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Abstract In this paper, a new evolutionary game theo-

retic methodology is proposed to determine penalty func-

tions that an environmental protection agency should

impose on dischargers to achieve water quality standards at

monitoring points along the river when the monitoring

points are limited. In the proposed methodology, the con-

cept of evolutionary stable strategy in asymmetric matrix

games is utilized to model the interactions among dis-

chargers more realistically. A heuristic optimization–sim-

ulation model is developed for calculating the evolutionary

stable treatment strategies of dischargers considering the

mass transport equations, main characteristics of river flow

and pollution loads. The proposed methodology is applied

to the Zarjub River in the northern part of Iran to illustrate

its practical utility. The results show that the proposed

approach can determine penalty functions which guarantee

that the water quality standards are met. The results of the

suggested model are compared with those of a traditional

optimization waste load allocation model. The comparisons

show that the evolutionary game theory-based model pro-

vides stable wastewater treatment strategies which would

not be violated by dischargers in practice.

Keywords Environmental penalty functions �
Evolutionary game theory � Evolutionary stable strategies �
Waste load allocation � The Zarjub River

Introduction

Many rivers are significantly polluted all around the world.

A primary reason is that all three major sources of pollution

(industry, agriculture and domestic) are concentrated along

the rivers. This is due primarily to the fact that rivers have

traditionally been a convenient place for water withdrawal

and wastewater discharge. Many researchers have pro-

posed different methodologies for river water quality

management (e.g., Burn 1989; Burn and Yulianti 2001;

Chau 2006; Kannel et al. 2007; Nikoo et al. 2011, 2014;

Saha et al. 2014; Babamaaji and Lee 2014; Liu et al. 2014;

Alaya et al. 2014; Xu et al. 2014; Hernandez and Uddameri

2014; Ortolani 2014; Noh et al. 2014; May and Mazlan

2014). Environmental penalty functions can help environ-

mental protection agencies find an effective remedy for

river water quality problems. In other words, penalty

functions can enforce dischargers to select treatment

strategies which satisfy river water quality standards.

In the early days of environmental legislation, insignif-

icant penalties were imposed on violators. These environ-

mental penalties had little effect on corporations and

individuals to comply with environmental regulations (Situ

and Emmons 1999). Thus, the application of environmental

penalties has experienced some rather dramatic changes

over the past decades. More civil and criminal monetary

penalties have been imposed on violators and the amount

of the penalties has increased (Tomkins 2005).

Researchers have studied different aspects of imposing

environmental penalties on violators. For example,
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Rousseau and Proost (2005) compared various combina-

tions of regulatory instruments (emission standards, emis-

sion taxes, and technology standards) and enforcement

instruments (civil fines, criminal fines, and transaction

offers) and showed that the inclusion of information,

enforcement and monitoring costs indeed would alter the

relative cost efficiency of the different instruments. Wu

(2009) studied why some firms violate environmental

regulatory standards while others comply with them. He

showed that different factors would drive decisions to

violate or comply with an environmental regulation.

Rousseau and Telle (2010) concentrated on emissions due

to production and assumed that the damage function was

perfectly known. They showed that the optimal fine does

not exist typically. Non-existence occurred because of

existence of some interactions between the economy,

emissions and the environment. They argued that these

interactions could not be accurately revealed in the fine

imposed by the regulator.

Earnhart and Segerson (2012) analyzed the influence of

financial status on the success of environmental enforce-

ment. They considered several dimensions of both

enforcement and financial status. As the most outstanding

result, they showed empirically and theoretically that the

amplified enforcement could actually lead to worse envi-

ronmental performance.

Resolving the conflict of interests that arise among

different dischargers locating along a river is one of the

major goals in the river water quality and quantity man-

agement. Game theory is a worthwhile tool to resolve these

conflicts. In other words, river games are decision making

problems having multiple players whose choices impact

one another. Cooperative, non-cooperative, bargaining, and

evolutionary game theories are among the main branches

of game theory. In the past years, several researchers have

used game theory to resolve the conflicts among the

stakeholders in river systems (Young et al. 1982; Lund and

Palmer 1997; Dockner and Nishimura 1999; Loaiciga

2004; Salazar et al. 2007; Ganji et al. 2007; Niksokhan

et al. 2009; Mahjouri and Bizhani-Manzar 2013). Wei et al.

(2010) proposed some game theoretic simulation models to

analyze water conflicts in a water transfer project in China.

The main results of their study showed that the players

would receive better payoffs through cooperation if finan-

cial incentives to cooperate were provided for them. Abed-

Elmdoust and Kerachian (2012) developed a methodology

called n-person iterated signaling game for river water

quality management. They modeled the bargaining process

among dischargers and developed perfect Bayesian equi-

librium strategies for pollution control. Abed-Elmdoust and

Kerachian (2014) proposed a methodology called n-person

Bayesian static game for river quality management. They

modeled the natural process of decision making among

dischargers who would be penalized for any violation of

water quality standards. Their methodology could provide

the Bayesian Nash equilibrium of waste load allocation

strategies.

