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Abstract A major concern in the design of foundations is

to achieve a precise estimation of bearing capacity of the

underlying soil or rock mass. The present study proposes a

new design equation for the prediction of the bearing

capacity of shallow foundations on rock masses utilizing

artificial neural network (ANN). The bearing capacity is

formulated in terms of rock mass rating, unconfined com-

pressive strength of rock, ratio of joint spacing to founda-

tion width, and angle of internal friction for the rock mass.

Further, a conventional calculation procedure is proposed

based on the fixed connection weights and bias factors of

the best ANN structure. A comprehensive database of rock

socket, centrifuge rock socket, plate load, and large-scaled

footing load test results is used for the model development.

Sensitivity and parametric analyses are conducted and

discussed. The results clearly demonstrate the acceptable

performance of the derived model for estimating the

bearing capacity of shallow foundations. The proposed

prediction equation has a notably better performance than

the traditional equations.

Keywords Bearing capacity � Shallow foundation � Rock

mass � Artificial neural network � Tractable design equation

Introduction

A major concern for foundation design of structures is to

precisely estimate the bearing capacity of the underlying

layer. The bearing capacity can be defined as the pressure

required for causing failure through rupture of underlying

soil or rock mass. Rock masses are commonly chosen as

the underlying layer for important structures due to less

settlement and high bearing capacity compared to soils.

Figure 1 represents a typical sketch of a shallow founda-

tion resting on a jointed rock mass. Bearing capacity failure

in overloaded rock foundations is one of the common

failure mechanisms in rocks (Sowers 1979). This failure

mechanism mainly depends on the ratio of space between

joints to foundation width (S/B), joint conditions (open or

closed), the direction of joints, and rock type (Sowers

1979).

Direct determination of the ultimate bearing capacity

using testing methods requires cumbersome and expensive

laboratory or field tests. Therefore, several analytical and

semi-empirical methods have been conducted to estimate

the ultimate bearing capacity of rock beneath the founda-

tions. Analytical methods such as finite element and limit

equilibrium methods use initial assumptions for relating the

bearing capacity to the footing geometry and rock prop-

erties (Terzaghi 1946; Bishoni 1968; Sowers 1979;

Goodman 1989). The semi-empirical methods often pro-

pose a correlation between the bearing capacity and other

properties of rock mass based on the empirical observa-

tions and experimental test results (Bowles 1996; Hoek and

Brown 1988; Carter and Kulhawy 1988). One of the major

drawbacks of the analytical methods is that they do not take

into account the important role of the rock type and its

qualitative mass parameters such as rock mass rating

(RMR). On the other hand, the empirical methods often
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relate the bearing capacity to qualitative and rock mass

classification parameters and do not account for the

geometry of the foundations or space between joints. The

limitations of the existing analytical and empirical methods

imply the necessity of developing new models correlating

the bearing capacity factor to both quantitative and quali-

tative parameters.

Soft computing techniques are considered as alternatives

to traditional methods for tackling real-world problems.

They automatically learn from data to determine the

structure of a prediction model. Artificial neural network

(ANN) is a well-known branch of soft computing (Alavi

et al. 2010). This technique has been successfully

employed to solve problems in civil engineering field (e.g.,

Kayadelen et al. 2009; Günaydın 2009; Kolay et al. 2010;

Das et al. 2010; Yilmaz 2010a, b; Akgun and Türk 2010;

Kaunda et al. 2010; Das et al. 2011a, b, c; Mert et al. 2011;

Alavi and Gandomi 2011; Mollahasani et al. 2011; Yilmaz

et al. 2012; Sattari et al. 2012; Tasdemir et al. 2013; Ocak

and Seker 2012, 2013; Isik and Ozden 2013; Alkhasawneh

et al. 2014; Wu et al. 2013; Maiti and Tiwari 2014; Park

et al. 2013; Ceryan et al. 2013; Manouchehrian et al. 2014).

Besides, ANN has been used to predict the bearing capacity

of shallow foundations resting on soil layers (Sole-

imanbeigi and Hataf 2005; Padmini et al. 2008; Kuo et al.

2009; Kalinli et al. 2011).

This study is aimed at developing a new ANN model for

the prediction of the bearing capacity of shallow founda-

tions on rock masses. Despite the good performance of

ANN in most cases, it is considered a black-box model.

That is, it is not capable of generating practical prediction

equations. To overcome this limitation, this study proposes

an efficient approach to convert the derived ANN model

into a relatively simple design equation through the inter-

pretation of the fixed connection weights and bias factors

of the best network structure. Multilayer perceptron (MLP),

as one of the most popular ANN structures, is chosen for

the analysis. A comparative database is used for the

establishment of the models.

Artificial neural network

Artificial neural network is a computational simulated

system that follows the neural networks of the human

brain. The current interest in ANN is largely due to its

ability to mimic natural intelligence in its learning from

experience (Zurada 1992). ANN typically includes a series

of processing elements, nodes or neurons, generally

arranged in different layers such as input layer, output layer

and one or more hidden layers between them. ANN and

similar soft computing techniques are usually utilized to

find the relationship or program between input and output

variables. Unlike conventional methods, ANN has the

ability to achieve acceptable results in less time and

without need for predefined criteria, assumptions or rules.

In the ANN process, inputs are adapted in hidden layer and

after exit from output layer turn into the network’s results.

