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Abstract This study presents the rough set theory and

catastrophe progression method to regionalize the land-use

change and to analyze the land ecological process. It uses the

land-use database of Yixing City of Jiangsu Province, an

urbanized and industrialized city in Yangtze River Delta of

China, as an exemplification. The study area is divided into

six kinds of land-use types according to the national standard

of land-use classification. It includes arable land, garden,

woodland, urban–rural construction land, water, and unused

land. The six kinds of land-use types are formed into their

corresponding landscape types in the scale of 1:10,000 by the

aid of ArcGIS9.3 software of ESRI. In ArcGIS9.3, the

landscape pattern indices are calculated by using Fragstats

(raster version 3.3) software. Based on these landscape pat-

tern indices, an integrated indicator system of landscape

regionalization of land use in Yixing was established, and

land-use regionalization models are set up using the catas-

trophe theory. Rough set theory is introduced to avoid the

subjectivity in the indicator’s importance in catastrophe

models. The hidden rule among the raw data is acquired by

knowledge reduction of the data mining in the rough set

theory. In the process, indicators needed to be arranged

according to the computed importance of an attribute without

considering the determination of weight function. This

greatly avoids the subjectivity in the process of weight factor

determination. The zoning of land use based on landscape

indices finally is made by the multi-indicator integrated

catastrophe progression method. According to these indices,

Yixing is divided into four grading land-use zones when the

rough set and catastrophe progression methods are com-

bined. The zones include high-, medium-, low-, and weak-

intensity zones, indicating that land use primarily varies the

landscape pattern. With the increase of water and forest area

proportion, the human disturbance to land system wanes;

patch fragmentation reduces; patch shape complexity

enhances; and landscape diversity decreases. Moreover, it

can mostly avoid the subjective evaluation in artificially

determining factor weights by using rough set theory. It

makes the zoning results more objective and exact.

Keywords Land-use regionalization � Landscape pattern

indices � Rough set theory � Catastrophe progression

method

Introduction

Land-use change has become a focus globally because of

rapid economic-social development and increased human

activities (Liu and Deng 2009; Lindemann-Matthies et al.

2010; Munsi et al. 2010). It has varied the structure, the

material circulation, and energy flow of the local landscape

(Rutherford et al. 2008; Munsi et al. 2010; Sato et al. 2010;

Huang et al. 2012). It also has deeply influenced the

regional biodiversity and ecological process, an influence

that has mainly driven landscape pattern change (Peng

et al. 2007; Guan et al. 2008; Houet et al. 2010; Fernandes

et al. 2011). A landscape pattern analysis can effectively

W. Cao

Chongqing Land Resources and Housing Surveying and

Planning Institute, Chongqing 400020, China

e-mail: caowei@lzb.ac.cn

W. Cao

Chongqing Engineering Research Center of Land Use

and Remote-Sense Monitoring, Chongqing 400020, China

W. Cao � S. Zhou (&) � S. Wu

School of Geographic and Oceanographic Sciences,

Nanjing University, Nanjing 210093, China

e-mail: zhousl@nju.edu.cn

123

Environ Earth Sci (2015) 73:1611–1620

DOI 10.1007/s12665-014-3511-3



tell the spatial pattern of land-use change if the analysis is

based on the geometric characteristics (Lathrop et al. 2007;

Zimmermann et al. 2010; Kupfer 2012). This pattern has

the spatial heterogeneity and thus represents the mosaic of

different land-use patches (Seto and Fragkias 2005; Mil-

lington et al. 2007). The performance is mainly due to the

interaction result of the land ecological process (Persson

et al. 2010; Renetzeder et al. 2010).

Remote Sensing (RS) and Geographic Information Sys-

tem (GIS) have been widely used for the response mecha-

nism, space–time evolution and ecological effects of the

land-use landscape pattern (Otto et al. 2007; Porter-Bolland

et al. 2007; Guan et al. 2008; Deng et al. 2009; Huang et al.