Non-cooperation among stakeholders is the conse-

quence of their self-optimizing viewpoint even when all

parties benefit greatly from cooperation (Madani 2010).

Thus, non-cooperative game theory is an efficient tool to

achieve equilibrium solutions in river systems consisting

of several stakeholders (dischargers) with conflicting

objectives. However, its deficiency is that it cannot

guarantee that the achieved equilibrium solutions will be

stable over time. Introducing evolutionary game theory

based on Darwin’s theory of natural selection, game

theory entered into a new phase. From the perspective of

evolutionary game theory, a superior strategy would be

stable over time. Although evolutionary game theory has

provided numerous insights to particular evolutionary

questions, a growing number of scientists have become

interested in evolutionary game theory in hopes that it

will provide tools for addressing a number of deficiencies

in the traditional game theory.

A brief literature review about the evolutionary game

theory is presented in this section. Lewontin (1961) made

the first effort to apply game theory to evolutionary biology

based on Darwin’s theory of natural selection. Smith and

Price (1973) played the most important role in expanding

evolutionary game theory. They stated the concept of

evolutionary stable strategy (ESS) with mathematical

relationships. Axelrod (1987) utilized genetic algorithm

(GA) as an evolution explorer to find evolutionary strate-

gies in repeated dyadic Prisoner’s Dilemma game. He also

investigated the characterizations of evolutionary strategies

in constant and changing environments. The evolution of

social behavior in some dyadic matrix games was also

surveyed by Browning and Colman (2004) using a genetic

algorithm. They showed that the type of evolved social

behavior is decisively dependent on the strategic structure

of the underlying interactions.

Fishman (2008) developed an evolutionary game theo-

retic model for analyzing economic conflicts of interests

and provided an analytical framework for analyzing

asymmetric games. Huang et al. (2009) presented a dyadic

game model to resolve conflicts among water users. The

payoff matrix of the game was determined according to a

reward-punishment mechanism that assumed to be applied

by a water resources management agency.

Grilo and Correia (2011) examined the effects of the

update dynamics on symmetric dyadic evolutionary games

to study the emergence of cooperation in populations of

interacting agents. Wang et al. (2011) studied an evolu-

tionary game between the government that controlled

environmental pollution and the firms that generated
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contamination during production. They integrated evolu-

tionary game theory and system dynamics to propose a new

approach for decision making. They developed a novel

penalty function to control the pollution rate to zero. This

restraining penalty also stabilized the Nash equilibrium.

Zhang et al. (2012a, b) proposed a dynamic evolutionary

game model between secondary lead enterprises and

environmental protection agencies to deal with environ-

mental pollution as a major issue in China. Their study

included some important factors such as costs and benefits

of secondary lead enterprises, tax incentives and penalties

of environmental protection agencies. Zhang et al. (2012a,

b) studied path dependence in green construction technol-

ogy change. They employed an evolutionary game theo-

retic model to find the dominant technique as the final

result of the dynamic evolution process. Chatterjee et al.

(2012) studied the evolutionary game dynamics in popu-

lations with different learners. In their research, they

examined evolutionary game theory in an environment

where individuals could learn from each other. They tried

to make a connection between computational learning

theory and evolutionary game dynamics. Han et al. (2012)

analyzed equilibrium properties of evolutionary multi-

player games with random payoff matrices. They showed

that the probability of realizing a certain number of equi-

libria would change as the number of players and strategies

increased.

In this study, evolutionary game theory is used to help

an environmental protection agency find the most appro-

priate penalty functions which can encourage dischargers

to choose treatment strategies that will satisfy river water

quality standards.

In this paper, a new methodology is developed for

determining the penalty functions which guarantee the

river water quality by penalizing any discharger who vio-

lates the water quality standards. In this methodology, the

interactions among pollution dischargers are modeled as an

asymmetric evolutionary game which can provide the

evolutionary stable treatment strategies of dischargers. The

evolutionary stable treatment strategies are found based on

different penalty functions and the results are analyzed.

According to analysis of the results, the most appropriate

penalty function which can guarantee the river water

quality standards is gained. Moreover, due to uncertainty

about the upstream condition of the river system, the most

appropriate penalty functions are determined for the sev-

eral scenarios defined based on different conditions of head

water quality and quantity. The efficiency and applicability

of the proposed methodology is demonstrated by applying

it to the Zarjub River in the northern part of Iran. As the

proposed methodology is based on the evolutionary game

theory, in the following section, this theory is briefly

explained.

Evolutionary game theory

Traditional game theory deals with economic behavior of

players, which is assumed to be rational and selfish in a

non-cooperative environment. In other words, in traditional

non-cooperative game theory, the emphasis is on finding

the best strategies for players to optimize their individual

benefits. However, in evolutionary game theory, the

emphasis is on searching for strategies which will remain

stable over time while considering the economic behavior

of players. In evolutionary game theory, the emphasis is

shifted from individuals to populations of strategies and

financial gain is replaced with Darwinian fitness. More-

over, in evolutionary game theoretic approach, the term

‘‘strategy’’ comes to refer to a heritable phenotype, and

rational decision making in traditional game theory is

replaced with evolutionary stability (Fishman 2008). In an

evolutionary game, each player has a primary population of

strategies which will be edited through the evolution

process.