ANN uses a learning rule to find a set of weights on

training data. Then, the network produces new output with

a particular accuracy. Thereafter, another data set is needed

to validate the performance of training phase. This process

is developed until the error reaches the minimum value

(Alavi and Gandomi 2011).

Multilayer perceptron networks

Multilayer perceptron is one of the most widely used ANN

structures utilizing feed-forward architecture. Rumelhart

and McClelland (1986) and McClelland and Rumelhart

(1988) developed back propagation (BP) or backward

propagation of errors algorithm for training multilayer

perceptrons. In MLP, each neuron of a layer is intercon-

nected with weighted connections to all neurons of the next

layer. Each layer may perform independent calculations on

data that is received from the previous layer. In an artificial

neuron, each input (xi) from the previous layer is multiplied

by an adaptive weight coefficient (wij) that connects two

layers. Thereafter, the weighted inputs are summed

(Summation Function) and a bias value (Biasj) is added.

This activity is then changed by a function (Transfer

Function) to produce the output of the layer (yj) or input of

next layer. For nonlinear problems, the sigmoid functions

(Hyperbolic tangent sigmoid or log-sigmoid) are usually

selected as the transfer function (Alavi et al. 2010; Alavi

and Gandomi 2011; Mollahasani et al. 2011). This process

is typically shown by Eq. (1) and represented in Fig. 2.

yj ¼ f
Xn

i¼1

wij:xi þ Biasj

 !
ð1Þ

The BP algorithm adjusts network weights by error

propagation from the output to the input. In this algorithm,

the process reverted and weight values changed to

B

S

Jointed Rock 
Mass

Fig. 1 A typical sketch for a shallow foundation on jointed rock

mass
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minimize the error (Alavi et al. 2010; Alavi and Gandomi

2011). Modifying the interconnections between layers will

reduce the following error function (E):

E ¼ 1

2

X

n

X

k

ðtn
k � hn

kÞ
2 ð2Þ

where tn
k and hn

k are, respectively, the calculated output and

the actual output value. n is the number of sample; and k is

the number of output neurons.

Numerical simulation of bearing capacity

In order to reach reliable estimations of the bearing

capacity of shallow foundations on rock masses, the impact

of several parameters should be incorporated into the

model development. The general forms of the existing

prediction equations indicate that the ultimate bearing

capacity of shallow foundations on rock mass mainly

depends on the foundation width and properties of the rock

beneath it (Terzaghi 1946; Bishoni 1968; Sowers 1979;

Goodman 1989; Bowles 1996; Hoek and Brown 1988;

Carter and Kulhawy 1988). The rock mass qualitative

parameters such as rock quality designation (RQD) index

and geological strength index (GSI) are widely used to

develop empirical and semi-empirical equations for the

evaluation of rock mass properties (Hoek and Brown 1988;

Bowles 1996, 1988; Carter and Kulhawy 1988; AASHTO

2007; Paikowsky et al. 2010). The RMR index is another

qualitative parameter that has found wide applications in

various types of geological engineering projects. This

parameter was introduced by Bieniawski (1978, 1989) to

provide reliable estimation of rock mass properties. The

RMR value represents different geologic parameters such

as RQD index, joint or discontinuity spacing, joint condi-

tion, ground water condition, etc. Thus, the RMR param-

eter implicitly includes the effect of several important

parameters for characterizing the rock mass behavior. The

present study takes into account the effects of both these

qualitative parameters, as well as other influencing quan-

titative parameters to predict the bearing capacity of

shallow foundations on rock masses. It is notable that the

rock mass is considered as a continuum equivalent med-

ium. Consequently, the proposed model for the prediction

of the ultimate bearing capacity (qult) is considered to be a

function of the following parameters:

qult;ANN ¼ f RMR; qu;
S

B
; /

� �
ð3Þ

where RMR is the rock mass rating, qu (MPa) the uncon-

fined compressive strength of rock, S/B the ratio of joint

spacing to foundation width (equivalent diameter), / (�)

the angle of internal friction for rock mass.

Experimental database

The ANN-based models are developed using an extensive

database including 102 elaborate experimental data obtained

from different studies (Abu-Hejleh and Attwooll 2005;

Baker 1985; Burland and Lord 1970; Carrubba 1997; Lord

1997; Glos and Briggs 1983; Goek and Hustad 1979;

Hummert and Cooling 1988; Jubenville and Hepworth 1981;

Lake and Simons 1970; Leung and Ko 1993; Maleki and

Hollberg 1995; Mallard 1977; McVay et al. 2006; Nitta et al.

1995; Pellegrino 1974; Pells and Turner 1979, 1980; Ra-

dhakrishnan and Leung 1989; Spanovich and Garvin 1979;

Thorne 1980; Ward and Burland 1968; Webb 1976; Wil-

liams 1980; Wilson 1976). The database contains results of

49 rock socket tests (6 centrifuge rock socket tests), 40 plate

load tests and 13 load test on scaled model of footings. The

database includes the results of experiments on circle and

square footings of different sizes tested on various types of

masses such as sandstone, claystone, shale, chalk, and basalt.

The major bearing capacity values of rock mass is qult, ini-

tially obtained or interpreted from load–displacement curves

proposed by Hirany and Kulhawy (1988). Different parts of

the employed database have been used by other researchers

for the behavioral analysis of qult (AASHTO 2007; Pai-

kowsky et al. 2010). The descriptive statistics of the exper-

imental results are given in Table 1. The complete list of the

collected data is represented in Table 2.

