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Abstract The Kharaqan hot springs are located in the

historic city of Abe-Garm, famous for its hot springs, in

Qazvin province, in northwestern Iran. Thermal waters

with temperatures ranging from 28.7 to 52 �C vary in

chemical composition and TDS contents. Those waters

generally are enriched in Na–Cl–HCO3 and suggest deep

water circulation. Chemistry of all of the water samples are

graphed in the Cl–SO4–HCO3 ternary diagram. There is a

trend of mixing along a line of constituent proportions

between recently recharged water and older water. The

trend toward the chloride corner is mainly the result of

contact in the subsurface with evaporite-bearing formations

and/or mixing with brines. Relatively high concentrations

of Na, Ca, K, Cl, and SO4 resulted from rock/water inter-

actions. These hot spring waters show high concentrations

of arsenic (0.14–0.95 mg L-1). The diffusion of As-bear-

ing spring waters into shallow aquifers could contaminate

the groundwater which is used for drinking purposes. Also

discharges of this As-enriched water into streams and rivers

could affect irrigated crops in downstream fields. In both

cases, the health of local residents could be at risk.

Keywords Environmental impact � Hot spring �
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Introduction

The Abe-Garm area is located in the northwestern part of

Iran which is related to the volcanic belt of the Orumieh-

Dokhtar zone (Bolourchi et al. 1979; Aghanabati 2004)

(Fig. 1). It is a well-known geothermal area in Iran

(Yousefi et al. 2010). These hot springs are used for

swimming, bathing, and medical purposes. Visitors and

local people use these resources and there is substantial

room for expansion of use of this water as international and

domestic tourism becomes established in Iran (Erfurt-

Cooper and Cooper 2009; Navi et al. 2012). The natural

contamination of local rivers and groundwater resources as

a result of hot spring discharges is a global occurrence, yet

the characteristics of toxic elements in hot spring waters

have rarely been addressed. The purpose of this study was

to establish the geochemical characteristics and possible

adverse environmental impacts of the hot spring waters in

the Abe-Garm geothermal field and surrounding areas.

The host rocks of the area are Cambrian to Recent age, but

are interrupted by several unconformities and gaps. Litho-

logic aspects of different rock units reveal the presence of

several sedimentary environments. The oldest exposed

rocks are Carboniferous sediments (Sink Formation) con-

sisting of sandstone and dolomite. The early Permian

sandstone, conglomerates and shales of Dorud Formation

are underlain by the older Paleozoic sediments and overlain

by the Ruteh Formation and Nesen Formation. Triassic

sediments (Elika Formation), consisting of limestone and

dolomite, also rest on an erosional surface of Permian sed-

iments. Plant-bearing sandstone and shales of Rhaeto-

Liassic Shemshak Formation transgressively overlie the

Triassic dolomite. The Shemshak Formation is overlain by

ammonite-rich marly limestone of Middle Jurassic Dalichay

Formation which transitions into the Late Jurassic Lar
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Formation, consisting of dolomite, limestone, marl, gypsum

and volcanic rocks. Lower Cretaceous rocks unconformably

overlie the Jurassic sediments consisting of conglomerate,

sandstone, Orbitolina limestone and volcanic rocks. A clear

disconformity is seen between the Upper Cretaceous marly

limestones and limestones, and the Lower Cretaceous rocks.

The Eocene is represented mainly by thick volcanic rocks

and tuffaceous sediments of the ‘‘Karaj Formation’’, locally

having a basal limestone (Ziarat Formation) and conglom-

erate (Fajan Formation) and resting with distinct angular

unconformity on various older formations. The Oligocene

clastic deposit (Lower red formation) and Oligo-Miocene

marine deposit (Qom Formation) unconformably overlie the

older formations. The Qom Formation is overlain by the

Miocene upper red formation consisting of sandstone, marl

and conglomerate, locally with salt dome and gypsum. The

young deposits are Quaternary terraces, travertine and

alluvium, which unconformably overlie the older rocks

(Bolourchi et al. 1979).

The Abe-Garm range is the southeastern continuation of

the Soltanieh Mountains. It has a NW–SE strike and is

separated into two longitudinal ranges by Hassanabad fault

(Bolourchi et al. 1979). The continuation of the Hassana-

bad fault extends to the Ipak active fault (Berberian 1971).