2009; Zhang et al. 2009; Munsi et al. 2010). Land-use

regionalization can analyze and synthesize the spatial

information in complicated data. Landscape pattern indices

can be used to quantify the spatial pattern of land-cover

changes (Long et al. 2010). Therefore, the zoning of land

use by landscape pattern indices has been well documented

(Hall and Arnberg 2002; Long et al. 2010; Kupfer et al.

2012; Han et al. 2013), with plentiful works concentrated on

the selection and development of the division index (Chen

et al. 2009, 2012). Recently there has an increasing interest

in regionalizing the landscape pattern indices by using

multivariate cluster analysis (Long et al. 2010). There is,

however, subjectivity in the determinateness of the index’s

weight. The Rough Sets Theory (Pawlak 1982) is a new-

style mathematics tool for dealing with fuzzy and uncer-

tainty issues (Pawlak 1998). The theory uses knowledge

reduction to decrease the problem’s decision making and

classification rules, on the basis of the premise of main-

taining the same classification ability (Pawlak 1982, 1998;

Ahn et al. 2000). No priori information besides the pro-

cessed data in rough set theory is required, compared with

other fuzzy set theory. It is thus objective to reflect the

fuzziness of the knowledge by rough set theory.

This paper selects a developed city Yangtze River Delta,

Yixing City as example to analyze the land-use zoning

method. The local land use is zoned by using a combina-

tion of rough sets and catastrophe progression method, on

the basis of selecting the landscape indices of land use. The

results of land-use zoning help to understand the degrees of

human activities on the different land-use types and are

expected to provide a reference for regional sustainable

land use and ecological construction.

Materials and methods

Study area

The study area is the Yixing City in the southern part of

Jiangsu Province. It is located in the Yangtze River Delta of

China. It extends between east of 111�300 to 120�030 longi-

tude and north of 31�070 to 31�370 latitude (Fig. 1). The City,

spreading over an area of 2177.43 km2, situates in the west

of the Taihu Lake, the second largest freshwater lake of

China. The region is surrounded by low hills in the southern

part and by plain in the northern part. The climate is of north

subtropical monsoon with cold, dry winter and hot, rainy

summers. In this region, the average precipitation is about

1,199.8 mm/year and the mean annual temperature is

15.6 �C. The City is one of the most rapidly developing cities

in China; it has evolved from a small town to a big modern

city because of the rapid industrialization and urbanization of

China. In 2010, the city had registered 1,189 industrial

enterprises, whose gross product reached to 197 billion Yuan.

Data sources and their processing

Land-cover datasets in 2009 are generated for calculating the

landscape pattern metrics. The existing land-cover dataset is

updated by using a change detection method, which is based

on Landsat Thematic Mapper (TM) and aerial-survey

remote-sensing data. According to the regional characteris-

tics, the study area was primarily divided into six kinds of

land-use types according to national standard of land-use

classification. These types include arable land, garden,

woodland, urban–rural construction land, water, and unused

land. By using ArcGIS9.3 software of ESRI (Fig. 2), six

kinds of land-use types are formed into their corresponding

landscape types in the established 1:10,000 land-use database

of Yixing City. Supported by the module of spatial analysis

in ArcGIS9.3 software, the formed vector data of the land use

were transformed into raster data with a cell size of

50 m 9 50 m. Landscape pattern indices of six kinds of

landscape types were therefore calculated by using Fragstats

(raster version 3.3) software to reveal the landscape pattern

characteristic of the investigated area. In this study, three

major types of landscape pattern characteristic were dis-

cussed, including the feature of patch number, patch shape

and landscape diversity. Consequently, eight representative

landscape indices were selected. They consist of number of

patch (NNP), patch density (PPD), average patch area

(AAREA-MN), fractal dimension (FFD), shape index

(LLIS), diversity index (SSHDI), spread index (CCONT),

fragmentation index (FFN) (Huang et al. 2009; Malaviya

et al. 2010; Renetzeder et al. 2010).

Taking the administrative town as the evaluation unit,

eight landscape indices of each town were described by

Fig. 3, respectively.