Fig. 2 Input–processing–output system in an artificial neuron

Table 1 Descriptive statistics of parameters in database used to

develop ANN-based model

Parameter RMR qu (MPa) S/B / (�) qult (MPa)

Mean 62.69 4.33 5.75 30.94 10.08

Standard deviation 24.37 8.17 7.33 4.93 12.84

Sample variance 593.76 1,395.57 53.67 24.28 3,444.89

Kurtosis -0.43 0.83 4.26 0.39 0.55

Skewness -0.69 0.18 2.11 0.12 0.14

Minimum 15.00 0.24 0.35 20.00 0.25

Maximum 100.00 55.00 36.69 45.00 75.60
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Table 2 The set of collected data incorporated in the ANN model and results

Case

no.

References Rock type Type of load test RMR qu

(MPa)

S/B / (�) qult

(MPa)

1 Abu-Hejleh

and Attwooll

(2005)

Weathered Claystone Rock socket 70 0.63 1.86 29.3 2.63

2 Blue and sandy claystone, thinly bedded, very hard Rock socket 70 0.80 1.62 29.3 2.54

3 Blue and clayey sandstone, well cemented, very hard Rock socket 70 10.49 2 29.3 15.23

4 Pierre shale, very well cemented, very hard Rock socket 82 22.98 1.75 25 26.33

5 Blue claystone with occasional interbeds of sandstone

and siltstone

Rock socket 70 1.21 3.46 30 6.94

6 Claystone, weathered Rock socket 70 0.48 3.2 30 2.25

7 Baker (1985) Hardpan (hard-bearing till). Till has a qu comparable

to that of rock

Rock socket 70 1.38 2.38 35 5.84

8 Till Rock socket 68 0.57 1.03 35 2.29

9 Burland and

Lord (1970)

Hardpan (hard-bearing till). Till has a qu comparable

to that of rock

Rock socket 80 1.11 2.4 35 4.79

10 Grade IV chalk, rubbly, partly weathered chalk with

bedding and jointing

Plate load test

(Emb)

20 0.66 0.67 28 0.59

11 Grade V chalk, structureless remolded chalk

containing small lumps of intact chalk

Plate load test

(Emb)

15 0.89 0.71 28 0.50

12 Grade IV chalk, rubbly, partly weathered chalk with

bedding

Plate load test

(Emb)

15 1.14 0.71 28 0.60

13 Grade III chalk, rubbly to blocky unweathered chalk Plate load test

(Emb)

15 1.25 0.71 30 0.60

14 Butler and

Lord (1970)

Lower grey chalk marl Plate load test

(emb)

15 0.90 0.36 28 0.48

15 Lower grey chalk marl Plate load test

(Emb)

72 0.82 2.14 28 3.35

16 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

60 0.82 2.18 30 2.40

17 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

55 0.82 2.18 30 1.00

18 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

70 0.82 2.18 30 0.96

19 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

68 0.55 2.18 30 0.96

20 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

35 0.60 2.18 30 1.15

21 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

35 0.61 2.18 30 1.46

22 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

35 0.58 2.18 30 1.61

23 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

40 0.50 2.18 30 1.11

24 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

50 0.53 2.18 30 1.03

25 Occasional hard lumps of intact chalk and flint stones

in a weathered chalk matrix

Plate load test

(Emb)

50 0.90 2.18 30 0.46

26 Lower grey chalk marl Plate load test

(Emb)

35 0.90 2.14 28 2.07

27 Lower grey chalk marl Plate load test

(Emb)

35 0.90 2.14 28 2.00

28 Lower grey chalk marl Plate load test

(Emb)

15 0.87 2.14 28 3.50

29 Diabase breccia, highly fractured, RQD = 10 % Rock socket 20 15.00 0.51 35 8.90

30 Limestone, intact, RQD = 100 % Rock socket 75 2.50 2.29 37 8.90
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Table 2 continued

Case

no.

References Rock type Type of load test RMR qu

(MPa)

S/B / (�) qult

(MPa)

31 Glos and

Briggs (1983)

Sandstone, horizontally bedded, shaley,

RQD = 74 %

Rock socket 55 8.36 1 30 10.10

32 Sandstone, horizontally bedded, shaley, with some

coal stringers, RQD = 88 %

Rock socket 60 9.26 1 30 13.10

33 Goeke and

Hustad

(1979)

Clay-shale, with occasional thin limestone seams Rock socket 78 0.81 4.01 24 4.69

34 Hummert and

Cooling

(1988)

Shale, thinly bedded with thin sandstone layers Rock socket 65 3.82 2.65 25 9.33

35 Jubenville and

Hepworth

(1981)

Shale, unweathered Rock socket 65 1.08 6.39 40 2.98

36 Lake and

Simons

(1970)

Grade V chalk, completely weathered, structureless

remolded chalk containing small lumps of intact

chalk

Plate load test

(Emb)

70 0.46 14.18 28 2.39

37 Lake and

Simons

(1970)

Chalk Plate load test

(Emb)

90 1.04 14.15 38.5 12.26

38 Chalk Plate load test

(Emb)

80 1.04 14.15 38.5 5.27

39 Chalk Plate load test

(Emb)

92 1.04 14.15 38.5 14.75

40 Leung and Ko

(1993)

Gypsum mixed with cement is used as pseudo rock Rock socket

(CentriFotinguge

model)