In addition to the longitudinal faults and thrusts, the range

displays a great number of transverse faults in various

directions that disrupt the pre-Tertiary formations into a

complicated mosaic-like fault block pattern (Bolourchi

et al. 1979; Taheri et al. 2012b; Yazdi et al. 2013).

Sampling and analytical methods

A total of five thermal and one cold water samples were

collected from the Abe-Garm area. To investigate the sea-

sonal changes of field and chemical parameters and to trace

element concentrations in dry and wet seasons, springs were

sampled twice in May and November. The locations of the

Fig. 1 Location map of the Abe-Garm area (a, b). Geological map of Abe-Garm area (c) (Bolourchi et al. 1979)
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water samples are shown in Fig. 1. Temperature, pH and

electrical conductivity (EC) of the water samples were

measured on-site. Water samples were collected into

250-ml polyethylene containers. All water samples were

collected as two filtered batches. 2.5-ml ultrapure Merck

HNO3 was added into one of the batches for cation analyses.

The other batch taken for anion analyses was untreated.

Water analyses were performed using standard methods in

the ‘‘Geological Survey of Iran’’ Laboratories. Bicarbonate

and chloride analyses were measured by titration methods,

sulfate concentration by spectrophotometry and cations by

flame photometry. Acidified samples were analyzed for

major and trace elements with an ICP-OES method.

Results and discussion

Main chemical characteristics

The main physical and chemical characteristics of the hot

springs and cold spring waters are shown in Table 1. The

arbitrary temperature for considering a spring as a thermal

spring is 36.7 �C according to Pentecost et al. (2003).

Temperatures of the thermal springs range from 28.7 �C
(sample HS-3) to 52 �C (sample HS-1). pH values in the

samples were between 6.30 and 7.35 (Table 1).

Total dissolved solids (TDS) is the term used to describe

the inorganic salts and small amounts of organic matter

present in solution in water. The principal constituents are

usually calcium, magnesium, sodium, and potassium cations

and carbonate, bicarbonate, chloride, sulfate, and nitrate

anions (WHO 2003). Excluding the sample CS-6 (drinking

water), TDS contents of the thermal waters range from 5,060

to 7,760 mg L-1. Reliable data on possible health effects

associated with the ingestion of TDS in drinking water are

not available. Water containing TDS concentrations below

1,000 mg/liter is usually acceptable to consumers, although

acceptability may vary according to circumstances.

However, the presence of high levels of TDS in water may be

objectionable to consumers owing to the resulting taste and

to excessive scaling in water pipes, heaters, boilers, and

household appliances (WHO 2003). The spring waters have

apparently high EC values and high Ca, K, Mg, Na, Cl,

HCO3, and SO4 concentrations. Cations show the following

order of abundance: Na[Ca[K[Mg and anions follow

the order of Cl[HCO3[SO4.

The values in the WHO guidelines for drinking water

quality can be used to screen for potential risks arising

from swimming pools and similar environments, while

making appropriate allowance for the much lower quanti-

ties of water ingested, shorter exposure periods and non-

ingestion exposure (WHO 2006).

Since thermal springs emanate from a hydrothermal

reservoir beneath their surface manifestation, geochemical

investigation of water samples can reveal the processes

occurring or occurred recently in the hydrothermal reser-

voir and give indications on the source of elements

Table 1 Basic features and

major compositions of spring

waters from the Abe-Garm area.

(Dry season)

HS Hot spring, CS Cold spring

Parameter HS-1 HS-2 HS-3 HS-4 HS-5 CS-6 WHO

Temp. (�C) 52 28.7 28.7 51 44.3 17

pH 6.46 6.58 6.3 6.36 6.6 7.35 6.5–8.5

EC (ls/cm) 12,660 12,520 8,348 12,380 12,360 3,532 2,000

TDS (mg L-1) 7,760 7,750 5,060 7,650 7,660 2,000 1,000

Ca (mg L-1) 409 406 242 381 431 112 50

K (mg L-1) 115 122 51 116 126 8 10

Mg (mg L-1) 66 70 52 70 73 37 30

Na (mg L-1) 2,190 2,284 1,018 2,213 2,299 280 200

Cl- (mg L-1) 3,403 3,474 1,631 3,403 3,474 425 250

SO4
2- (mg L-1) 760 812 438 780 758 288 250

HCO3
- (mg L-1) 1,244 1,263 854 1,171 1,215 256

Fig. 2 Relative Cl, SO4 and HCO3 contents of the Abe-Garm spring

waters (Giggenbach 1988) (Wet season)
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(Modabberi and Jahromi Yekta 2014). Information on the

geochemistry of thermal waters is scarce or limited to

major ions (Chudaev et al. 2006). The Cl–SO4–HCO3 tri-

angular plot is used for an initial classification of geo-

thermal water samples (Giggenbach 1988; Marini 2000).