Establishment of catastrophe models

As a mathematical theory, catastrophe theory is an im-

pactful tool to solve discontinuous sudden issues in the
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process of continuous change in dynamic system (Huang

and Iwamoto 1995; Schreiber et al. 1997). In catastrophe

theory, the dynamic system is considered as a potential

function, V(x), including state variable(x) and control

variables. The balance curved surface can be described by

equation V0(x) = 0, consisting of all critical points of the

Fig. 1 Location of the study area

Fig. 2 Landscape classification

of land use in Yixing
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function. The singularity set of the balance curved surface

is obtained from the equation V00(x) = 0. According to two

equations, V0(x) = 0 and V00(x) = 0, the normalization

formulas can be calculated reflecting the relation between

state variables and control variables. Table 1 shows com-

mon catastrophe models.

According to catastrophe models in Table 1, the zoning

of land use based on landscape indices would be evaluated

by using catastrophe progression method as follows (Hu-

ang and Iwamoto 1995; Schreiber et al. 1997). The

estimation first regarded the zoning of land use as a system.

In the system, the zoning of land use (P) is the state vari-

able; while the control variables are three subsystems of the

landscape land-use zoning, including the landscape diver-

sity feature, patch shape feature, and patch number feature.

In the subsystems, the landscape diversity feature (A),

patch shape feature (B), and patch number feature (C) are

reconsidered as state variables, and their primary indicators

are considered as control variables, respectively. There are

three landscape pattern indices in the subsystem of the
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Fig. 3 Landscape pattern indices of land use in Yixing. 1 Yicheng, 2

Dingshu, 3 Environmental Science Park, 4 Gaocheng, 5 Zhangzhu, 6

Guanlin, 7 Qiting, 8 Wanshi, 9 Xinjian, 10 Heqiao, 11 Dapu, 12

Zhoutie, 13 Xinzhuang, 14 Xushe, 15 Xinjie, 16 Jingtang, 17 Xizhu,

18 Yangxiang, 19 Fang zhuang, 20 Fangqiao, 21 Hufu, 22 Taihua
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landscape diversity feature (A), including fragmentation

index (A1), diversity index (A2), and spread index (A3).

The subsystem of patch shape feature (B) consists of fractal

dimension (B1) and shape index (B2). In the subsystem of

patch number feature (C), there are three landscape pattern

indices, including number of patch (C1), average patch

area (C2), and patch density (C3). An integrated indicator

system is denoted as a hierarchy system consisting of tar-

get-, rule- and indicator layer (Fig. 4).

Although the integrated indicator system was set up in

the preceding section, the interrelation among evaluation

indicators is fuzzy. Two intrinsic relations among indica-

tors were needed to be defined in the catastrophe pro-

gression method. If there is no intrinsic relation among the

control variables in a tier, the subsystem would be non-

complementary. Otherwise, the subsystem would be com-

plementary. Based on these two intrinsic relations, the

catastrophe models of landscape zoning of land use in

Yixing were given (Fig. 4) according to correspondence

between state variables and control variables in Table 1.

Standardization of data

The indicator data should be normalized to a dimensionless

value between 0 and 1 because of the non-uniform of the

indicator’s dimension. The normalization is based on the

principle of ‘‘the bigger, the stronger of anthropogenic

interference’’.

For positive indicators, the formula is:

yi ¼ ðxi � xminÞ=ðxmax � xminÞ ð1Þ

and for negative indicators, the formula is:

yi ¼ ðxmax � xiÞ=ðxmax � xminÞ ð2Þ

where yi is the normalized value of each indicator; xi, xmax

and xmin is the initial, maximum, and minimum value of

landscape pattern indices in Fig. 3, respectively. Using

Eqs. (1) and (2), one can normalize the present values of all

eight indicators in Fig. 3.

Therefore, according to Eqs. (1) and (2), the present

values of all eight indicators in Fig. 3 are transformed into

the normalized values, namely dimensionless values

between 0 and 1.

Calculation of the importance of the attributes in rough

set theory

Land-use regionalization models are set up using the

catastrophe theory. However, the indicator’s weight is

easily influenced by man-made factors in the models. The

indicators needed to be arranged according to its impor-

tance in a system by using the catastrophe progression

method. However, the subjectivity in the indicator’s

importance is inevitable. In view of this, an attempt is

made to determine the indicator’s importance in catastro-

phe models by using rough set theory.