70 2.10 2.86 20 6.51

41 Gypsum mixed with cement is used as pseudo-rock Rock socket

(CentriFotinguge

model)

70 6.70 2.86 20 16.10

42 Gypsum mixed with cement is used as pseudo-rock Rock socket

(CentriFotinguge

model)

70 4.20 2.86 20 10.90

43 Gypsum mixed with cement is used as pseudo rock Rock socket

(CentriFotinguge

model)

70 5.40 2.86 20 15.70

44 Gypsum mixed with cement is used as pseudo-rock Rock socket

(CentriFotinguge

model)

70 8.50 2.86 20 23.00

45 Gypsum mixed with cement is used as pseudo-rock Rock socket

(CentriFotinguge

model)

70 11.30 2.86 20 27.70

46 Lord (1997) Chalk, Grade C, medium high density Plate load test 15 0.31 0.7 30 0.30

47 Chalk, Grade C, medium high density Plate load test 15 0.92 0.7 30 0.50

48 Chalk, Grade B and C, low density Plate load test 15 0.24 0.7 30 0.25

49 Chalk, Grade B and C, low density Plate load test 18 0.56 0.7 30 0.50

50 Chalk, Grade D, structureless or remolded mélange,

\35 % comminuted chalk matrix, [65 % coarse

fragments

Plate load test 20 0.50 0.7 30 0.50

51 Maleki and

Hollberg

(1995)

Marlstone with shorite crystals Plate load test 62 13.80 13.03 28 20.00

52 Mallard (1977) Chalk, weak, weathered, fractured with open fissures Plate load test

(Emb)

80 0.91 5.49 30 5.00

53 McVay et al.

(2006)

Limestone Rock socket 70 1.92 0.72 40 4.51

54 Limestone Rock socket 70 8.47 0.72 40 5.75
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Table 2 continued

Case

no.

References Rock type Type of load test RMR qu

(MPa)

S/B / (�) qult

(MPa)

55 Nitta et al.

(1995)

Granite, weathered Plate load test 80 1.07 6.1 41.3 18.00

56 Pellegrino

(1974)

Tuff Plate load test 70 4.72 6.6 29.83 10.53

57 Tuff Plate load test 72 4.03 6.6 29.83 10.00

58 Tuff Plate load test 70 4.03 6.6 29.83 11.16

59 Tuff Plate load test 75 3.35 6.6 29.83 12.00

60 Tuff Plate load test 65 2.00 6.6 29.83 5.92

61 Pells and

Turner (1979,

1980)

Strong sandstone, medium–strong core sections can

be broken by hand with difficulty and lightly scored

with a steel knife, slightly fractured

Footing 65 14.00 26.42 34 75.60

62 Strong sandstone, medium–strong core sections can

be broken by hand with difficulty and lightly scored

with a steel knife, slightly fractured

Footing 65 11.61 36.69 34 72.80

63 Strong sandstone, medium–strong core sections can

be broken by hand with difficulty and lightly scored

with a steel knife, slightly fractured

Footing 70 9.99 12.95 28 25.00

64 Strong sandstone, medium–strong core sections can

be broken by hand with difficulty and lightly scored

with a steel knife, slightly fractured

Rock socket 70 6.00 6.83 28 13.80

65 Strong sandstone, medium–strong core sections can

be broken by hand with difficulty and lightly scored

with a steel knife, slightly fractured

Rock socket 70 6.00 3.15 27 7.67

66 Strong sandstone, medium–strong core sections can

be broken by hand with difficulty and lightly scored

with a steel knife, slightly fractured

Footing 80 0.30 4.96 27 4.50

67 Very weak sandstone—rock structure is evident but

frequent zones of sugary sandstone—crumbled by

hand, highly weathered and fractured

Footing 80 0.30 6.5 27 3.75

68 Fresh shale Footing (model

footing)

90 35.00 1.47 27 23.57

69 Radhakrishnan

and Leung

(1989)

Siltstone, medium–hard, fragmented Rock socket 60 9.00 0.86 32 13.10

70 Spanovich and

Garvin

(1979)

Shale Footing 60 1.45 1.99 36 4.44

71 Shale Footing 70 1.45 2.5 36 6.62

72 Shale Footing 50 1.45 2.01 36 3.47

73 Thorne (1980) Shale Rock socket 50 34.00 1.35 27 28.00

74 Sandstone Rock socket 50 12.50 1.35 34 14.00

75 Sandstone, fresh, defect free Rock socket 70 27.50 2.03 34 50.00

76 Shale, occasional recemented moist fractures and thin

mud seams, intact core lengths 75-250 mm

Rock socket 50 55.00 0.5 27 27.80

77 Ward and

Burland

(1968)

Grade I chalk, hard and brittle Plate load test

(Emb)

40 2.07 0.35 30 1.13

78 Grade II chalk, medium-hard chalk, joints more than

0.66 ft apart and closed

Plate load test

(Emb)

20 1.60 0.35 30 1.00

79 Grade III chalk, unweathered chalk, joints 0.2–0.66 ft

apart, open up to 0.01 ft

Plate load test

(Emb)

20 0.91 0.71 27 0.75

80 Grade IV chalk, weathered chalk with bedding and

jointing, joints 0.033–0.2 ft apart and open up to

0.066 ft

Plate load test

(Emb)

15 0.57 0.71 27 0.40

81 Webb (1976) Diabase, highly weathered Rock socket 60 0.52 0.99 35 1.32
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Data preparation

Overfitting is one of the essential problems in generaliza-

tion of ANN. Overfitting generally occurs when a model is

excessively complex, such as having too many parameters

relative to the number of observations. A model which has

been overfitted will generally have poor predictive per-

formance, as it can exaggerate minor fluctuations in the

data. An approach to avoid overfitting is to test individuals

from the run on a validation set to find a better general-

ization. Then, another data set should be used at the end of

the data analysis to verify the generalization performance

of the model (Banzhaf et al. 1998; Gandomi et al. 2011).