Evolutionary stable strategy

ESS is a strategy if chosen by a population; no other

alternative strategy can invade it (Smith and Price 1973). In

fact, like in traditional game theory that none of the players

could reach a better payoff by changing their strategies

from the equilibrium point (e.g., Nash equilibrium); no

population (player) could improve its fitness by following

strategies other than ESSs in evolutionary game theory. On

the other hand, in evolutionary game theory, the size of the

population (the number of individuals in the population

which pursue a specific strategy) is of great importance in

finding the ESSs.

ESS in asymmetric games

The game among pollution load dischargers in a river is

asymmetric regarding the direction of river flow, different

location of dischargers and their unequal shares from the

assimilative capacity of the river.

In asymmetric games, players fill different roles with

different payoff matrices. For example, in a two player

game, there are two payoff matrices often written in one

table as shown in Fig. 1. The numbers in lower left corners

of the cells are the payoffs to the individual in role A,

whereas the numbers in the upper right corners are the

payoffs to role B.

For example, EAðS2; S1Þ denotes the payoff to someone

in role A if he plays strategy S2 against an opponent who is

in role B and plays strategy S1 (Kisdi 2011).

Consider a bimatrix game in which there are two strat-

egies I1 and I2 for the player in role A and two strategies J1
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Fig. 1 Payoff matrix of an

asymmetric bimatrix game

(Kisdi 2011)

Input data of upstream flow, river 
and wastewater specifications

Gathering wastewater treatment cost 
data

River water 
quality 

simulation

Calculating the assimilative 
capacity of the river in 

different reaches

Calculating the penalty 
functions using 

Replacement Cost 
Method

Calculating
penalty and

treatment cost 

Yes

No

Water quality 
standards

Do the treatment 
strategies converge?

Water quality 
simulation 

model

Evolutionary game

Calculating the 
payoff matrix 
of dischargers

Filling the initial treatment strategy 
archives of dischargers with 

random treatment levels

Updating the archive of discharger 1

Updating the archive of discharger 2

Updating the archive of discharger n-1

Updating the archive of discharger n

Calculating the evolutionary 
stable treatment strategies of 

dischargers

End

Optimization models

Start

Run GA for discharger 1 considering its interaction 
with the archives of the other dischargers

Run GA for discharger 2 considering its interaction 
with the archives of the other dischargers

Run GA for discharger n-1 considering its interaction 
with the archives of the other dischargers

Run GA for discharger n considering its interaction 
with the archives of the other dischargers

...
...

Is the river water quality 
guarantee with this 
penalty function?

Yes

Choosing a penalty 
function 

coefficient

No

Fig. 2 Flowchart of the proposed methodology for developing evolutionary stable treatment strategies for waste load allocation in rivers

(n = total number of dischargers)
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and J2 for the player in role B. Considering Eqs. 1 and 2,

the fitness of individuals adopting strategies I1 and J1 can

be estimated as follows:

WAðI1Þ ¼ PJ1
EAðI1; J1Þ þ PJ2

EAðI1; J2Þ

¼ rEAðI1; J1Þ þ sEAðI1; J2Þ
r þ s

ð1Þ

WBðJ1Þ ¼ PI1
EBðJ1; I1Þ þ PI2

EBðJ1; I2Þ

¼ r0EBðJ1; I1Þ þ s0EBðJ1; I2Þ
r0 þ s0

ð2Þ

where PI1
and PI2

are, respectively, frequencies of strate-

gies I1 and I2 in the population related to player A. Simi-

larly, PJ1
and PJ2

are, respectively, frequencies of strategies

J1 and J2 in the population related to player B. rðr0Þ is also

the number of times strategy I1 ðJ1Þ faces strategy J1 ðI1Þ
and s ðs0Þ is the number of times strategy I1 ðJ1Þ faces

strategy J2 ðI2Þ.
In convoluted real world asymmetric games, the evo-

lutionary algorithms (such as GA) can be considered for

simulating the concepts of evolutionary games to find ESSs

(Axelrod 1987). Applying this useful solution for finding

the ESS in a river water quality management is the main

concern of the present paper.

Model framework

This paper presents a new methodology for developing

environmental penalty functions in polluted rivers utilizing

an n-person evolutionary asymmetric game. A flowchart of

the methodology proposed for developing evolutionary

stable treatment strategies in a river system and selecting

the best penalty function is presented in Fig. 2. As shown

in this figure, the proposed methodology consists of some

main modules such as water quality simulation, calculation

of wastewater treatment costs and penalty functions, and

evolutionary game model.