In rough set theory, ‘‘knowledge’’ is considered as a

classification capability—the division of the data (Berger

Table 1 Catastrophe models in common and their normalization formulas

Catastrophe models Control variables State variables Potential function Normalization formulas

Folding catastrophe 1 1 V(x) = x3 ? ux xu ¼
ffiffiffi

u
p

Cusp catastrophe 2 1 V(x) = x4 ? ux2 ? vx xu ¼
ffiffiffi

u
p

; xv ¼
ffiffiffi

v3
p

Swallowtail catastrophe 3 1 V(x) = x5 ? ux3 ? vx2 ? wx xu ¼
ffiffiffi

u
p

; xv ¼
ffiffiffi

v3
p
; xw ¼

ffiffiffiffi

w4
p

Butterfly catastrophe 4 1 V(x) = x6 ? tx4 ? ux3 ? vx2 ? wx xt ¼
ffiffi

t
p
; xu ¼

ffiffiffi

u3
p

; xv ¼
ffiffiffi

v4
p
; xw ¼

ffiffiffiffi

w5
p

t, u, v, w are control variables; xt, xu, xv, xw are corresponding catastrophe progression values

P 

A B C

A1 A2 A3 B1 B2 C1 C2 C3

Non-complementary swallowtail catastrophe model

Complementary swallowtail model Complementary cusp model Complementary swallowtail model

Fig. 4 Catastrophe models of landscape regionalization of land use in Yixing
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2004). In general, it describes a knowledge representation

system by a two-dimensional information table. Each row

and each column describe an object and its attribute in the

information form. In the study, administrative towns are

considered as the objects, and eight landscape indices are

seen as their attributes, which will be included in a two-

dimensional table. After that, the non-dimensional data in

this table are partitioned into four grades (1, 2, 3, and 4) by

the equidistant division method. According to the method,

the range from 0.00 to 1.00 is equably divided into four 4

sections. These grades represent the range from 0.00 to

0.25, 0.25 to 0.50, 0.50 to 0.75, and 0.75 to 1.00. These

data make up of an information table of landscape pattern

indices of the land use in Yixing (Table 2).

In Table 2, all 22 samples are considered as the setting

U. As the subsystems A in Fig. 4, the setting U can be

classified and assorted by the three various conditional

attribute A1, A2, A3 and the knowledge {A1, A2, A3}. In

rough set theory, when an information table is deleted a

conditional attribute, if it is the same sort of the setting

U classified by the remaining conditional attribute as the

knowledge, the deleted conditional attribute will be

unnecessary and otherwise, necessary. According to this

classification, the conditional attribute A1, A2, A3 is

deleted one after the other in Table 2, and the classified

results to the setting U by another conditional attributes are

compared with by the knowledge. Therefore, the core of

the knowledge {A1, A2, A3}, all necessary conditional

attributes, can be calculated by the above-mentioned

method. Based on this operation, a new setting can be

formed, including the calculated core of the knowledge. If

it is the different sort of the setting U classified by all

conditional attributes with the new setting; this setting is

called as one knowledge reduction. Therefore, the impor-

tant degree of the attribute can be measured by the clas-

sified ability to the information system after deleting one

attribute. According to the knowledge of information the-

ory (Miao and Li 2008), the information entropy of

knowledge X can be denoted by the formula as follows:

HðXÞ ¼ �
X

n

i¼1

pðXiÞ ln pðXiÞ ð3Þ

where H(X) is the information entropy of knowledge X;

p(Xi) denotes probability distributing; X represents the

knowledge; n is the sample number. The importance degree

of the attribute is calculated by the following equation:

SðxÞ ¼ HðX � fxgÞ � HðXÞj j ð4Þ

where S(x) denotes the importance degree; H(X) is the

information entropy of knowledge X; x represents the

attribute. The larger the numerical value, the more

important the attribute x is in the attribute setting (knowl-

edge) X. Thus, the weightiness of each attribute in

knowledge reduction can be computed by the before-

mentioned expressions. According to the calculated results,

the importance order of three attributes in subsystem is

ultimately described in Fig. 4. The importance degree

ordinarily weakens from the left to the right. According to

the same method, the attributes’ weightiness order of other

subsystems is also illustrated in Fig. 4.