All of the samples listed in Table 1 are plotted in the Cl–

SO4–HCO3 ternary diagram (Fig. 2). The waters of Abe-

Garm plot between HCO3 and Cl fields yielding a mixing

along the line between peripheral and mature water fields,

but they never attain maturity. The trend toward the chlo-

ride corner is mainly the result of contact in the subsurface

with evaporite-bearing formations and/or mixing with

brines (Karimi and Moore 2008).

Figure 3 shows that none of the Kharaqan waters attains

a water–rock chemical equilibrium. The model is based on

the following geothermometers assuming that activities of

minerals are close to unity.

The plot of 10 Mg/(10 Mg ? Ca) versus 10 K/

(10 K ? Na) (Giggenbach 1988) for waters of the Abe-

Garm area is presented in Fig. 4. Like the model given in

Fig. 3, the positions of the samples do not indicate equil-

ibration between the rock and waters. Another result

deduced from Fig. 4 is that the waters of the Abe-Garm

area have not been produced through the dissolution of

average crustal rock or they have gained their salinity by

simple rock leaching or mixing.

Assuming equilibrium with calcite, CO2 partial pres-

sures (PCO2
) of the Kharaqan thermal waters can be eval-

uated in the K–Mg–Ca geoindicator diagram (Fig. 5). In

the diagram, all of the values for the hot waters are below

the full equilibrium line.

The presence of many active fault systems, the wide-

spread occurrence of highly fractured carbonate rocks, and

large hydraulic head differences allow a deep, large-scale

(regional) circulation of waters before their emergence at

the surface as springs (Minissale 1991). Based on chemical

analyses of the thermal waters, data interpretations, and

lithologic aspects in the study area, earlier investigators

concluded that the waters discharged from the hot springs

are of meteoric origin (Ghafouri 2003). The waters are

heated as they circulate in the system through joints,

fractures and the Hassanabad fault. During their circula-

tion, the waters come into contact with evaporite-bearing

formations and brines, resulting in an increase in dissolved

ion concentrations. High surface heat flow is perhaps due to

Fig. 3 Graphical evaluation of the water–rock equilibration temper-

atures (Giggenbach 1988) using relative Na, K and Mg concentrations

of the Kharaqan thermal waters (Dry season)

Fig. 4 Plot of 10 K/(10 K ? Na) vs. 10 Mg/(10 Mg ? Ca) (Gig-

genbach 1988) of the Kharaqan thermal waters (Dry season)

Fig. 5 K–Mg–Ca geoindicator diagram (Giggenbach 1988) for the

Kharaqan thermal waters (Dry season)
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the Orumieh-Dokhtar volcanic belt, with an attendant high-

temperature gradient with depth (Taheri et al. 2012b).

The diagnostic chemical character of water solutions in

hydrologic systems has been determined with the applica-

tion of the concept of hydrochemical facies (Back 1966),

which enables a convenient subdivision of water compo-

sitions by identifiable categories and reflects the effect of

chemical processes occurring between the minerals within

the subsurface rock units and the groundwater. Statistical

distribution diagrams such as Piper trilinear (Piper 1944)

are used to gain better insight into the hydrochemical

processes operating in the groundwater system. The Piper

trilinear diagram was used for the purpose of characterizing

the water type present in the area. It permits the cation and

anion compositions of many samples to be represented on a

single graph in which major groupings or trends in the data

can be discerned visually (Freeze and Cherry 1979). Water

types are often used in the characterization of waters as a

diagnostic tool (Leybourne et al. 1998; Pitkanen et al.

2002). The Piper trilinear diagram (Fig. 6) for the study

area shows that hot spring waters are of the Na–Cl type.

Travertine currently precipitates all around the Abe-

Garm area. A sudden drop in the pressure and the

decreasing temperature are accompanied by CO2 loss cause

calcite to precipitate mostly at shallow depths (Mutlu

1998).

