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Abstract To better understand the decreases observed in

pH levels downstream from the associated hydroelectric

dam, the impounded Wujiang River in Southwest China

was investigated. Study results indicate that the average pH

decrease from upstream to downstream of the hydroelectric

dam could be up to 0.47 units, and pH differences were

particularly apparent during water thermal stratification.

Notably, pH was controlled by [CO2]/[CO3
2-] ratios in this

impounded river. The decrease in [CO2]/[CO3
2-] ratios

and associated increases in pH at the surface of the reser-

voirs were mainly due to the prevalence of photosynthesis,

while the reverse phenomenon was observed at the bottom

due to respiration. The evidence from d13CDIC clearly

demonstrated these processes. The increase in phyto-

plankton biomass enhanced this pH decrease, while dis-

solved organic carbon had limited impacts on the pH

variation. The decrease in pH downstream from the

hydroelectric dam resulted from the development of pH

stratification in the water profile and the dam operations

that release bottom waters for hydropower generation.

Consequently, the cascade in hydropower development

could increase the risk of river acidification.

Keywords pH decrease � Eutrophication � Hydroelectric
dam � Phytoplankton � Wujiang River

Introduction

A river is the main conduit for the transport of material

from land to the ocean, and its natural state is increasingly

being disturbed by human activities. Dam construction,

one of the most significant events of such human distur-

bance, slows water flow thereby increasing water residence

time (Vorosmarty et al. 1997). This may further lead to

increases in water temperature and nutrient load and,

subsequently, algal blooms in the impounded waters due to

eutrophication (e.g., Wang et al. 2013; Humborg et al.

1997). As a result, ecosystems of the impoundment shift

from river-type heterotrophy to lake-type autotrophy. With

these changes, the biogeochemical cycle in the original

river is modified and, as such, the carbon geochemical

behavior is significantly changed by dam construction

(Peng et al. 2014).

A decrease in pH downstream from the hydroelectric

dam has been observed (Wang et al. 2014). A pH decrease

can cause water acidification and become a serious threat to

aquatic ecosystem (e.g., Burns et al. 2008). Traditional

knowledge about river acidification is the result of exces-

sive anthropogenic SO2 emissions (Larssen et al. 2006;

Stoddard et al. 1999). Therefore, widespread recovery

about this acidification may occur following considerable

SO2 emission abatement (Duan et al. 2011; Stoddard et al.
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1999). Unlike river acidification, ocean acidification is

mainly due to the uptake of anthropogenic CO2, which is

estimated to have caused a 30 % increase in the concen-

tration of H? in ocean surface waters since the early 1900’s

(Raven et al. 2005). Yet, uptake of anthropogenic CO2 by

river waters seems to be impossible as CO2 partial pressure

in river waters is usually higher than that in the atmosphere

(Mayorga et al. 2005; Wang et al. 2007). Obviously, there

are other reasons inducing the pH decrease downstream

from the hydroelectric dam.

Therefore, pH and related physical, chemical and bio-

logical variables were investigated monthly in a series of

reservoirs along the Wujiang River, Southwest China. The

purpose of this study is to understand the mechanism

controlling pH variation in relation to the hydroelectric

dam construction. This study may aid decision makers in

determining sound management strategies for addressing

hydropower exploitation in the future.

Study area and methods

The Wujiang River is a southern tributary of the Changji-

ang River, with a length of 1037 km and a drainage area of

8.8 9 104 km2. It is the largest river in Guizhou Province,

with an average runoff of 53.4 9 109 m3 per year and a fall

of 2,124 m. The Wujiang River basin is underlain domi-

nantly by Permian and Triassic carbonate rocks (Han and

Liu 2004). Over the past five decades, a series of reservoirs

have been constructed along the Wujiang River (Fig. 1).

The river is now a major hydropower source for China’s

massive West-to-East power transmission project.

