.

Figure 6 shows a comparison between the accuracy of

prediction of ANN1 and ANN2 and the calculated FS

based on the four methods for the test data that is used to

test the performance of the ANN models. It is clear that the

Bishop method showed the best performance among other

methods.

Figure 7 shows the error in prediction of factor of safety

of all four methods. It is observed that the relative errors of

the majority of the ANN predictions are less than 5 %.

Specifically, for the Ordinary Method, 96.9 % of the tested

data have relative error less than 5 % based on ANN1

prediction while only 78.1 % of the tested data have rela-

tive error of 5 % or less based on ANN2 prediction. For the

Janbu Method, all the tested data have relative error less

than 5 % based on ANN1 prediction while only 81.3 % of

the tested data have relative error of 5 % or less based on

ANN2 prediction. For the Bishop Method, all the tested

data have relative error less than 5 % based on ANN1

prediction while about 81.3.8 % of the tested data have

relative error of 5 % or less based on ANN2 prediction. For

the Spencer Method, 93.8 % of the tested data have relative

error less than 5 % based on ANN1 prediction while about

78.1 % of the tested data have relative error of 5 % or less

based on ANN2 prediction. It is clear that the ANN1 and

ANN2 prediction based on the Janbu and the Bishop

methods are more accurate than the other two and ANN1

prediction is more accurate ANN2.

Case studies

Six case studies were collected from the literature and used

to validate the ANN model predictions. The case studies

used different analysis methods including the Finite Ele-

ment Method (FE), the friction circular method (FCM) and

the ordinary method of slice (OMS). Table 5 shows the

results of validating the ANN model using the six case

studies. It is observed from these case studies that the ANN

model predictions were very accurate and with MAPE of

3.72 % for all methods combined.

Parametric study

It is evident from the results presented in the previous

section that, within the data range of applicability, the

ANN models are capable of predicting the FS of clayey soil

accurately for the test data that it has not been trained.

Therefore, such trained ANN can be use to carry out a

parametric study in which the parameters influencing the

FS of clayey soil can be varied and the effect of these

parameters can be investigated. The Bishop ANN1 model

was selected to carry out the parametric study due to its

performance and accuracy as compared to others as shown

in Table 3. The parameters that were varied to carry out the

parametric study are the stability number (m), the angle of

internal friction of the clayey soil (u) and the slope angle

(b).

Table 1 Range of training and testing of input parameters for ANN1

and ANN2

Input parameter Training data Testing data

Maximum Minimum Maximum Minimum

Slope run for unit

rise ratio (b)
3 1.5 3 1.5

Height (H) (m) 10 7 10 7

Angle of internal

friction (u) (o)
30 15 30 15

Cohesion (c)

(kN/m2)

18 10 15 10

Unit weight (c)
(kN/m3)

16 12 16 12

Stability number

(m = c/cH)
0.2747 0.0741 0.2404 0.0833

Table 2 Range of training and testing of output parameters for

ANN1 and ANN2

Output parameter Training data Testing data

Maximum Minimum Maximum Minimum

Ordinary factor of

safety

4.730 1.308 4.071 1.492

Janbu factor of

safety

4.699 1.290 4.098 1.471

Bishop factor of

safety

4.699 1.365 4.207 1.553

Spencer factor of

safety

4.777 1.182 4.112 1.514
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Influence of friction angle (u) and stability number