Accordingly, in the present study, the available data sets

are randomly classified into three subsets: (1) learning, (2)

validation (check), and (3) test subsets. The learning set is

used to fit the models and the validation set is used to

estimate the prediction error for model selection. Since

both of the learning and validation data are involved in the

modeling process, they can be categorized into one group,

namely training data. Finally, the test set is employed for

the evaluation of the generalization ability of the final

chosen model. The learning, validation and test data are

usually taken as 50–70, 15–25 and 15–25 % of all data,

respectively (Shahin and Jaksa 2005; Alavi et al. 2011). In

the present study, 85 % of the data sets are taken for the

learning and validation processes (72 data vectors for the

learning process and 15 data sets as the validation data).

The remaining 15 % of the data sets are used for the testing

of the obtained models.

Statistical criteria for measuring performance

The best ANN models are chosen on the basis of a multi-

objective strategy as follows: (Alavi and Gandomi 2011;

Gandomi et al. 2011):

1. The simplest model, although this is not a predominant

factor.

2. The best fitness value on the learning data sets.

3. The best fitness value on the validation data sets.

In order to assess the performance of ANN model,

correlation coefficient (R), root mean squared error

(RMSE) and mean absolute error (MAE) are considered

which are calculated using the following equations:

R ¼
Pn

i¼1 ðhi � �hiÞðti � �tiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðhi � �hiÞ2

Pn
i¼1 ðti � �tiÞ2

q ð4Þ

Table 2 continued

Case

no.

References Rock type Type of load test RMR qu

(MPa)

S/B / (�) qult

(MPa)

82 Williams

(1980)

Mudstone, moderately weathered Rock socket 70 1.14 6.6 35 3.68

83 Mudstone, moderately weathered Footing 81 0.54 5.08 30 4.51

84 Mudstone, moderately weathered Footing 81 0.57 3.05 30 4.98

85 Mudstone, moderately weathered Footing 90 0.60 18.29 30 7.20

86 Mudstone, moderately weathered Footing 100 0.44 30.48 29 10.57

87 Mudstone, moderately weathered Rock socket 85 0.65 8.13 31 5.16

88 Mudstone, moderately weathered Rock socket 95 0.75 21.34 33 9.26

89 Mudstone, moderately weathered Rock socket 88 0.67 8.13 31 4.87

90 Mudstone, moderately weathered Rock socket 100 0.57 24.38 30 12.48

91 Mudstone, moderately weathered Rock socket 100 0.45 21.34 29 10.19

92 Mudstone, moderately weathered Rock socket 100 0.52 9.14 30 13.09

93 Mudstone, moderately weathered Rock socket 85 1.93 3.56 37 9.02

94 Mudstone, moderately weathered Rock socket 70 1.40 2.44 36 3.39

95 Mudstone, moderately weathered Rock socket 95 2.98 18.29 39 32.47

96 Mudstone, moderately weathered Rock socket 95 1.83 24.38 37 29.28

97 Mudstone, moderately weathered Rock socket 90 2.27 18.29 38 23.49

98 Mudstone, moderately weathered Rock socket 92 2.12 21.34 37 26.74

99 Mudstone, moderately weathered Rock socket 90 1.53 3.05 36 10.19

100 Mudstone, moderately weathered Rock socket 90 2.19 8.13 38 17.97

101 Mudstone, moderately weathered Rock socket 90 1.97 7.11 37 13.58

102 Wilson (1976) Weak clayey mudstone, cretaceous, bedding planes

dipping at only a few degrees and occasional

vertical jointing

Rock socket 50 1.09 1.36 45 4.79
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RMSE MPað Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

hi � tið Þ2

n

vuuut
ð5Þ

MAE MPað Þ ¼ 1

n

Xn

i¼1

hi � tij j ð6Þ

in which hi and ti are, respectively, the actual and predicted

output values for the ith output, hi and ti are the average of the

actual and predicted outputs, and n is the number of sample.

Data normalization

An important step to optimize the learning process is data

scaling or normalization. Normalization of data increases

the speed of learning in neural networks and is especially

efficient where the inputs are in widely different scales.

More, it is recommended to normalize or standardize the

inputs in order to reduce the chances of getting stuck in

local optima or unchanged outputs (Alavi et al. 2010). The

activation functions tangent sigmoid or log-sigmoid pro-

vide an output in the ranges [-1 1] and [0 1], respectively.