For this study, water samples were collected monthly

from July 2007 to June 2008 (Fig. 1). Water profiles were

investigated in the Hongjiadu (W3), Dongfeng (W7),

Wujiangdu (W15), Baihua (M8) and Hongfeng (M5) res-

ervoirs. Surface water (upper 0.5 m) samples were col-

lected from other stations. Water samples for depth profiles

were taken with 5 L Niskin bottles. Sampling depths were

0, 5, 15, 30 and 60 m in the W3, W7 and W15; 0, 5, 10, 15

and 20 m in the M8, and 0, 3, 6, 10, 15 and 25 m in the M5

sampling locations.

Temperature (T), dissolved oxygen (DO), pH and

chlorophyll were measured in situ using a calibrated water

quality probe YSI 6600 V2 (YSI Inc., USA). In this study,

mean pH was calculated using the geometric mean. Sam-

ples for major cation and anion analyses were filtered

through 0.45 lm Sartorius� cellulose acetate filters. Cation

samples were acidified to a pH of 2 with ultra-purified

HNO3. Major cations (Ca2?, Mg2?, K? and Na?) were

analyzed by inductively coupled plasma-optical emission

spectrometry (ICP-OES; Vista MPX, Varian, Inc.) with a

precision better than 5 %. Anions (SO4
2-, NO3

- and Cl-)

were determined by ion chromatography on a Dionex 120

with a precision of 5 %. Total phosphorus (TP) was ana-

lyzed spectrophotometrically (Unico UV-2000) after alka-

line potassium persulfate digestion. Samples for dissolved

organic carbon (DOC) analysis were filtered through pre-

combusted 0.7 lm GF/F filters and were collected into pre-

combusted brown glass vials. DOC was measured using

wet chemical oxidation techniques and an OI Analytical

Aurora 1030 TOC Analyzer. Total alkalinity (TA) was

titrated with HCl in the field. An overpressure of CO2

makes TA measurements in situ quite important. Concen-

trations of HCO3
-, CO3

2- and dissolved CO2 (CO2
*) were

calculated based on TA, pH and T field data with equi-

librium constants corrected for T and ionic strength (Barth

and Veizer 1999; Maberly 1996). The calcite saturation

index (SIc) was calculated as: SIc = log ([Ca2?] [CO3
2-]/

Kc), where Kc is corrected for T (Liu et al. 2008; Plummer

and Busenberg 1982). The ionic strength was calculated

from the major ions.

Samples for d13C of dissolved inorganic carbon

(d13CDIC) measurements were collected by filtering

100 mL of water through 0.45 lm filters with a syringe

into polyethylene vials, and then a saturated HgCl2 solution

Fig. 1 Map showing sampling locations and sample numbers. Water

profiles were investigated in the Hongjiadu (W3), Dongfeng (W7),

Wujiangdu (W15), Baihua (M8) and Hongfeng (M5) reservoirs and

surface waters were collected from other stations
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(A) Hongfeng Reservoir: Mean chlorophyll = 3.2 µg L-1;  Mean TP= 82.5 µg L-1
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(B) Baihu Reservoir: Mean chlorophyll = 2.9 µg L-1;  Mean TP= 149.8 µg L-1

T (°C) DO (µmol L-1) pH
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(C) Hongjiadu Reservoir: Mean chlorophyll = 0.8 µg L-1;  Mean TP= 28.9 µg L-1

T (°C) DO (µmol L-1) pH
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(D) Dongfeng Reservoir: Mean chlorophyll = 0.7 µg L-1;  Mean TP= 37.5 µg L-1

T (°C) DO (µmol L-1) pH
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(E) Wujiangdu Reservoir: Mean chlorophyll = 3.9 µg L-1;  Mean TP= 121.7 µg L-1
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Fig. 2 Monthly depth profiles

of temperature (T), dissolved

oxygen (DO) and pH in the five

reservoirs. Means of chlorophyll

and total phosphorus (TP) of

each reservoir are also shown.