The inputs of this methodology are quantity and quality

of headwater, dischargers’ pollution loads, river water

quality standards, and treatment cost data. The outputs of

the model are the ESSs and the stable environmental

penalty functions. In the proposed methodology, at first, the

river assimilative capacity and the concentrations of water

quality indicators at several points along the river system

are calculated using a calibrated river water quality simu-

lation model. The penalty functions of dischargers are then

calculated using the compliance costs approach (for more

information on CCA, see ‘‘Compliance costs approach

(CCA)’’ and the water quality simulation model. Treatment

cost functions are also calculated using the existing treat-

ment cost data. At last, payoff matrices are calculated for

all pollution load dischargers considering their different

treatment strategies. These matrices will be used as an

input of the evolutionary game module. This module

includes several genetic algorithm-based evolutionary

models. The evolutionary models are used for updating the

population (archive) of strategies of each pollution load

discharger. In each evolutionary model, at first, an archive

of solutions is considered that contains initial treatment

strategies for the respective discharger (role). These initial

strategies can be selected randomly. The evolutionary

model is run for a specific role and will find the more

powerful solutions for that role while incorporating the

strategy archives of the other dischargers. At the end of the

evolutionary process of a specific role, an updated archive

related to that role is achieved. This updated archive will be

incorporated in the evolutionary models of the other roles

as well. This process will continue until the best strategy in

each population remains constant. The constant strategy of

each population will be the evolutionary stable treatment

strategy of the respective role. The quality condition of

downstream checkpoint is specified based on the evolu-

tionary stable treatment strategies that dischargers choose

in practice. The environmental agency is able to anticipate

the quality condition of the river system based on different

penalty functions. Hence, it will be able to select and

impose the best penalty function which will guarantee the

river water quality standards. In the next sections, the main

components of the methodology are described in more

details.

Compliance costs approach

Given the objective of ‘‘guaranteeing river water quality’’

using a standard, it is well known that this can be obtained

using an environmental penalty that is at least as high as

the treatment costs necessary to comply with the standard.

Thus, the penalty to obtain this goal depends on the com-

pliance costs. In this paper, the CCA is used for estimating

the penalty functions.

Micro genetic algorithm (MGA)

The inspiration for simulating thriving strategies in a

population came from an artificial intelligence procedure

developed by computer scientist, John Holland (Goldberg

1989). Holland’s technique is called the genetic algorithm.

Using GA, one represents strategies as chromosomes. In

this paper, MGA is used to solve the evolutionary models

and update the archives of strategies. MGA is a GA with a

small population. When after a number of generations, the

best solution remains constant; the evolutionary algorithm

is reinitialized by preserving the best individual and

substituting the rest of the population with randomly
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generated solutions (Koumousis and Katsaras 2006).

Krishnakumar (1989) showed that MGA can avoid trap-

ping in local optimal solutions and performs better than a

simple GA in solving multimodal optimization problems.

Several successful applications of MGA have appeared in

the literature (e.g., Coello and Pulido 2001; Xu and Liu

2002). The MGA used for this study is written using Visual

FORTRAN language.

GA-based evolutionary game module

In the evolutionary game module, a GA model is run for

each role (discharger). To incorporate the effect of other

dischargers’ behavior, populations (population 1 for

discharger 1, population 2 for discharger 2, …, popula-

tion n for discharger n) of their strategies (i.e., their

treatment levels) are also considered in each GA model.

In other words, in each GA model which is run for a

discharger, considering n pollution load dischargers, n�
1 archives of strategies of other n� 1 dischargers should

also be taken into account. After running the GA model

for a specific role, the population relevant to that role is

updated. When the GA model relevant to each pollution

load discharger is run, the resulting strategies in the last

generation are considered as the updated population of

strategies of that discharger. This updated population of

strategies will be used in other dischargers’ GA models.

The GA models of the dischargers are sequentially run

to reach evolutionary stable treatment strategies of all

dischargers. This iterative process is stopped when the

best strategy in each population remains constant during

several consecutive runs. A schematic view of the

repeated dyadic games among individuals in two given

populations is depicted in Fig. 3.

The objective function of each GA model is minimizing

the fitness function of strategies in the population relevant

to the corresponding role.

In this paper, minimizing the total cost (treatment cost

plus penalty cost) of strategies in the population of a spe-

cific role (while considering other dischargers’ decisions) is

considered as the objective function of each GA model. For

each strategy Si in population j, this function can be

expressed as:

MinðFitnessijÞ ¼ MinðTrcostij þ PencostijÞ ð3Þ

Trcostij ¼ f ðSiÞ ð4Þ

where Fitnessij is the fitness function of an individual

adopting strategy Si in population j. Equation 4 states that

the treatment cost of strategy Si in population j (Trcostij) is

a function of treatment level Si. The penalty value of a

strategy depends on itself and the existing strategies in

other populations. For example, the penalty cost of strategy

Si in population j can be estimated using Eq. 5 as follows:

Pencost Sij ¼
Xm

i1¼1

Xm

i2¼1

. . .
Xm

iðj�1Þ¼1

Xm

iðjþ1Þ¼1

� � �
Xm

in¼1

PSi1Si2...Siðj�1ÞSiðjþ1Þ...Sin

h

�EijðSij; Si1; Si2; . . .; Siðj�1Þ; Siðjþ1Þ; . . .; SinÞ
�

i ¼ 1; 2; . . .;m ; j ¼ 1; 2; . . .; n

ð5Þ

where EijðSij; Si1; Si2; . . .; Siðj�1Þ; Siðjþ1Þ; . . .; SinÞ denotes the

amount of penalty allocated to strategy Si against its oppo-

nents; strategy Si1 (strategy Si in population 1), strategy Si2

(strategy Si in population 2), …, and Sin (strategy Si in

population n). PSi1Si2...Siðj�1ÞSiðjþ1Þ...Sin
are the frequency of

strategy combination Si1Si2. . .Siðj�1ÞSiðjþ1Þ. . .Sin after all

repeated games in each round which is calculated as follows:

PSi1Si2...Siðj�1ÞSiðjþ1Þ...Sin

¼
rSi1Si2...Siðj�1ÞSiðjþ1Þ...Sin

Pm

i1¼1

Pm

i2¼1

� � �
Pm

iðj�1Þ¼1

Pm

iðjþ1Þ¼1

� � �
Pm

in¼1

rSi1Si2...Siðj�1ÞSiðjþ1Þ...Sin

ð6Þ

No.       Chromosome       Fitness
1              1001101                87
2              0111011                58

..
i               1101001               69

N              0100011                53

3              1010100                79
4              1000100                82
5              0101011                27
6              1011101                79
7              0110010             53

No.       Chromosome       Fitness
1              0110011                76
2              1001101                55

j               1011010                81

M             0100110                93

3              0100111 93
4              0011011                34
5              1101010                89
6              1010111                48
7              0110101                98

Fig. 3 A schematic view of the

repeated games among

individuals in two given

populations
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where rSi1Si2...Siðj�1ÞSiðjþ1Þ...Sin
is the number of times strategy Si

faces strategy combination Si1Si2. . .Siðj�1ÞSiðjþ1Þ. . .Sin. It is

assumed that there are m strategies S1S2; . . .; Sm in each

population. Other frequencies can be calculated in a similar

way.

A traditional waste load allocation model

Minimizing the total treatment and penalty cost of the

system can be considered as objective function of the tra-

ditional waste load allocation model:

Min
Xn

i¼1

Totcosti ð7Þ

where Totcosti is the summation of treatment and penalty

costs of discharger i and n is the number of pollution dis-

chargers along the river system.

In this paper, the results of the proposed methodology

are compared with the ones provided by the traditional

waste load allocation model.

Case study

To evaluate the applicability of the proposed methodology, it

is applied to the Zarjub River in the Rasht Region in Iran.

Wastewater and storm water in this region are gathered by a

combined wastewater and storm drainage collection network,

which discharges its wastewater into the Zarjub River. The

methodology is applied to a reach of the river which passes

through the Rasht city and its suburb (Fig. 4). This reach is

divided into seven zones so that there is only one pollution

load discharger in each zone. As a matter of concern, point

sources are the most significant pollution sources in the study

area. The main characteristics of the pollution loads and the

headwater quantity and quality are presented in Table 1.

Existing water quality data show that the dissolved

oxygen (DO) concentration in the Zarjub River signifi-

cantly violates the standard level (Mesbah et al. 2010). In

this study, the simulation of biological oxygen demand

(BOD) and DO concentrations in the Zarjub River is car-

ried out using a water quality simulation model calibrated

and verified by Mesbah et al. (2009).

Fig. 4 The Zarjub River system

and its dischargers in the study

area (Mesbah et al. 2009)
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To calculate treatment cost functions, it is assumed that

some aerated lagoons are used for treating domestic

wastewater. Based on the existing data in Iran, the con-

struction cost of an aerated lagoon is estimated to be 140

Dollars per capita, and its annual operational cost is about

4 % of its construction cost. This operational cost is

required for reducing BOD concentration of wastewater

from 250 to 10 mg/L. The rate of wastewater disposal in

the study area is about 144 L/day per capita.

We assume that there is only one river water quality

monitoring station downstream of the river (based on the

real situation in Iran, it is an appropriate assumption). As a

consequence, we can consider the situation as a game

between the waste dischargers that is characterized as an n-

person prisoner’s dilemma. It is worth noting that in Iran,

water quality in rivers is protected by Iran Department of

Environment (IDOE). IDOE monitors the river water

quality at its monitoring stations. This department does not

have any waste load allocation program and only assigns a

minimum treatment level to dischargers based on Iran

Wastewater Discharge Standard. IDOE sets a penalty

function for each river for protecting river water quality

and penalizes dischargers when a water quality violation is

detected. Therefore, there is not a predefined treatment

strategy for a discharger in Iran. On the other hand, IDOE

has some limited monitoring stations for monitoring qual-

ity of a river and this fact allows dischargers to have

strategic behaviors. Therefore, game theory can be used to

find a penalty function which can protect river water

quality considering the non-cooperative behavior of dis-

chargers. In this paper, the results of the proposed game

theoretic model are also compared with those of a least-

cost optimization model. To estimate the operational

treatment cost function of each role (discharger), the fol-

lowing linear function is used:

fi ¼ citi ð8Þ

where fi is the annual operational treatment cost of dis-

charger i (1,000 $) and ti is the treatment level of

discharger i ð0� ti� 1Þ. ci is a constant coefficient. The

estimated values for coefficient ci are presented in Table 2.