There are several normalization methods (Swingler 1996;

Mesbahi 2000). In this study, after controlling several

normalization methods, the following method is used to

normalize the variables to a range of [L, U]:

Xn ¼ U � Lð Þ Xmin � X

Xmax � Xmin

þ U; ð7Þ

where Xmax and Xmin are the maximum and minimum

values of the variable and Xn is the normalized value. In the

present study, L = 0.05 and U = 0.95. Since the US

Standard units are considered for the parameters in the

original ANN modeling, the maximum and minimum

values of the qu and qult variables in Eq. (7) should be in

kips per square foot (ksf). Consequently, qu,n and qult,n,

respectively, represent the normalized forms of qu and qult,

and can be readily determined using the following

equations:

qu;n ¼ U � Lð Þ 5� qu=0:0479

1148:7� 5
þ U ð8Þ

qult; n ¼ U � Lð Þ 5:22� qult=0:0479

1578:95� 5:22
þ U ð9Þ

in which, qu and qult are in MPa. Evidently, the RMR, S/B,

and / parameters are not affected by this issue. These three

parameters are normalized using Eq. (7) and their corre-

sponding Xmax and Xmin values shown in Table 1.

Model development

The available database is used for establishing the ANN

prediction models. After developing different models with

different combinations of the input parameters, the final

explanatory variables (RMR, qu, S/B, and /) are selected as

the inputs of the optimal model. For the development of the

ANN models, a script is written in the MATLAB envi-

ronment using Neural Network Toolbox 5.1 (MathWorks

2007). The performance of an ANN model mainly depends

on the network architecture and parameter settings.

According to a universal approximation theorem (Cybenko

1989), a single hidden layer network is sufficient for the

traditional MLP to uniformly approximate any continuous

and nonlinear function. Choosing the number of the hidden

layers, hidden nodes, learning rate, epochs, and activation

function type plays an important role in the model con-

struction (Alavi et al. 2010; Alavi and Gandomi 2011;

Mollahasani et al. 2011). Hence, several MLP network

models with different settings for the mentioned characters

were trained to reach the optimal configurations with the

desired precision (Eberhart and Dobbins 1990). The written

program automatically tries various numbers of neurons in

the hidden layer and reports the R, RMSE and MAE values

for each model. The model that provided the highest R and

lowest RMSE and MAE values on the learning and vali-

dation data sets is chosen as the optimal model. Various

training algorithms are implemented for the training of the

MLP network such as gradient descent (traingd), Leven-

berg–Marquardt (trainlm), quasi-Newton back-propagation

(trainbfg), and resilient (trainrp) back-propagation algo-

rithms. The best results are obtained by Levenberg–Mar-

quardt method. Also, the transfer function between the

input and hidden layer is log-sigmoid of form 1/(1 ? e-x).

A linear transfer function (purelin) is adopted between the

hidden layer and output layer.

The weights and biases are randomly assigned for each

run. These assignments considerably change the perfor-

mance of a newly trained network even when all the pre-

vious parameter settings and the architecture are kept

constant. This leads to extra difficulties in selection of

optimal architecture and parameter settings. To overcome

this difficulty, the weights and biases are frozen after the

networks are well-trained. Thereafter, the following func-

tion is used to convert the optimal ANN model into

mathematical equations relating the input parameters and

the output parameter (h) (Goh et al. 2005; Alavi and

Gandomi 2011):

h ¼ fHO biash þ
Xh

k¼1

VkfIH biashk þ
Xm

i¼1

wikxi

 ! !
ð10Þ

where biash is the hidden layer bias, Vk the weight con-

nection between neuron k of the hidden layer and the single

output neuron, biashk the bias at neuron k of the hidden

layer (k = 1, h), wik the weight connection between the

input variable (i = 1, m) and neuron k of the hidden layer,
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xi the input parameter i, fHO the transfer function between

the hidden layer and output layer, and fIH is the transfer

function between the input and hidden layer (Alavi and

Gandomi 2011).

ANN-based formulation for qult

The model architecture that gave the best results for the

formulation of qult is found to contain:

• One invariant input layer, with 4 (n = 4) arguments

(RMR, qu, S/B, and /) and a bias term;

• One invariant output layer with 1 node providing the

value of qult.

• One hidden layer having 5 (m = 5) nodes.

Figure 3 shows a schematic illustration of the produced

ANN network. The ANN model is built with a learning rate

of 0.05 and trained for 1,000 epochs. After de-normaliza-

tion of the output, the final ANN-based formulation of qult

(MPa) is as follows:

qult ðMpaÞ ¼ 0:04788ð5:22� 1748:59ðA� 0:95ÞÞ ð11Þ

where,

A ¼
X5

k¼1

Vk

1þ e�Fj
þ biash ð12Þ

Fj ¼ RMRn � W1k þ qu;n � W2k þ
S

B

� �

n

� W3k þ / � W4k þ biask ð13Þ

in which RMRn, qu,n, (S/B)n, and /n, respectively, represent

rock mass rating, unconfined compressive strength of rock,

ratio of joint spacing to foundation width, and angle of

internal friction for rock mass normalized using Eqs. (7)

and (8). k is the number of the hidden layer neurons. The

input layer weights (Wk), input layer biases (biask), hidden

layer weights (Vk), and hidden layer biases (biash) of the

optimum ANN model are presented in Tables 3 and 4. A

comparison of the measured and predicted qult values by

ANN is shown in Fig. 4.