Trace elements in spring waters

As the usable water availability is rapidly decreasing

globally, the quality of the drinkable water is also

becoming a major concern. Specifically, the presence of

geogenic, non-point source, natural contaminants like

arsenic (As) and other oxyanion-forming metals and met-

alloids (e.g., Mo, V, W, Se, Sb), can limit the availability of

suitable potable water sources in some of the most densely

populated parts of the world (Welch et al. 2000; Charlet

and Polya 2006; Nicolli et al. 2012; Mukherjee et al. 2008,

2011; Kim et al. 2011; Thakur et al. 2011; Raychowdhury

et al. 2013). Trace element concentrations in the hot and

cold spring waters are given in Table 2. The hot spring

waters show high concentrations of arsenic and other trace

elements (Taheri et al. 2012a). In natural environments, As

is present in four oxidation states: -III, 0, ?III, ?V. Of

these, in hydrologic systems, it exists most commonly as

arsenite [As(III), e.g., H3AsO3 and H2AsO3
-] and arsenate

[As(V), e.g., H2AsO4
- and HAsO4

2-] (Smedley and

Kinniburgh 2002; Choong et al. 2007; Raychowdhury et al.

2013). In neutral oxygenated waters, As(V) is the ther-

modynamically favored form, whereas As(III) is stable

under reducing conditions (Caporale et al. 2013). The

presence of these inorganic, oxyanions of As in ground

water is dependent on climatic conditions, geomorphology/

geology, tectonic setting, hydrogeochemical characteristics

like pH, redox potential, ionic strength, ionic concentra-

tions, organic matter content and microbial activities,

among others (Scanlon et al. 2009). The level of arsenic in

natural waters, including open ocean seawater, generally

ranges between 1 and 2 lg L-1 (Hindmarshand McCurdy

1986; USNRC 1999). Concentrations may be elevated,

however, in areas with volcanic rock and sulfide mineral

deposits (Hindmarsh and McCurdy 1986); in areas con-

taining natural sources, where levels as high as 12 mg L-1

have been reported (WHO 2011); near anthropogenic

sources, such as mining and agrochemical manufacture;

and in geothermal waters (mean 500 lg L-1, maximum

25 mg L-1). Mean arsenic concentrations in sediment

range from 5 to 3,000 mg kg-1; the higher levels occur in

areas of contamination (USNRC 1999) but are generally

unrelated to arsenic concentrations in water.

In the Abe-Garm geothermal field all of the spring water

samples contained arsenic concentrations that were sig-

nificantly higher than the 10 lg L-1 guideline set by the

World Health Organization. The actual source of ground-

water arsenic contamination, in the Abe-Garm area, is yet

to be established. The sources of arsenic are geothermal or

may be derived from sedimentation and mining. There is

no proof regarding the volcanic emission of As in the Abe-

Garm area so far. However, the release of As, by the nat-

ural processes in groundwater has been recognized, from

the Miocene sediments comprising sandstone, marl and

conglomerate, locally with salt dome and gypsum (Upper

red formation) and plant-bearing sandstones and shales of

the Rhaeto-Liassic Shemshak Formation.

Fig. 6 Piper trilinear diagram for spring water classification in the

area (dry season)
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Arsenic adsorbs to and reacts with hydrous iron and

aluminum oxides, and is, therefore, preferentially adsorbed

in soils with high clay content (Woolson 1983). Arsenic

can leach out if reactive concentrations of iron, aluminum,

and exchangeable calcium are low (WHO 2011). The clay

fraction can apparently behave either as a source or as a

sink of arsenic (Carmen Blanco et al. 2012).

Smedley and Kinniburgh (2002) identified two distinct

‘triggers’ that can lead to the release of As on a large scale.

The first is the development of high pH ([8.5) conditions

in semiarid or arid environments usually as a result of the

combined effects of mineral weathering and high evapo-

ration rates. This pH change leads either to the desorption

of adsorbed As [especially As(V) species] and a range of

other anion-forming elements (V, B, F, Mo, Se and U)

from mineral oxides, especially Fe oxides, or it prevents

them from being adsorbed (see also Nicolli et al. 1989;

Pearcy et al. 2011). Because arid regions are typically

characterized by low biomass compared to more humid

regions, dissolved organic C concentrations in groundwa-

ters and aquifer sediments in these settings tend to be low,

and groundwaters are commonly oxic (Pearcy et al. 2011).