Taking into account that the treatment plants are con-

structed by government in Iran, we therefore assume that

the government supply treatment plants to dischargers and

they only need to pay operational costs of treatment plants

in our case study.

Penalty function is defined for the case where the

downstream dissolved oxygen concentration decreases

below the minimum acceptable level. The CCA is utilized

to calculate penalty functions. Regarding this method, the

amount of penalty allocated to dischargers is equal to the

excess cost for extra treatment to reach the standard level

of DO concentration in the river. In this method, to cal-

culate the penalty function based on the DO concentration

at the monitoring station of the environmental protection

agency, the extra treatment costs are calculated for differ-

ent combinations of treatment levels of dischargers. Note

that there are different situations in which the downstream

DO will be equal to zero. These situations are different

regarding the BOD concentration. In fact, in these situa-

tions, DO concentrations cannot be used as a basis for

estimating the penalty value anymore and a penalty func-

tion should be estimated considering the BOD concentra-

tion. So when DO concentration is between 0 and 3.5 mg/

L, the penalties are calculated based on the DO concen-

tration, and when DO concentration is equal to zero, an

extra penalty is calculated regarding the BOD concentra-

tion. Therefore, the penalty functions have the following

general form:

Pi ¼
aix

bixþ ci

diyþ ei

8
<

:

0� x\m

m� x\3:5
x ¼ 3:5

ð9Þ

where Pi is the penalty function for scenario i of the

quantity and quality of headwater (1,000 $). x and y are,

respectively, the DO violation and BOD concentration

in the water quality checkpoint (mg/L). We also assume

that ai, bi, ci, di, ei and m are constant coefficients. The

estimated amounts for these coefficients for various

scenarios of quantity and quality of headwater are

revealed in Table 3. In the penalty function estimation,

it is assumed that the DO concentration of the treated

wastewater is 3.5 mg/L. It is also assumed that all dis-

chargers pay equal penalties for a water quality viola-

tion from the standards.

Table 1 The average quantity and quality of the upstream flow and

pollution loads in the Zarjub River (Mesbah et al. 2009)

Flow

(m3/s)

BOD

(mg/L)

DO

(mg/L)

Temperature

(�C)

Upstream 0.25 5 6.6 24

Discharger 1 0.08 40 8.2 24

Discharger 2 0.02 7 8.0 24

Discharger 3 0.01 120 0.1 25

Discharger 4 0.01 180 0.1 24

Discharger 5 0.01 110 0.1 23

Discharger 6 0.1 90 0.1 23

Discharger 7 0.02 180 0.1 23

Table 2 Coefficients of the operational treatment cost functions of

dischargers

Dischargers D1 D2 D3 D4 D5 D6 D7

c 3.76 0.17 1.41 2.12 1.29 10.58 4.23
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Results and discussion

In this paper, nine different scenarios of quantity and

quality of headwater are considered (Table 4). The payoff

matrices of pollution load dischargers are calculated based

on the players’ treatment strategies and the quantity and

quality of upstream flow. Payoff matrix is an n-dimensional

matrix where n is the number of pollution load dischargers.

Each element of this matrix shows the total cost of each

discharger (i.e., the treatment cost plus the penalty cost)

which is calculated based on the treatment strategies that

dischargers have chosen and the resulting received penalty

from the environmental protection agency.

In the proposed evolutionary game theoretic model, it is

assumed that there are four treatment strategies that dis-

chargers can choose: 0, 30, 60 and 90 % reduction in the

BOD concentration of their effluents. The game is accu-

rately assumed to be asymmetric regarding the direction of

river flow. Actually, upstream and downstream dischargers

play asymmetric games since they take unequal share of

the common resource (river).

The proposed model is used to determine the evolu-

tionary treatment strategies of the dischargers in the Zarjub

River system for the nine defined scenarios. Other impor-

tant assumptions made in the model include:

• Monitoring ambient water quality and imposing a

penalty are costless and are done on a continuous basis.

• The strategy set for each firm and also its treatment/

abatement costs are perfectly known by the regulator

and by the other firms (game of complete information).

The evolutionary stable wastewater treatment levels of

dischargers are presented in Table 5.

