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Abstract The potential of using maximum entropy mod-

eling for landslide susceptibility mapping is investigated in

this paper. Although the maximum entropy model has been

applied widely to species distribution modeling in ecology, its

applicability to other kinds of predictive modeling such as

landslide susceptibility mapping has not yet been investigated

fully. In the present case study of Boeun in Korea, multiple

environmental factors including continuous and categorical

data were used as inputs for maximum entropy modeling.

From the optimal setting test based on cross-validation, the

effective feature type for continuous data representation was

found to be a hinge feature and its combination with cate-

gorical data showed the best predictive performance. Factor

contribution analysis indicated that distances from lineaments

and slope layers were the most influential factors. From

interpretations on a response curve, steeply sloping and

weathered areas that consisted of excessively drained granite

residuum soils were very susceptible to landslides. Predictive

performance of maximum entropy modeling was slightly

better than that of a logistic regression model which has been

used widely to assess landslide susceptibility. Therefore,

maximum entropy modeling is shown to be an effective pre-

diction model for landslide susceptibility mapping.

Keywords Landslide � Maximum entropy � Validation �
Prediction

Introduction

Landslides are a major geological disaster causing loss of

life and serious economic damage to facilities (Lee and

Min 2001; Park 2011; Akgun 2012). Landslides triggered

by heavy rain are a major problem in Korea and the fre-

quency of landslide occurrences is expected to increase due

to climate change (Chae et al. 2009). Mapping or predict-

ing areas that are susceptible to future landslides is

important for preventing landslide damage and future land-

use planning.

Landslide susceptibility mapping requires both geo-

environmental factors related to landslide occurrence

and quantitative prediction models. Owing to recent

advances in computer resources, geographic information

systems (GIS) have been used widely for the preparation

and management of those factors. Many quantitative

models have been proposed for integrating the causal

factors and applied to landslide susceptibility mapping.

As probabilistic models, the likelihood ratio (also called

the frequency ratio) and weights of evidence models

have been applied frequently due to their simplicity and

easy links to GIS operators (Chung and Fabbri 1999;

Lee and Min 2001; Lee et al. 2004; Lee and Sambath

2006). Logistic regression has also been applied widely

to map landslide susceptibility (Atkinson and Massari

1998; Lee and Min 2001; Dai and Lee 2002; Lee 2005;

Lee and Sambath 2006; Greco et al. 2007; Akgun 2012).

Other models include evidential belief functions (Ghosh

and Carranza 2010; Park 2011; Althuwaynee et al. 2012;

Lee et al. 2012), fuzzy set theory (Ercanoglue and Go-

kceoglu 2002; Park et al. 2003), artificial neural net-

works (Lee 2007; Choi et al. 2010), and support vector

machines (Yao et al. 2008; Ballabio and Sterlacchini

2012).
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Such models applied to landslide susceptibility mapping

have also been used for different geological predictive

modeling tasks, such as mineral potential mapping (Car-

ranza and Hale 2003; Porwal et al. 2004) and ground

subsidence mapping (Kim et al. 2006). In addition to these

fields, another active research field for which predictive

models have been developed and applied is species distri-

bution modeling in ecology. Various statistical and

machine learning models have been applied to predict

species distributions (Franklin 2009). Multivariate statisti-

cal models applied frequently to species distribution

modeling are generalized linear and generalized additive

models (Austin 2002; Guisan et al. 2002; Lehmann et al.

2002). Species distribution modeling has also been per-

formed using machine learning algorithms, such as boosted

regression trees (Leathwick et al. 2006) and random forests

(Prasad et al. 2006). Species distribution modeling is very

similar to landslide susceptibility mapping, in that known

occurrences are used to model the target distribution and

multiple environmental variables are involved for the

modeling procedure. The above models that have been

applied to species distribution modeling require both pre-

sence and absence data for modeling. If true absence data

are not available, ‘‘pseudo-absence’’ data are generated and

used as an alternative. Absence and pseudo-absence data in

species distribution modeling correspond to ‘‘stable’’ and

‘‘pseudo-stable’’ data in landslide susceptibility mapping,

respectively, which are not affected by past landslides. As

discussed by Phillips et al. (2009) and Van Der Wal et al.

(2009), pseudo-absence data should be used with caution

because they affect directly the modeling results, and

reliable pseudo-absence data are not always available.