See Fig. 1 for site locations
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was injected into the vials for sample preservation. The

vials were immediately closed without headspace with caps

and sealed with seal film (Parafilm). In the laboratory, the

sample was injected into closed evacuated glass vessels

containing concentrated phosphoric acid and then heated at

50 �C to extract CO2 (Atekwana and Krishnamurthy 1998).

CO2 was cryogenically separated and its pressure and

temperature were measured in a sensor (Edwards Barocel�

600). The 13C/12C ratio of CO2 was determined on a dual-

inlet isotope ratio mass spectrometer (MAT 252). Carbon

isotope data were normalized and are reported following

the ‘‘d’’ denotation of Craig (1953) relative to the Vienna

Pee Dee Belemnite (VPDB). The total precision for con-

centration and d13C analysis were better than 3 % (1r) and
0.1 % (1r), respectively.

Pearson’s correlation coefficient analyses were carried

out with the software SPSS (version 11.5; SPSS, Inc.).

Contour graphs were produced using Surfer (version 10;

Golden Software Inc.).

Results

The studied reservoirs showed a clear thermal, chemical

and biological stratification from May to September

(Fig. 2). The thermal stratification was accompanied by the

development of hypoxia and acidification in the hypolim-

nion, which was inconspicuous during thermal homoge-

neity. Analysis of all data revealed a significant correlation

between pH and O2 concentration (Table 1), suggesting a

strong linkage between pH decrease in the hypolimnion

and the consumption of O2. The Hongfeng, Baihua and

Wujiangdu reservoirs were eutrophic according to their

chlorophyll and TP concentrations (Vollenweider and

Kerekes 1982). The reservoirs with higher chlorophyll and

TP concentrations had a greater pH difference (D pH) in

their depth profiles (Fig. 2), and pH also showed a signif-

icant correlation with chlorophyll concentrations (Table 1).

The reservoir waters had a higher pH than the releasing

water (i.e., waters downstream from the dams), and sig-

nificant differences for pH between upstream and down-

stream of the dam were observed (one-way ANOVA,

P\ 0.05; Fig. 3). The main Wujiang channel showed up to

a 0.47 pH decrease from upstream to downstream of the

dam in the Wujiangdu Reservoir, while its branch at the

Maotiao River had up to a 0.41 pH decrease in the Hon-

gfeng Reservoir. However, reservoir waters had similar

mean pH values to each other as well as to the entering

waters in the Wujiangdu Reservoir (sites W11–15),

although pH differences in this reservoir were relatively

high (Fig. 3).

Study results showed that pH had significant positive

correlations to d13CDIC and DOC (Table 1), suggesting an

effect of the carbon biogeochemical cycle on pH variation.

HCO3
- was the predominant carbon species of dissolved

inorganic carbon (DIC), with a mean contribution of

94.5 % (Table 2). pH increased with decreases in CO2
* and

increases in CO3
2-, while DIC and TA decreased slightly

with increases in pH (Fig. 4). TA showed similar values as

DIC, and the ratio of TA to DIC was constrained to 1

(r = 0.96 and p\ 0.001).

Discussion

Carbon biogeochemical cycle in relation to pH

variation

Dam construction for hydropower usually creates deep

reservoirs and, therefore, the resulting impounded waters

may gradually develop physical, chemical and biological

stratifications. As illustrated in the conceptual model

(Fig. 5), study findings show that vertical coupling between

photosynthesis in the epilimnion and respiration in the

hypolimnion was largely responsible for the negative cor-

relation between CO2
* and O2. Photosynthesis mainly

occurred in the surface water, consuming lighter CO2 and

making the d13C of residual DICmore positive than-8.5 %

(i.e., the d13C of DIC from carbonate dissolution, Peng et al.

2014).WhenO2 is available, aerobic respiration occurs in the

subsurface waters, that is (CH2O)106(NH3)16H3PO4 ?