Establishment of catastrophe progression value

The primary or secondary factor of the system control

variables was firstly determined by estimating the attribute

importance of each evaluation index. Then, the status

variable values in mutation are calculated according to the

normalization formula of the catastrophe models in

Table 2. Catastrophe progression method follows the

principle of ‘‘complementary’’ and ‘‘non-complementary’’.

If there is no obvious interrelatedness between all the

control variables, it should take the minimum value in all

state variables as the system’s catastrophe progression

value. It is called the ‘‘minima criterion’’ of ‘‘non-com-

plementary’’. Otherwise, it should take the average value of

all state variables as the system’s catastrophe progression

value according to the principle of ‘‘complementary’’.

Table 2 Information table of landscape pattern indices of land use in

Yixing

U A1 A2 A3 B1 B2 C1 C2 C3

R1 2 2 1 3 2 2 3 1

R2 2 2 1 3 4 3 3 1

R3 1 2 1 4 3 3 4 1

R4 1 1 1 3 2 1 1 1

R5 4 3 2 1 3 3 3 2

R6 2 3 2 2 3 2 2 2

R7 1 3 2 4 3 2 2 2

R8 1 4 3 3 1 1 1 3

R9 1 4 3 3 2 2 2 3

R10 2 3 2 2 1 2 2 2

R11 1 3 2 3 2 2 2 2

R12 2 3 2 2 1 2 1 2

R13 1 2 1 4 1 1 1 1

R14 1 3 2 3 4 1 1 2

R15 2 3 2 3 3 4 4 2

R16 2 3 2 3 3 3 3 2

R17 3 4 4 1 1 4 4 4

R18 2 3 2 2 4 2 2 2

R19 1 1 1 4 4 1 1 1

R20 1 3 2 4 2 1 1 2

R21 1 1 1 4 3 1 1 1

R22 1 1 1 4 3 1 1 1
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Ultimately, the total mutation membership function value

is determined by the above-mentioned principle.

Division of the land-use zone based on landscape

indices

According to the total mutation membership function value

of different evaluation units, the zoning of land use based

on landscape indices is divided by a clustering analysis.

Results and discussions

According to above-mentioned method, the results of land-

use regionalization are illustrated in Fig. 5. Yixing is

divided into four grading zones of land use, including high-

, medium-, low-, and weak-intensity areas. Four grades

used for analyzing the present land use are categorized as

follow:

(1) High-intensity zone of land use: This area includes

Xinjie Town, Jingtang Town, and Yixing ESTIP (Envi-

ronmental Science and Technology Industrial Park). As

shown in Fig. 5, the area is located on the urban fringe,

encircling the downtown of the city (Yicheng and Dingshu

town). Therefore, the strongest human disturbance induces

the most changes in local land-use patterns. In addition, the

terrain of this area is in the transition zone from western

low-lying polder to southern hilly area; therefore, this zone

is the main place of human industrial and agricultural

production. It has a high degree of land use. At the same

time, patch density of this zone is larger according to the

landscape pattern index of land use in Fig. 2. The number

of patches in Xinjie Town and Jingtang Town reaches to

33.847/100 hm2 and 33.795/100 hm2, respectively. The

patch density not only reflects the differentiation degree of

overall landscape element but also reflects the spatial het-

erogeneity degree of landscape. Therefore, the greater

density patch indicates that there are more heterogeneity

patches of the landscape elements in a certain area. A

small-size patch and a high heterogeneity landscape indi-

cate that the degree of landscape fragmentation is more

serious in the region. In this zone, Xinjie Town is adjacent

to the center of the City (Yicheng Town), being the urban

expansion area. Because this town has undertaken the

Fig. 5 The regionalization of

land use in Yixing
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industrial transfer from the center of Yixing City in recent