(m) on FS

Figure 8 shows the variation of the FS of stability of clayey

soil with the stability number (m) for different angles of

internal friction (u) of 15o, 20o, 25o and 30o at different

values of the slope angle (b). Figure 8a shows the FS for

large slope (b = 33.69o), Fig. 8b, c shows the FS for

intermediate slopes with (b = 26.573o and b = 21.80o),

while Fig. 8d shows the FS for small slope (b = 18.43o). It

is observed in Fig. 8a, b, c and d that the FS increases

almost linearly with the increase in the stability number

(m). Also the factor of safety increases almost linearly with

the increase in the angle of internal friction while it

decreases with the increase in the slope angle. For example,

for large slope (b = 33.69o) the FS ranges from 1.16 for a

small angle of internal friction (u = 15o) and a small

stability number (m = 0.075) to 3.50 for a large angle of

internal friction (u = 30o) and a large stability number

(m = 0.275). However, for small slope angle (b = 18.43o)

the FS ranges from 1.87 for a small angle of internal

friction (u = 15o) and small stability number (m = 0.075)

to 4.84 for a large angle of internal friction (u = 30o) and a

large stability number (m = 0.275). For intermediate val-

ues of slope angles (b = 26.573o and b = 21.80o) and at

the same values of internal angle of frictions and stability

numbers, the FS assumes values in between those of the

boundary values.

(a) Training of ANN1 (b) Training of ANN2
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Fig. 4 Learning rate of ANN1 and ANN2—average MSE and ± 1 SD for training set

Table 3 Performance of ANN1

(three input parameters) on the

test data

Performance

criterion

MSE NMSE MAE MAPE Minimum

absolute error

Maximum

absolute error

Correlation

coefficient (r)

Ordinary 0.00371 0.00908 0.04396 1.681 0.00061 0.16183 0.99598

Janbu 0.00353 0.00832 0.04595 1.841 0.00235 0.161478 0.99597

Bishop 0.00325 0.00727 0.04056 1.522 0.00032 0.16113 0.99664

Spencer 0.00367 0.00888 0.04413 1.750 0.00098 0.15587 0.99596

Table 4 Performance of ANN2 (five input parameters) on the test data

Performance

criterion

MSE NMSE MAE MAPE Minimum absolute

error

Maximum absolute

error

Correlation

coefficient (r)

Ordinary 0.01538 0.03764 0.07981 3.133 0.00599 0.51483 0.98268

Janbu 0.01402 0.03304 0.07516 2.925 0.00013 0.48333 0.98489

Bishop 0.01512 0.03385 0.08005 3.009 0.001789 0.49042 0.98367

Spencer 0.01670 0.04036 0.08415 3.337 0.00082 0.53245 0.98138

5470 Environ Earth Sci (2015) 73:5463–5477

123



0 10 20 30
1

2

3

4

5

Specimen
Fa

ct
or

 o
f S

af
et

y

(a) Ordinary Method

0 10 20 30
1

2

3

4

5

Specimen

Fa
ct

or
 o

f S
af

et
y

(b) Janbu Method

0 10 20 30
1

2

3

4

5

Specimen

Fa
ct

or
 o

f S
af

et
y

(c) Bishop Method

0 10 20 30
1

2

3

4

5

Specimen

Fa
ct

or
 o

f S
af

et
y

(d) Spencer Method

Calculated ANN1 Predicted ANN2 Predicted

Fig. 5 Prediction of factor of

safety (FS) for test data for

different methods

1 2 3 4 5
1

2

3

4

5

Calculated

Pr
ed

ic
te

d

(a) Ordinary Method

1 2 3 4 5
1

2

3

4

5

Calculated

Pr
ed

ic
te

d

(b) Janbu Method

1 2 3 4 5
1

2

3

4

5

Calculated

Pr
ed

ic
te

d

(c) Bishop Method

1 2 3 4 5
1

2

3

4

5

Calculated

Pr
ed

ic
te

d

(d) Spencer Method

ANN1 Predicted
ANN2 Predicted

ANN1 Predicted
ANN2 Predicted

ANN1 Predicted
ANN2 Predicted

ANN1 Predicted
ANN2 Predicted

Fig. 6 Accuracy of prediction

of factor of safety (FS) for test

data for different methods

Environ Earth Sci (2015) 73:5463–5477 5471

123



Influence of friction angle (u) and slope (b) on FS

Figure 9 shows the variation of the factor of safety of

stability of clayey soil with the slope angle (b) for different
angle of internal friction (u) of 15o, 20o, 25o and 30o at