Treatment strategies in Table 5 are ESSs because they

could resist the invasion of other strategies and get greater

fitness. Any other strategies rather than ESSs would meet

lower fitness. For example, assuming that the stable strat-

egies in the populations one to six to be fixed for the first

scenario, if an individual in population seven adopts a

treatment policy of 60 % in place of 90 %, his total cost

will increase from 11.21000 to 11.33000 Dollars. As shown

in Table 5, for all scenarios, some dischargers learn over

time that it will be more advantageous to choose higher

treatment levels to lower their total penalty. For example,

since the sixth discharger has a considerable pollution load,

to decrease his total cost, he decides to choose high treat-

ment levels in different scenarios. Consequently, high

treatment levels become prevalent in population 6. Simi-

larly, high treatment levels become prevalent in population

7 noting that discharger in role 7 is located downstream of

the river, where the quality of the water is usually low. The

variations of the DO concentration along the Zarjub River

based on the evolutionary stable treatment strategies pre-

sented in Table 5 are depicted in Fig. 5.

Table 3 Coefficients of the

penalty functions for various

quantitative and qualitative

conditions of the headwater

Coefficient Scenario

1 2 3 4 5 6 7 8 9

ai 7.48 14.97 1.15 1.56 1.69 1.77 2.16 2.43 2.78

bi 1.18 1.15 – – – – – – –

ci 1.26 1.38 – – – – – – –

di 0.55 0.55 0.64 0.80 0.80 0.80 0.96 0.96 0.96

ei -8.18 -8.04 -10.71 -12.73 -13.20 -13.47 -15.37 -16.31 -17.53

m 0.20 0.10 3.50 3.50 3.50 3.50 3.50 3.50 3.50

Table 4 Quantity and quality

condition of headwater in

different scenarios

Scenario Q

(m3/s)

DO

(mg/L)

1 0.15 3.5

2 0.15 5.0

3 0.15 7.0

4 0.25 3.5

5 0.25 5.0

6 0.25 7.0

7 0.35 3.5

8 0.35 5.0

9 0.35 7.0

Table 5 Evolutionary stable wastewater treatment levels of the dis-

chargers (%)

Role (discharger) Scenario

1 2 3 4 5 6 7 8 9

1 0 0 0 90 90 90 90 90 0

2 0 0 30 90 90 30 90 0 90

3 0 0 0 90 60 60 90 90 30

4 0 0 60 90 90 60 90 30 30

5 0 0 90 90 30 90 90 90 90

6 90 90 90 90 90 90 60 90 30

7 90 90 60 30 60 60 90 60 90
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The amounts of the penalty and the total cost of different

dischargers (roles) under various scenarios of quantity and

quality of headwater are presented in Table 6.

The results presented in Fig. 5 and Table 6 show that

the considered penalty functions cannot force the pollution

load dischargers to treat their wastewater in a way that the

river water quality standards are met. Therefore, by

applying a safety factor to the penalty functions, the

amounts of penalties are increased and the pollution load

dischargers will receive more penalties if DO concentration

in the monitoring station of environmental protection

agency violates the standard level. By applying an appro-

priate safety factor, higher treatment levels would prevail

in different roles to avoid high penalties. The evolutionary

stable treatment strategies in different roles corresponding

to minimum safety factors are presented in Table 7 (a

Fig. 5 Variations of the DO

concentration along the Zarjub

River based on the evolutionary

stable treatment strategies of

dischargers and original penalty

functions

Table 6 Penalty and total cost of different roles, respectively, for various scenarios of quantity and quality of upstream flow (1,000 $)

Role Scenario

1 2 3 4 5 6 7 8 9

1 7.40, 7.40 7.48, 7.48 4.01, 4.01 0.41, 3.79 0.33, 3.71 0.02, 3.40 0.97, 4.35 0.00, 3.38 10.00, 10.00

2 7.40, 7.40 7.48, 7.48 4.01, 4.06 0.41, 0.56 0.33, 0.48 0.02, 0.07 0.97, 1.12 0.00, 0.00 10.00, 10.15

3 7.40, 7.40 7.48, 7.48 4.01, 4.01 0.41, 1.68 0.33, 1.18 0.02, 0.87 0.97, 2.24 0.00, 1.2 10.00, 10.42

4 7.40, 7.40 7.48, 7.48 4.01, 5.28 0.41, 2.31 0.33, 2.23 0.02, 1.29 0.97, 2.87 0.00, 0.63 10.00, 10.63

5 7.40, 7.40 7.48, 7.48 4.01, 5.17 0.41, 1.57 0.33, 0.72 0.02, 1.18 0.97, 2.13 0.00, 1.16 10.00, 11.16

6 7.40, 16.92 7.48, 17.00 4.01, 13.53 0.41, 9.93 0.33, 9.85 0.02, 9.54 0.97, 7.32 0.00, 9.52 10.00, 13.17

7 7.40, 11.21 7.48, 11.29 4.01, 6.55 0.41, 1.68 0.33, 2.87 0.02, 2.56 0.97, 4.78 0.00, 2.54 10.00, 13.81

Table 7 Evolutionary stable

wastewater treatment levels of

different roles considering

safety factors for penalty

functions (%)

a Based on the minimum safety

factors, water quality standards

are met along the Zarjub River

Discharger Scenario

1 2 3 4 5 6 7 8 9

1 90 90 90 90 90 90 90 90 90

2 0 0 60 0 30 90 0 0 0

3 90 90 90 60 60 90 90 90 60

4 90 90 90 90 90 90 90 30 90

5 90 90 60 90 60 90 90 90 90

6 90 90 90 90 90 90 90 90 90

7 60 60 60 60 60 30 30 60 30

Minimum safety factora 1.20 1.20 4.00 3.00 4.00 1.10 1.20 – 2.00
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minimum safety factor is the lowest one which would

satisfy the standard river water quality along the river).