The second trigger for large-scale arsenic release is the

development of strongly reducing conditions at near-neutral

pH values, leading to the desorption of As from mineral

oxides and to the reductive dissolution of Fe and Mn oxides,

also leading to As release. Iron(II) and As(III) are relatively

abundant in these groundwaters and SO4 concentrations are

small (typically 1 mg L-1 or less). Large concentrations of

phosphate, bicarbonate, silicate and possibly organic matter

can enhance the desorption of As because of competition

for adsorption sites (Smedley and Kinniburgh 2002; Rav-

enscroft et al. 2009). The second environment where natu-

rally occurring, high-As groundwaters appear common are

geologically young (Holocene) fluvial sedimentary deposits

associated with modern deltas that have strongly reducing

conditions owing to abundant sedimentary organic matter

(i.e., peat) (McArthur et al. 2004; Polya et al. 2005).

Table 2 Trace element concentrations of spring waters from the

Abe-Garm geothermal areas. (Wet season)

Parameter HS-1 HS-2 HS-3 HS-4 HS-5 CS-6 WHO

Ag 0.02 0.02 0.02 0.02 0.02 0.01 0.1

Al \0.01 0.01 0.02 0.12 0.03 0.02

As 0.95 0.95 0.14 0.84 0.79 0.06 0.01

B 16.15 16.41 7.48 16.08 16.28 0.82 0.5

Ba 0.08 0.09 0.05 0.09 0.09 0.03 0.7

Be \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Cd \0.01 \0.01 0.01 0.01 0.01 \0.01 0.003

Co \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Cr 0.02 0.02 \0.01 \0.01 0.03 \0.01 0.05

Cu \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Dy \0.01 \0.01 \0.01 0.01 \0.01 \0.01

Er \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Eu 0.02 0.03 0.01 0.02 0.02 0.01

Fe 0.02 0.01 \0.01 0.01 0.02 \0.01

Gd \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Ge \0.01 0.08 0.07 0.02 0.17 0.04

Hf 0.28 0.41 0.02 0.22 0.14 0.02

Hg \0.01 \0.01 \0.01 \0.01 \0.01 \0.01 0.001

Ho 0.01 0.02 0.01 0.01 0.01 \0.01

Ir \0.01 \0.01 \0.01 0.03 \0.01 \0.01

La 0.03 0.03 0.01 0.03 0.03 \0.01

Li 2.71 2.87 1.19 2.74 2.82 0.09

Lu \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Mn 0.13 0.12 0.1 0.11 0.11 0.03 0.4

Mo 0.11 0.12 0.12 0.08 0.07 \0.01 0.07

Nb \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Nd 0.13 0.06 0.09 0.09 0.1 0.05

Ni 0.08 0.03 0.06 \0.01 \0.01 \0.01 0.07

Os \0.01 \0.01 \0.01 \0.01 \0.01 0.06

P 0.14 0.28 0.14 0.45 0.37 0.21

Pb 0.21 0.17 \0.01 \0.01 0.1 0.31 0.01

Pd 0.04 0.05 0.04 0.01 0.01 \0.01

Pr 0.1 0.1 0.09 0.14 0.1 \0.01

Rb 1.22 1.29 0.71 0.33 0.48 0.42

Re 0.04 0.04 \0.01 0.1 \0.01 0.04

Rh 0.01 0.03 0.04 0.03 0.01 0.04

Ru \0.01 \0.01 \0.01 0.01 \0.01 \0.01

Sc \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Se 0.48 0.32 \0.01 0.59 0.29 0.01 0.01

Si 8.79 8.88 5.74 8.83 8.91 3.5 0.01

Sm 0.03 0.01 \0.01 0.03 0.02 \0.01

Sn 0.16 \0.01 \0.01 0.25 0.3 0.1

Sr 7.52 7.53 4.3 7.4 7.47 3.26

Ta \0.01 \0.01 0.03 \0.01 \0.01 0.01

Tb \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Te \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Th 0.16 \0.01 0.24 0.23 0.11 0.07

Table 2 continued

Parameter HS-1 HS-2 HS-3 HS-4 HS-5 CS-6 WHO

Ti \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Tl \0.01 0.25 \0.01 0.41 0.62 1.02