different values of the stability number (m). Figure 9a

shows the FS for a small stability number (m = 0.075),

Fig. 9b and 9c shows the FS for intermediate stability

numbers (m = 0.175 and m = 0.225) while Fig. 9d shows

the factor of safety for a large stability number

(m = 0.275). It is observed from Fig. 9a, b, c, d that the FS

decreases nonlinearly with the increase in the slope angle

(b). Also the FS increases almost linearly with the increase

in the angle of internal friction and also with the increase in

the stability number. For example, for a small stability

number (m = 0.075) the FS ranges from 1.16 for a small

angle of internal friction (u = 15o) and a large slope angle

(b = 33.68o) to 2.97 for a large angle of internal friction

(u = 30o) and a small slope angle (b = 18.43o). However,

for a large stability number (m = 0.275), the FS ranges
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Fig. 7 Error of prediction of

factor of safety (FS) for

different methods

Table 5 Performance of ANN1 (three input parameters) on the case studies data

1/b m = c/c.H u Case study

prediction

ANN Prediction of FS (% error w.r.t. case study)

FS Ordinary Janbu Bishop Spencer

Case 1 (FE)

(Chock 2008)

1.00 0.05 30 1.12 1.119 (-0.09 %) 1.036 (-7.5 %) 1.112 (-0.71 %) 1.130 (0.89 %)

Case 2 (FE)

(Martins et al. 2011)

2.00 0.037 32 1.75 1.829 (4.52 %) 1.808 (3.31 %) 1.893 (8.17 %) 1.832 (4.69 %)

Case 3 (FCM)

(Das 2007)

1.732 0.104 20 1.73 1.645 (-4.91 %) 1.631 (-5.72 %) 1.703 (-1.56 %) 1.632 (-5.66 %)

Case 4 (FCM)

(Das 2010)

1.00 0.127 20 1.40 1.354 (-3.29 %) 1.305 (-6.79 %) 1.380 (-1.43 %) 1.354 (-3.29 %)

Case 5 (OMS)

(Das 2007)

1.732 0.089 20 1.55 1.528 (-1.42 %) 1.507 (-2.77 %) 1.579 (1.87 %) 1.503 (-3.03 %)

Case 6 (OMS)

(Cernica 1982)

1.753 0.143 18 2.00 1.891 (-5.45 %) 1.894 (-5.30 %) 1.965 (-1.75 %) 1.897 (-5.15 %)

FE finite element method; FCM friction circular method; OMS ordinary method of slice
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from 2.66 for a small angle of internal friction (u = 15o)

and a large slope angle (b = 33.68o) to 4.84 for a large

angle of internal friction (u = 30o) and a small slope angle

(b = 18.43o). For intermediate values of stability numbers

(m = 0.175 and m = 0.225) and at the same values of

internal angle of frictions and slope angles, the FS assumes

values in between those of the boundary values.

Influence of stability number (m) and slope (b) on FS

Figure 10 shows the variation of the factor of safety of

stability of clayey soil with the stability number (m) for

different slope angles (b) of 18.4o, 21.80o, 26.573o and

33.69o for clayey soils with different angles of internal

friction (u). Figure 10a shows the FS for clayey soil with a

small angle of internal friction (u = 15o), Fig. 10b, c

shows the FS for clayey soils with intermediate angle of

internal frictions (u = 20o and u = 25o) while Fig. 10d

shows the FS for clayey soil with large angle of internal

friction (u = 30o). It is observed from Figs. 10a, b, c and d

that the FS increases almost linearly with the increase in

the stability number. Also the factor of safety decreases

with the increase in the slope angle while it increases

almost linearly with the increase in the angle of internal

friction. For example, for small angle of internal friction

(u = 15o) the FS ranges from 1.16 for a large slope angle

(b = 33.69o) and a small stability number (m = 0.075) to

3.71 for a small slope angle (b = 18.43o) and a large sta-

bility number (m = 0.275). However, for a large angle of

internal friction (u = 30o) the FS ranges from 1.78 for a

large slope angle (b = 33.69o) and small stability number

(m = 0.075) to 4.84 for a small slope angle (b = 18.43o)

and a large stability number (m = 0.275). For intermediate

values of internal angles of friction (u = 20o and u = 25o)

and at the same values of slope angles and stability num-

bers, the FS assumes values in between those of the

boundary values.