years, the interference degree of human activities on land is

the most. Jingtang Town is located in the western low-lying

polder, which is the modern agricultural production base in

Yixing City. In this town, the high proportion in the veg-

etable land area shows that the land system stability is

seriously interfered by anthropogenic activities. As illus-

trated in Fig. 2, the proportion of urban–rural construction

land reaches to 34.43 % in Yixing ESTIP. Especially, a

large number of enterprises uniformly distribute in the

industrial park and the industrial plots show mostly rect-

angle (or square). So the patch shape in this industrial park

tends to be the rule under the intensively interference of

human activities; and it leads to the low shape index of the

patch, only 24.354 (Fig. 3). Moreover, the diversity index

of three before-mentioned towns is 1.663, 1.406 and 1.540,

respectively. These large indices show that because of the

interference of human activities, the land-use type of this

area is various and the land is in a high degree of frag-

mentation. Take for example Xinjie Town, the proportion

of farmland, orchard, woodland, urban–rural construction

land, water area, and unused land is 23.28, 12.30, 26.52,

16.42, 17.99, and 2.86, respectively. It means that affected

by strongly anthropogenic activities, the proportion dif-

ference of each land-use type is small and landscape

diversity index is large in this town.

(2) Medium-intensity zone of land use: This area mainly

consists of Xinjian Town, Qiting Town, Dapu Town,

Dingshu Town, Guanlin Town, Yicheng Town, Yangxiang

Town, Heqiao Town, Xizhu Town, Fangqiao Town, and

Xushe Town. As shown in Fig. 5, the majority of the dis-

trict is located in the Taige plains area. Due to convenient

traffic conditions, the intense human activities lead to a

high degree of land use. Especially, Yicheng and Dingshu

Towns are the centers of Yixing City. Their proportions of

urban–rural construction land reach to 29.82 and 28.92 %,

respectively (Fig. 2). Figure 3 illustrates that the landscape

of this region presents the characteristic of less proportion

difference in land-use types, more patch numbers, and

higher diversity index. These characteristics indicate the

larger fragmentation degree, the higher degree of land use

and the more intense human activities in this strip. More-

over, Yicheng Town is situated in the eastern Taihu ditch

district, in which the proportion of water area reaches up to

22.71 %. And Dingshu Town is located in the southern

hilly areas, in which the proportion of woodland area

reaches up to 33.44 %. In addition to the urban construc-

tion land, the contribution of river network or woodland to

landscape types is more than other landscape elements in

these two towns. The water area and woodland play the

sub-background role in all landscape elements of the

towns; thus these landscapes limit human activities in

space. Simultaneously, as the downtown of Yixing City,

the two towns have maturely developed in economic con-

struction and modern industry after 20 years. Thus, land-

use degree in this zone is relatively weaker than the high-

intensity landscape zone of land use. There are a large

number of patches in Guanlin Town and Heqiao Town, the

developed industrial towns of Yixing City. Figure 3 shows

that the average patch areas of the two towns are 3.248 and

3.379, which is at a lower level. Undoubtedly, the average

patch area is the key indicator to reflect landscape heter-

ogeneity, species diversity and landscape productivity; it

also can represent the fragmentation degree of the land-

scape types. The smaller the average patch area, the more

fragmentized the landscape of this region is disturbed by

human activities. In addition, the two towns are located in

the northern plains with dense river network and the pro-

portion of water area is 38.92 and 40.66 %, respectively

(Fig. 2). Therefore, increasing the proportion of the water

landscape elements decreases the land disturbed degree in

human activities. Xizhu, Xushe, Yangxiang, Fangqiao, and

Dapu towns are the major grain producing areas in Yixing

City. The area of arable land in the region is significantly

higher than other towns. Especially, the proportions of

arable land in Xuse and Fangqiao towns reach up to 44.68

and 58.88 %, respectively (Fig. 2). As shown in Fig. 3, it is

on the high level in patch density, mean patch size,

diversity index, and fragmentation degree of Xizhu town,

while the spread degree of landscape is low. The fractal

numbers of Xushe and Yangxiang Towns are relatively

small, and the shape indices of Fangqiao and Dapu Towns

are smaller. These show that although the area is the base

of agricultural production, there is lack of large-scale

agricultural operation. Strong human interference on land

ecosystems induces a higher fragmentation degree of patch

in this area, and the shape of arable land tends to be in-

erratic. Thus the patch’s fractal number and the shape

index are partially small. In a word, the background ele-

ment of regional landscape is not obvious in this zone, and

natural landscape elements markedly increase in propor-

tion, including water area and woodland. Various land-

scape elements mutually influence and enchase in this

zone. Due to the complexity of landscape material circu-

lation and energy flow mechanism, the disturbance degree

of land ecosystems decreases by human activities.