Calculation procedure: design example

A calculation procedure is proposed based on the fixed

connection weights and bias factors of the best obtained

ANN structure (Alavi and Gandomi 2011). The provided

illustrative design example clearly explains the imple-

mentation of the ANN prediction equation. For this aim,

one of the samples used for the testing of the models is

taken. The RMR, qu, S/B, and / values for this sample are

equal to 50.00, 12.5 MPa, 1.35, and 34�, respectively, qult

is required. The calculation procedure can be divided into

three sections: (1) normalization of the input data; (2)

calculation of the hidden layers; and (3) prediction of the

output (Alavi and Gandomi 2011). The calculation proce-

dure is outlined in the following steps:

Step 1: Normalization of the input data (RMR, qu, S/B,

and /) to lie in a range of 0.05–0.95 and calculation of the

input neurons (RMRn, qu,n, (S/B)n, and /n) for each input

data vector using Eqs. (7) and (8). The input neurons are

calculated as:

For RMR: the maximum and minimum values of the

variable are 15 and 100, respectively. Thus:

RMRn ¼ ð0:95� 0:05Þ 15� RMR

100� 15
þ 0:95 ¼ 0:579

For qu: the qu,n value is obtained using Eq. (8). Thus:

qu;n ¼ 0:95� 0:05ð Þ 5� qu= 0: 0 4 7 9

1148:7� 5
þ 0:95 ¼ 0:748

Similarly,

ðS=BÞn ¼ 0:925 and fn ¼ 0:446:

Step 2: Calculation of the hidden layer. The input value

of each neuron in the hidden layer is determined for five

neurons using the input layer weights and biases shown in

Fig. 3 A schematic illustration of produced MLP network

Table 3 Weight and bias values between the input and hidden layer

Weights Number of hidden neurons (k)

1 2 3 4 5

W1k -4.3660 1.2050 1.0146 -2.3774 1.0715

W2k -5.9392 2.6041 -3.3564 -0.1235 3.7980

W3k 4.4797 1.5636 3.7741 -5.3471 0.3445

W4k -0.8778 2.2540 0.9362 3.3533 3.6613

biask -2.8214 -2.5686 1.1696 0.8654 -4.7052
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Table 3. Given the information provided, the input values

of the neuron (F1, …, F5) are calculated using Eq. (13):

F1 ¼ �4:3660 � 0:579� 5:9392 � 0:748þ 4:4797

� 0:925� 0:8778 � 0:446� 2:8214

¼ �6:0396

Similarly,

F2¼ 2:5286;F3¼ 3:1551;F4¼�4:0540; and F5¼ 0:7077.

Step 3: Prediction of qult. The input value of each output

neuron is calculated using an activation function (log-sig-

moid function). The calculated values are multiplied by the

hidden layer connection weights (Table 4) and the sum-

mation is obtained:

A ¼ 6:3774f F1ð Þ þ 9:4936f F2ð Þ � 2:8366f F3ð Þ
� 0:8674f F4ð Þ � 1:3602f F5ð Þ � 4:3811

¼ 0:780

where f(x) is the a log-sigmoid function of form 1/(1 ? e-x).

Using Eq. (11), the value of qult is calculated as follows:

qult ¼ 0:04788 � 5:22� 1748:59 � 0:780� 0:95ð Þð Þ
¼ 14:48 MPa

In this example, the results are in good agreement with

the measured values (qult = 14 MPa). The predicted qult

value is 3.4 % higher than the measured value.

Results and discussions

According to Smith (1986), if a model gives R [ 0.8, and

the error values (e.g., RMSE and MAE) are at the mini-

mum, there is a strong correlation between the predicted

and measured values. It can be observed from Fig. 4 that

the ANN model with high R and low RMSE and MAE

values is able to predict the target values with an accept-

able degree of accuracy. The performance of the model on

the training and testing data suggests that it has both good

predictive abilities and generalization performance.

Besides, new criteria recommended by Golbraikh and

Tropsha (2002) are checked for external validation of the

model on the testing data sets. It is suggested that at least

one slope of regression lines (k or k0) through the origin

should be close to 1. Also, the performance indexes of m

and n should be lower than 0.1. Recently, Roy and Roy

(2008) introduced a confirm indicator of the external pre-

dictability of models (Rm). For Rm [ 0.5, the condition is

satisfied. Either the squared correlation coefficient (through

the origin) between predicted and experimental values

(Ro2), or the coefficient between experimental and pre-

dicted values (Ro02) should be close to R2
Test, and close to 1.

The considered validation criteria and the relevant results

obtained by the models are presented in Table 5. As it is

seen, the derived model satisfies the required conditions.

The validation phase ensures the derived ANN model is

strongly valid.
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Fig. 4 Measured versus predicted qult values using the ANN model:

a training (learning and validation) data, b testing data

Table 4 Weight and bias

values between the hidden and

output layer

Weights Number of hidden neurons (k)

1 2 3 4 5 biash

Vk 6.3774 9.4936 -2.8366 -0.8674 -1.3602 -4.3811
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In order to have an idea about the prediction perfor-

mance of the proposed model against a classical model, a

comparative study is conducted. For this aim, the obtained

results are compared with those provided by the following

well-known model developed by Goodman (1989) for the

estimation of qult of the non-fractured rocks:

qult ¼ qu

1

N/ � 1
N/

S

B

� � N/ � 1
� �

=N/

�1

0
@

1
A

0
@

1
A;

N/ ¼ tan2 45 ¼ /
2

� �
ð14Þ

where, qu is the unconfined compressive strength of rock,

S/B the ratio of joint spacing to foundation width, / the

angle of internal friction for the rock mass, N/ the non-

dimensional bearing capacity factor as a function of /.