Soils with small internal angle of friction and low

cohesion

The trained ANN has been used to predict factor of safety

of soils with low values of internal angle of friction (5o, 7.5
o, 10 o, 12.5 o) and low cohesion values close to zero, i.e.,

with stability number ranging from 0.03 to 0.07 and dif-

ferent slope angles (b) of 12 o, 14o, 16o and 18o. Figure 11

shows the variation of the factor of safety with the stability

number (m) and slopes angle (b) for different internal angle
of friction (u) for such extreme soils that represent unfa-

vorable conditions. It is observed that for very small sta-

bility number (m = 0.03) (cohesion) and very small

internal angle of friction (u = 5o) (Fig. 11a), the FS
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becomes very small and approaches one as the slope angles

increases. When the slope angle exceeds 18o, the FS drops

below one. In this case, the driving forces increase and

exceed the shear resistance of the soil and accordingly,

failure will take place.

Summary and conclusion

This paper employed ANN to predict the factor of safety of

clayey soil based on four widely used methods known as

the Fellenius (ordinary), Bishop, Janbu, and Spencer

methods, respectively. Two models of ANN were used

with different input parameters. It is observed that pre-

dictions of factor of safety by both ANN models are very

close to the factor of safety calculated by each of the

corresponding four widely methods. It is concluded that

such ANN models are reliable, simple and valid compu-

tational tools for predicting the factor of safety and also for

assessing the stability of slopes of clayey soil. Accordingly,

a parametric study was carried out based on the developed

ANN model, to investigate the influence of the slope angle

(b), the stability number (m) and the angle of internal

friction (u) on the factor of safety of slopes of clayey soil.

The following observations and conclusion are made from

the results of this study;

1. ANN1 model that uses three input parameters, namely

the stability number, slope angle and angle of internal

friction performed better than ANN2 model that uses

five parameters as input. The scaling and the reduction

of the number of parameters in ANN1 resulted in

better performance. This could be attributed to the

number of sufficient data in the solution space of

ANN1.

2. The NMSE for ANN1 are very small and they ranged

from 0.0073 to 0.0091 for the four methods, and

ranged from 0.0330 to 0404 for ANN2. Likewise, the

MAPE is also very small and they ranged from 1.52 to

1.84 % for ANN1 and ranged from 2.93 to 3.34 % for

ANN2. The correlation coefficients for all four meth-

ods ranged from 0.996 to 0.997 for ANN1 and ranged

from 0.981 to 0.985 for ANN2.

3. Although the performance of ANN1 based on the four

different methods are very close to each other,

however, the best performance was that obtained by

the model based on Bishop calculated factor of safety

with NMSE = 0.0073, MAPE = 1.52 % and a corre-

lation coefficient r = 0.997.
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4. Also, although the performance of ANN2 based on the

four different methods are very close to each other,

however, the best performance was that obtained by

the model based on Janbu calculated factor of safety

with NMSE = 0.0330, MAPE = 2.93 % and a corre-

lation coefficient r = 0.985.

5. From the parametric study, it is concluded that the

factor of safety is almost linearly related to the stability

number for different values of slope angle (b) and

angle of friction (u).
6. From the parametric study, it is concluded that the

factor of safety of slope decreased significantly if the

clayey soil has small angle of internal friction and low

cohesion. These small values of shear strength param-

eters cannot produce enough shear resistance to

encounter the driving forces of the slope and thus

failure will take place.
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