The variations of the DO concentration along the Zarjub

River considering the modified treatment strategies for

various scenarios of quantity and quality of upstream flow

are depicted in Fig. 6. The amounts of the total cost of

different roles based on the selected safety factors and the

revised treatment strategies are presented in Table 8.

In this paper, the results of the proposed algorithm are

compared with the results of a traditional waste load allo-

cation model. In the traditional waste load allocation

model, the total treatment cost is minimized while the

water quality standards are met. The optimal treatment

strategies of dischargers, obtained using the traditional

waste load allocation model, are presented in Table 9. The

total cost of each discharger, based on the results of the

traditional waste load allocation model, is given in

Table 10. In many cases, the optimal treatment strategies

obtained by the traditional waste load allocation method

(Table 9) are not the equilibrium solutions of the game. For

example, assuming others’ strategies to be constant, by a

30 % decrease in the treatment level of discharger 2 in

scenario 3, the amount of the total cost for this discharger

will decrease from 0.15000 to 0.11000 Dollars.

Comparing the results of the models presented in

Tables 8 and 10 shows that the least-cost optimization

model works well and the total cost of dischargers based on

the results of this model is less than that obtained using the

game theory-based model. However, the least-cost treat-

ment strategy is not implemented by dischargers in practice

Fig. 6 Variations of the DO

concentration along the Zarjub

River based on the revised

penalty functions

Table 8 Total cost of

dischargers based on the results

of proposed methodology in the

case of applying safety factors

As water quality standards are

met in all scenarios, no penalty

cost is allocated to dischargers

Discharger Scenario

1 2 3 4 5 6 7 8 9

1 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38 3.38

2 0.00 0.00 0.10 0.00 0.05 0.15 0.00 0.00 0.00

3 1.27 1.27 1.27 0.85 0.85 1.27 1.27 1.27 0.85

4 1.90 1.90 1.90 1.90 1.90 1.90 1.90 0.63 1.90

5 1.16 1.16 0.78 1.16 0.78 1.16 1.16 1.16 1.16

6 9.52 9.52 9.52 9.52 9.52 9.52 9.52 9.52 9.52

7 2.54 2.54 2.54 2.54 2.54 1.27 1.27 2.54 1.27

Table 9 Optimal wastewater treatment levels of dischargers obtained

using the traditional waste load allocation model (%)

Discharger Scenario

1 2 3 4 5 6 7 8 9

1 90 90 90 90 90 90 90 90 90

2 0 0 90 60 30 90 0 90 60

3 90 90 60 90 60 90 90 90 90

4 90 90 90 60 90 90 90 90 60

5 90 90 90 90 60 90 90 60 90

6 90 90 90 90 90 90 90 90 90

7 60 60 60 60 60 30 30 30 30
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because they act non-cooperatively. In other words, the

least-cost treatment strategy is acceptable when dischargers

participate in a grand coalition. The proposed methodology

gives an evolutionary stable treatment strategy which dis-

chargers have consensus to implement it. Therefore, it is

suggested that the IDOE sets the penalty functions using

the game theoretic waste load allocation model.

Summary and conclusion

In this paper, using the concept of evolutionary game

theory, a new methodology was proposed for estimating

the necessary penalty functions for river water quality

management. We developed an asymmetric evolutionary

game model to determine evolutionary stable strategies

(the dischargers’ treatment strategies) incorporating a river

water quality simulation model and MGA considering the

river assimilative capacity. The penalty functions were

determined in a way that they minimize the possibility of

violating the water quality standards. The applicability of

the proposed methodology was examined by using the

available water quantity and quality data from the Zarjub

River in Iran. In an evolutionary environment of the game

in rivers, any discharger tries to find the most stable

treatment strategy considering the behavior of other dis-

chargers. It was also illustrated that while the environ-

mental protection agency determines the penalties using

the compliance costs analysis, there is still a high possi-

bility of violating the water quality standards. To solve this

problem, a safety factor was applied to environmental

penalties so that the corresponding treatment strategies

would satisfy the water quality standards. The resulted

penalty functions can be used by environmental protection

agency to carry out the river water quality management

more efficiently. Moreover, it was shown that the results of

traditional models of pollution load allocation may not

provide stable treatment strategies in a non-cooperative

environment. The methodology presented in this paper can

be easily applied for water quality management in rivers

with several pollution load dischargers. In future works, the

methodology can be extended to incorporate the uncer-

tainties in pollution loads and decay rates. Moreover, the

total amount of penalty which should be allocated to dis-

chargers can be divided among them in proportion to their

pollution loads.
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