138O2 ? 106CO2 ? 16HNO3 ? H3PO4 ? 122H2O. The

production of a small amount of the strong acid, HNO3, plays

a minor role in reducing pH and TA (Cai et al. 2011), while

the hydration of CO2 led to an significant increase in the DIC

pool. Moreover, the inputs of respiratory CO2 resulted in the

d13C of DIC pool more negative than -8.5 %. At the sedi-

ment–water interface, anaerobic respiration via NO3
- con-

sumption can occur when O2 is sufficiently low (Fig. 5);

however, the net result of anaerobic respiration on CO2

parameters is similar to that of aerobic respiration (Canfield

Table 1 Results of Pearson’s correlation coefficient analysis

DO Chl CO2 DIC d13CDIC DOC

pH 0.658a 0.522a -0.723a -0.450a 0.544a 0.170a

DO 0.400a -0.473a -0.150a 0.312a 0.008

Chl -0.203a -0.156a 0.345a 0.177a

CO2 0.590a -0.302a -0.035

DIC -0.379a -0.051

d13CDIC 0.303a

DO dissolved oxygen, Chl chlorophyll, CO2 dissolved CO2, DIC

dissolved inorganic carbon, DOC dissolved organic carbon
a Correlation is significant at the 0.01 level (2-tailed)
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et al. 1993; Hu and Cai 2011). The evidence from d13CDIC

indicated photosynthesis and respiration significantly influ-

enced the pH variation (Fig. 6). According to correlation

analyses, it was negligible for the inputs of respiratory CO2

from the DOC to DIC pool, and DOC has a limited impact on

pH in this study.

NO3
- was involved in the vertical carbon biogeo-

chemical cycle. As for the reservoirs in the Wujiang main

channel, CO2
* and NO3

- exhibited significant correlations

in the depth profiles (r = 0.47 and p\ 0.001), while this

phenomenon was not found in the reservoirs in its branch at

the Maotiao River. Based on this correlation analysis, only

aerobic respiration occurred in the hypolimnion of the

reservoirs in the Wujiang main channel, while in its branch

at the Maotiao River, additional anaerobic respiration also

happened due to hypoxia ([O2]\ 62.5 lmol L-1) at the

bottom (Canfield et al. 1993; Hu and Cai 2011). This shift

from aerobic to anaerobic respiration changed the
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Fig. 3 pH variation in the Wujiang main channel and its branch of

the Maotiao River. The pH differences from upstream to downstream

of a dam in each reservoir were calculated from the mean pH. See

Fig. 1 for site locations. Asterisks Mean calculated from the

geometric mean. Hash Mean pH difference was significant from

upstream to downstream of a dam (one-way ANOVA, P\ 0.05)

Table 2 Physical and chemical parameters relating to the carbonate

equilibria in this study. The calculations are based on all the data

Parameter Mean SD Min Max

Temperature (�C) 16.4 5.3 5.5 30.2

pH 7.67a 0.42 6.56 9.37

TA (lmol L-1) 2,273.8 354.9 1,167.3 4,049.7

DIC (lmol L-1) 2,377.2 416.8 1,109.0 4,589.6

HCO3
- (lmol L-1) 2,245.8 366.7 1,054.4 4,042.5

CO2
* (lmol L-1) 118.0 116.8 1.3 1,388.9

CO3
2- (lmol L-1) 13.4 23.5 0.5 256.8

DOC (lmol L-1) 203.2 123.3 28.4 1,107.1

d13CDIC (%) -8.1 1.5 -12.9 -1.3

The arithmetic average of pH was 7.83

TA total alkalinity, DIC dissolved inorganic carbon, DOC dissolved

organic carbon
a Mean calculated from the geometric mean
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Fig. 5 A sketch map for carbon biogeochemical cycle in a reservoir.

OM organic matter

Environ Earth Sci (2015) 73:5299–5306 5303

123



stoichiometric ratio of CO2
* and NO3

-, and finally resulted

in the decoupling of CO2
* and NO3

- at the bottom.