Tm \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

V 0.04 0.02 0.02 0.02 0.01 0.02

W 0.03 \0.01 0.23 0.21 0.09 \0.01

Y \0.01 \0.01 \0.01 \0.01 \0.01 \0.01

Zn \0.01 \0.01 \0.01 \0.01 \0.01 \0.01 3

Zr 0.01 0.01 \0.01 0.02 0.01 0.01

All values in mg L-1

HS hot spring, CS cold spring
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Trace elements in geothermal rock samples

The concentrations of As in sinter deposits and rock sam-

ples around the Kharaqan hot springs are much higher than

the average earth crust and limestone values (Table 3;

Krauskopf and logue 2002). The sinter precipitated around

the hot springs is able to entrap As from the discharged

waters and act as a sink for this toxic element. However, As

minerals such as orpiment, realgar, and stibnite were not

identified in these deposits.

Potential environmental impact of hot spring effluents

Hot spring waters tend to have high contents of total dis-

solved solids (TDS) and may contain toxic elements such

as arsenic, uranium and other trace elements (Smedley and

Kinniburgh 2002; Vaughan 2006; Zhang et al. 2008; Yo-

shizuka et al. 2010; Bundschuh et al. 2013). The release of

these waters into the surrounding environment may not

only raise concern about the aquatic ecology (Mroczek

2005), but could also pose a health risk to local residents

(Webster 1999; Pehlivan 2002; Robinson et al. 2003).