Figure 5 represents the prediction made by the Good-

man’s and ANN models for the entire database. As can be

observed, the proposed ANN model (R = 0.976,

RMSE = 60.38, MAE = 32.97) model significantly out-

performs the Goodman’s model (R = 0.880, RMSE =

443.22, MAE = 140.97). Note that another major advantage

of the proposed model over the Goodman’s model is that it

considers the important effect of rock mass classification

through using RMR. It is worth mentioning that the most of

the existing models are derived based on traditional statis-

tical analyses (e.g., regression analysis). The major limita-

tion of this type of analysis is that the structures of the models

are designated after controlling only few equations estab-

lished in advance. Thus, such models cannot efficiently

consider the interactions between the dependent and inde-

pendent variables. Conversely from the empirical and ana-

lytical methods, a distinction of ANN for determining the

bearing capacity lies in its powerful ability to model the

mechanical behavior without requesting a prior form of the

existing relationships or any assumptions.

ANN sensitivity analysis of independent variables

It is known that the ANN weight values cannot be inter-

preted as regression coefficients nor can be used to com-

pute the impact or response of variables. Considering the

necessity of realizing the relative importance and output

response, several approaches are proposed by various

researchers to interpret the ANN weights (Garson 1991;

Goh 1994; Olden et al. 2004). In this study, Garson (1991)

approach is employed to obtain the relative importance of
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Fig. 5 Experimental versus predicted qult values using different

models

Table 5 Statistical parameters of the ANN model for the external validation

Item Formula Condition The ANN model

1 R 0.8 \ R 0.953

2
k ¼

Pn

i¼1
hi � tið Þ

h2
i

0.85 \ k \ 1.15 0.857

3
k0 ¼

Pn

i¼1
hi�tið Þ

t2
i

0.85 \ k0\ 1.15 1.095

4 m ¼ R2�Ro2

R2
mj j\0:1 –0.067

5 n ¼ R2�Ro
02

R2
nj j\0:1 –0.086

6 Rm ¼ R2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Ro2j j

p� �
0.5 \ Rm 0.684

Where
Ro2 ¼ 1�

Pn

i¼1
ti�ho

ið Þ2Pn

i¼1
ti�tið Þ2

and ho
i = k 9 ti

Should be close to 1 0.969

Ro02 ¼ 1�
Pn

i¼1
hi�to

ið Þ2Pn

i¼1
hi�hið Þ2 and ti

o = k0 9 hi

Should be close to 1 0.986
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each variable. It is worth mentioning that the important role

of RMR, qu, S/B and / in the prediction of qult is well-

understood. Removing each of these parameters from the

conducted analyses has resulted in decreasing the perfor-

mance of the model. Thus, the sensitivity analysis is only

performed to have a comparison between these important

parameters.

However, according to the Garson’s approach, inter-

connection weights between layers of a trained neural

network are partitioned and the absolute values of weights

are taken to calculate the relative importance of each input

variable. This approach has been implemented by several

researchers (Das and Basudhar 2008; Alavi et al. 2010;

Mollahasani et al. 2011). Figure 6 shows the procedure of

this algorithm (Alavi et al. 2010). The relative importance

contributions of RMR, qu, S/B and / in the prediction of

qult obtained by ANN model are represented in Fig. 7. As

represented in Fig. 6, the relative importance values for

RMR, qu, S/B and / are 19, 28, 35 and 19 %, respectively.

These values indicate that the bearing capacity of shallow

foundations on jointed (non-fractured) rock masses is more

sensitive to qu and S/B compared to other input variables.

The results generally conform to those noticed by Good-

man (1989), Paikowsky et al. (2004, 2010).

Parametric study

A comparative parametric study is performed to evaluate

the response of the ANN model to the variation of each

independent variable. The methodology is based on

changing only one predictor variable at a time while the

other variables are kept constant at the average values of

their entire data sets. This procedure is repeated using

another variable until the model response is obtained for all

of the predictor variables (Alavi et al. 2011). In order to

determine and compare the capability of the proposed

model, the results of the parametric analysis of the Good-

man’ model are also included. Figure 8 represents the

parametric analysis results. The results for the ANN model

indicate that qult increases with increasing RMR, qu, S/B

and /. For S/B, the increasing trend for the ANN model is

not as intense as that for the Goodman’ model. On the other

hand, while qult is remarkably increasing with increasing /
in the ANN model, the Goodman’ model seems not be very

sensitive to the changes of this parameter.

Summary and conclusion

In the present study, a new model is proposed for the

estimation of the qult of shallow foundations on jointed

rock masses using the ANN technique. For this aim, a

comprehensive and reliable set of data including rock

socket, centrifuge rock socket, plate load and large-scaled

footing load test results is collected to develop the model.

One of the major criticisms about ANN is that it usually

does not provide practical prediction equations. To deal

with this issue, the optimal ANN model is converted to a

relatively simple equation. The tractable ANN-based

design equation provides an analysis tool accessible to

practicing engineers. The calculation procedure can readily

be performed using a spreadsheet or hand calculations to

provide precise predictions of qult. Besides, the proposed

model performs significantly better than the widely used

Goodman’s model. Moreover, the derived model takes into

account the important role of rock classification through

using RMR. The results of the sensitivity and parametric

Fig. 6 The procedure Garson’s

algorithm to determine the

relative importance of each

input variable
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analyses are generally expected cases from an engineering

viewpoint. The sensitivity analysis indicates that qult is

more sensitive to qu and S/B compared to RMR and /.
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