(3) Low-intensity zone of land use: The region princi-

pally includes Xinzhuang Town, Zhoutie Town, Zhangzhu

Town, Wanshi Town, Gaocheng Town, Hufu Town, and

Fang zhuang Town. In Fig. 5, this zone is located in the

Taihu ditch area and southern hilly area. So the water area

and woodland area gradually increase, while the degree of

land use depresses. Extraordinarily, the proportion of water

area accounts for up to 52.30 % in Gaocheng Town and the

proportions of woodland area reach up to 44.22 and

63.42 % in Zhangzhu and Hufu Towns, respectively
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(Fig. 2). Water area and woodland dominate the regional

landscape types; therefore, the ecosystem remains stable

under a weak anthropogenic interference. As illustrated in

Fig. 3, the shape index of Zhangzhu Town is the most, up

to 42.788. The patch’s fractal numbers are largest in

Zhoutie Town, 1.582 and Xinzhuang, 1.581. Diversity

indices and fragmentation degrees are relatively low in four

towns (Xinzhuang, Gaocheng, Hufu, and Fangzhuang),

while the contagion degrees are higher. Especially, the

diversity index of Wanshi Town is the lowest, only 1.066.

These indicate that the patch’s geometry shape is complex

and irregular; thus shape index and fractal number are

larger. It means that the alteration of human activities on

land ecosystems is weak. A single type of land-use struc-

ture and preferable patch connectivity cause the lower

degree of fragmentation.

(4) Weak-intensity zone of land use: It consists of Tai-

hua Town. In Fig. 5, the district is located in the southern

hilly area, mainly covered by single woodland. The pro-

portion of woodland in all land-use types accounts for up to

66.29 % (Fig. 2). As the background element of the region,

the woodland dominates the type of land landscape and

other landscape elements embed in a woodland landscape.

Therefore, the entire land ecosystem is the most stable and

the ability to resisting anthropogenic interference is the

strongest. The single structure of land-use type leads to the

weakest anthropogenic interference. As can be seen from

Fig. 3, Taihua Town is at the station with the smallest

patch density, the most average patch area, the smaller

diversity index, the most contagion degree, and the

smallest fragmentation degree, which is 18.303/100 hm2,

5.464 hm2, 1.103, 50.710, and 0.183, respectively. These

show that the lesser interference of human activities, the

better is patch connectivity, the lower is the fragmentation

degree, the larger is the difference in each type of land use

and the minor landscape diversity index in the region.

Conclusion

1. Land-use patterns affected by the regional geomorphic

characteristics are the main factors of landscape pat-

tern variation in land use. It reflects the interference

degree of human activities. With the increase in water

area and woodland, in particular the woodland area,

humanity’s transformation on the land system gradu-

ally becomes less important due to the limit of human

activities in space. As a result, the fragmentation

degree and landscape diversity will reduce, and the

complexity degree of patch shape and the stability of

land ecosystems will enhance.

2. According to the interference degree of human activ-

ities, Yixing is divided into four grading landscape

zones of land use, including high-, medium-, low-, and

weak-intensity zones. The zoning results not only can

reflect the current land use under the interference of

human activities to solve the problem of land use, but

also is conducive to a better grasp of the future direction

of land-use change. In rough set theory, it mines the

implied intrinsic rules in data through knowledge

reduction; therefore, there is no need to determine the

weight according to the order of attribute importance of

the evaluation factors. Eventually, landscape zones of

land use are divided by catastrophe progression method

with integrating multiple indicators. It largely can avoid

the subjective evaluation in artificially determining

factor weights. In catastrophe progression method, the

number of system control variables can not be more

than four, and thus it will have a certain impact for the

multi-index comprehensive evaluation.
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