Hot springs water from the Abe-Garm geothermal field

flow into the Khareh-roud River between the Kharaqan hot

springs (upstream) and Chehel-Cheshme cold spring

(downstream) sampling sites (Fig. 1). The influence of the

thermal springs on the chemistry of the cold spring water is

obvious. Downstream from the springs the water in the

cold spring contained considerably higher concentrations

of Ca, K, Na, SO4, Cl, As, B, Mo, Pb, Se and other trace

elements (see Tables 1, 2). Downstream from the point

where the hot spring water flows into a small stream, the

water is used to irrigate crops. The potential health threat

posed by the hot spring water would be related to (1) the

drinking of ground and surface waters that may have mixed

with the hot spring discharge and/or (2) field irrigation with

As-contaminated water, leading to an accumulation of As

Table 3 Trace element concentrations of rock samples as determined

by ICP-OES

Parameter Crustb Limestonea R3c R5d R7e R12f

Ag 0.07 0.1 0.9 0.2 0.3 0.3

As 1.5 1 990.9 91.2 15.9 101.3

B 10 20 74 11.4 24.8 237.3

Ba 500 90 5,244.4 1,877.5 5,423.9 2,769.6

Be 3 \1 3.7 0.5 0.1 1

Bi – – 15.1 6.9 9.4 3.7

Cd 0.15 0.03 1.2 0.9 1.6 0.8

Ce 70 20 15.2 23 113.3 8.9

Co 22 0.1 4.4 3.6 4.1 1.9

Cr 100 11 40.7 25.3 32 112

Cs 3 0.5 16.2 4.6 8.4 9.2

Cu 50 5.5 28.4 19.1 15.8 14.2

Dy 6 2 6.2 5 5.3 4.8

Er – – 1 0.1 0.2 0.1

Eu – – 1.4 2.5 1.6 1.8

Ga 18 2.5 6.3 1.5 5.4 6.9

Gd – – 0.8 0.3 0.3 0.3

Ge – – 0.6 1 0.2 0.8

Hf 5 0.3 2.1 3 5 5

Hg 0.05 0.2 \0.05 \0.05 \0.05 \0.05

Ho – – 1.3 1.1 1.8 0.4

La 35 10 13.2 4.3 4.9 13.5

Li 20 7.5 15.9 0.7 0.7 19.2

Lu – – 0.1 \0.1 \0.1 \0.1

Mn 1,000 620 460 366.3 204.7 426.6

Mo 1.5 0.2 0.6 1.6 1 0.8

Nb 20 0.3 4.2 \1 \1 4.9

Nd 30 9 8.5 18.9 24.4 14.5

Ni 75 7 13.3 4.3 3.2 6.4

P 1,100 700 317.1 99.3 252.9 201.1

Pb 14 6 23.4 9.9 11.7 28.3

Pr 9 3 0.9 0.5 0.3 0.2

Rb 90 50 65.5 51.5 48.7 57.4

S 300 1,100 1,184 382.7 632.9 464.2

Sb – – 4.7 1.4 1.9 4.3

Sc 20 1 2.9 1.3 0.8 2.9

Se 0.05 0.03 5 3.4 5.2 4.5

Sm 7 2 2.2 0.1 0.1 0.8

Sn 2.5 0.5 1.9 1 1.5 0.7

Sr 375 610 649 120 903.5 156.1

Ta 2 0.05 0.8 0.4 0.3 0.7

Tb – – 0.3 0.1 0.2 0.3

Te – – 0.1 0.04 0.04 0.1

Th 12 2 2.3 9.4 6 \0.5

Ti 5,600 300 1,356.3 53 116.6 1,520.9

Tl – – 2.6 3.7 4.2 3

Tm – – 2.2 2.5 2 2.5

U 3 2 1.2 1 0.9 1.2

V 150 45 26.8 3.3 2.9 27.4

Table 3 continued

Parameter Crustb Limestonea R3c R5d R7e R12f

W – – 11.8 12.2 5.5 2.1

Y 35 23 30.6 7.7 4.8 12.6

Yb – – 1.6 0.7 0.3 0.8

Zn 75 20 24 8 42.6 17.5

Zr 190 20 140.7 105.5 122.9 166.8

All values in ppm
a Source for limestone: Bowen (1979)
b Main sources for crust: Wedepohl (1969–1974); Taylor (1964)
c, d Collected samples from vicinity of the HS-2 hot spring
e HS-3
f HS-4
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in the crops. Consumption of the crops by humans, cattle

and poultry could lead to serious health problems that

deserve further investigation. Heavy metal toxicity which

is frequently the result of long-term, low-level exposure to

pollutants has often been investigated in air, water, food

and numerous consumer products (Eleni et al. 2006).

The presence of arsenic in groundwater in concentra-

tions sufficient to affect human health constitutes a

worldwide high-priority groundwater quality problem

(Duker et al. 2005). Long-time exposure to arsenic may

cause various diseases including skin disorders (Tondel

et al. 1999; Ahmad et al. 1997; Rahman et al. 2001), cir-

culatory system problems (Chen et al. 1996; KarimiNezhad

et al. 2010), cardiovascular disease (Wang et al. 2007),

neurological complications (Mukherjee et al. 2003),

reproductive disorders (Ahmad et al. 2001), respiratory

effects (Milton et al. 2001; Guha Mazumder et al. 2000),

diabetes mellitus (Rahman et al. 1998) and an increased

cancer risk, especially of the skin, bladder, lungs and

kidney (KarimiNezhad et al. 2010; Chen et al. 1992; Smith

et al. 1998; Bates et al. 1992; Chiou et al. 1995; Rahman

et al. 2009). Increased risks of lung and bladder cancer and

of arsenic-associated skin lesions have been reported to be

associated with ingestion of drinking water at concentra-

tions below 50 lg of arsenic per liter (WHO 2011). An

interim water quality guideline for total arsenic of

100 lg L-1 in irrigation water is recommended for the

protection of agricultural crop species (CCME 1999). Data

on the toxicity of arsenic were available for 25 crop spe-

cies. Beans, peas, and spinach seem to be the most sensi-

tive, while cabbage was found to be the least sensitive. The

recommended water quality guideline for total arsenic for

the protection of livestock is 25 lg L-1 (CCME 1999).

Conclusions

Relatively high concentrations of Na, Ca, K, Cl, and SO4

resulting from rock/water interactions have been observed

in the hot springs water of the Abe-Gram area. The pre-

sence of As and related trace elements in these hot spring

waters is of considerable concern, especially the high level

of total As. The problem becomes even greater if we

consider the high fraction of As(III) in some of these

thermal water samples. As is trapped in the sinter precip-

itating at the spring outlets, but most As enters the sur-

rounding environment and contaminates soils, as well as

surface and ground water sources. In the Abe-Garm area

the diffusion of As spring waters into shallow aquifers

could contaminate the groundwater used for drinking pur-

poses. Also, the thermal spring discharges into the streams

and rivers could affect irrigated crops in downstream fields.

In both cases, the health of local residents could be at risk.
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