There is a stoichiometric relationship between O2 and

CO2 in the processes of photosynthesis and respiration.

According to the respiration equation, this stoichiometric

ratio of O2 to CO2 is 1.3. The similar differences

between CO2
* and O2 in the depth profiles indicated that

the molar rate of photosynthetic synthesis of organic

carbon in the epilimnion was similar to that of respira-

tory decomposition of organic carbon in the hypolimnion

(Fig. 7). Therefore, pH increases in the surface and

associated pH decreases in the subsurface may counteract

each other if there is no additional CO2 input. This

appears to be the reason that the mean pH in the

Wujiangdu Reservoir showed a similar value to that in

the entering river water (Fig. 3).

Mechanism controlling pH decrease downstream

from a dam

If the river water is considered to be an ideal carbonate

solution, then the following relationships can be applied:

TA-DIC = [CO3
2-]-[CO2], and pH = -0.5 log (K1 K2)

-0.5 log ([CO2]/[CO3
2-]), where K1 and K2 are dissocia-

tion constants of the carbonic acid. Then, at the point where

DIC = TA, a slight increase in CO2 and an associated

decrease in CO3
2- will cause a large decrease in pH. As the

Wujiang River watershed has a karstic geological substrate,

the river water chemistry is mainly controlled by carbonate

weathering (Chetelat et al. 2008; Han and Liu 2004).

Therefore, the Wujiang River is an ideal bicarbonate buf-

fering system where DIC & TA (Fig. 4). In depth profiles,

an increase in pH in the surface was caused by a lower

[CO2]/[CO3
2-] ratio, while conversely a decrease in pH in

the subsurface resulted from a higher [CO2]/[CO3
2-] ratio

(Fig. 8a). In addition, the increase of algal biomass

enhanced DpH in depth profiles in response to enhanced

photosynthesis in the epilimnion and respiration in the

hypolimnion (Fig. 9). Calcium carbonate is usually present

in concentrations at supersaturation in the studied river

waters (Wang et al. 2011); however, this study found that

the pH decrease changed the calcium carbonate saturation

state and resulted in undersaturation due to the decrease of

CO3
2- at the bottom (Fig. 8b).

Most reservoirs employ deep water introduction for

power generation (Fig. 5). This operation of releasing

bottom waters decreases the pH downstream from a dam.

This decrease along with an associated change in the cal-

cite saturation state may have profound influences on the

river ecosystem (Burns et al. 2008; Merz-Preiß and Riding

1999). The increase in sulfur and nitrogen levels in the

Wujiang River (Chen et al. 2002; Han and Liu 2004) could

also induce the acidification of river waters. This external

forcing toward acidification may be reduced by the
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bicarbonate buffering system. However, this buffering

cannot reduce river acidification downstream from the

associated dam, which is controlled by the carbon bio-

geochemical cycle. Although there is serious pH decrease

downstream from the hydroelectric dam, the releasing

waters will gradually recover their pH as they flow further

away from the dam due to the degassing of CO2 in the

surface water.

Conclusions

A series of dam constructions on the Wujiang River has

disrupted this river continuum, and its associated

impounded waters have developed physical, chemical and

biological stratifications. As the Wujiang River is an ideal

bicarbonate buffering system, study findings showed that

the pH in this impounded river was mainly controlled by

[CO2]/[CO3
2-] ratios. Photosynthesis induced a lower

[CO2]/[CO3
2-] ratio in the surface while respiration

induced a higher [CO2]/[CO3
2-] ratio in the subsurface.

This finally led to significant pH differences in the water

profile, and the evidence from d13CDIC clearly demon-

strated these processes. The operation of releasing bottom

water for power generation decreased the pH downstream

from the dam, and the average drop in pH from upstream to

downstream of a dam was up to 0.47 units. The excessive

production of phytoplankton enhanced this pH decrease,

while DOC had limited impacts on this pH variation. The

cascade in hydropower development could increase the risk

of river acidification.
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