Regarding this issue, a maximum entropy model that

provides a general way for estimating the unknown target

probability distribution was proposed to predict species

distributions from presence-only data (Phillips et al. 2006).

This has been used widely for species distribution model-

ing (Ward 2007; Wollan et al. 2008; Pineda and Lobo

2009; Tinoco et al. 2009) with competitive performance in

some case studies, compared with other models using both

presence and absence data (Elith et al. 2006; Elith and

Graham 2009).

Landslide susceptibility mapping can be regarded as

predictive modeling with presence-only data, because the

only data available are past landslide occurrences. Despite

its promising potential for the assessment of landslide

susceptibility, however, the maximum entropy model has

not been investigated and applied fully. Very few studies

based on maximum entropy modeling have been reported

for landslide susceptibility mapping (Felicı́simo et al. 2012;

Vorpahl et al. 2012). Furthermore, these studies focused

solely on its comparison with other models, without a

complete investigation of either the theoretical or practical

aspects of the application of maximum entropy modeling to

landslide susceptibility analysis.

The main objective of this paper is to investigate the

potential and applicability of maximum entropy modeling

to landslide susceptibility mapping. Following a brief

overview of maximum entropy modeling, specific analysis

steps for landslide susceptibility mapping are presented. A

case study for the Boeun area in Korea is examined to

illustrate the main objective.

Study area and data sets

The Boeun area, which suffered considerable landslide

damage following heavy rain in August 1998, was chosen

as the case study area (Fig. 1). Precipitation values mea-

sured at rain gauge stations in the study area between

August 11 and August 12 ranged from 390 to 409 mm/day

(Kim et al. 2000). Similar values and patterns of precipi-

tation were observed throughout the study area and there-

fore, precipitation data were not considered in this study.

The fact that some areas were susceptible to landslides

when others were not, under similar rainfall conditions,

implies that there are some causal factors related to land-

slide occurrence.

The geology around the Boeun area including the study

area is covered mainly with meta-sediments of the age-

unknown Ogcheon group, accompanied with a small

exposure of the Paleozoic system and several igneous

intrusive bodies (Kim et al. 1977). The Boeun granite,

especially biotite granite, is distributed widely throughout

the study area and there are two mica adamellite areas in

northern and central parts. A few acidic dykes are intruded

in the study area and a composite mass of quartz porphyry

and felsite, trending N–S, is exposed linearly in the Boeun

granite.

This case study is based on a GIS-based database,

including landslide locations and several causal factors

relevant to landslide occurrence. Past landslide locations

were detected using change detection analysis of aerial

photographs taken in 1996 and 1999, aided by field veri-

fication (Lee et al. 2004). A total of 481 landside scars were

detected and the topographically highest scarps were used

as landslide triggers or occurrences in this case study

(Fig. 1). The main type of landslide that occurred in the

study area was a rainfall-triggered debris flow (Kim et al.

2000; Lee et al. 2004). The geology of the study area

consists mainly of granite and therefore, the landslide type

is related to the coarse-grained granite residuum that is

distributed widely throughout the study area (Kim et al.

2000).

Three continuous data layers and three categorical data

layers (Table 1; Fig. 2) were chosen as causal factors by
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considering previous work undertaken in the study area

(Park et al. 2003). To generate topographic data layers, a

digital elevation model (DEM) was made from 1:5,000

scale digital topographic maps. Elevation and slope layers

in a raster format were then extracted from the DEM. From

lineaments extracted using remote sensing imagery, dis-

tances from lineaments were computed as continuous scale

data. In Lee et al. (2004), the distances were treated as

categorical data with buffer zones of 50 m intervals. These

continuous scale data were generated because the selection

of the buffering interval in the previous study was some-

what subjective and the categorization procedure resulted

inevitably in loss of information.

Among the various attributes provided by the 1:25,000

scale digital forest and soil maps, the forest type and the

soil drainage, which were the most influential factors

reported by Park et al. (2003), were used for the forest and

soil layers, respectively. As other categorical data, lithol-

ogy information was extracted from a 1:50,000 scale digital

geological map. In Korea, a 1:50,000 scale geological map

is provided as the finest scale map and thus, only the

overall lithology attributes of the study area are available.

By considering the different scales of the original input

data (Table 1), all data layers consisted of 290,068 pixels

with a 15 m spatial resolution. Thus, the study area

encompasses an area of about 65 km2.

Basic principle of maximum entropy modeling

The maximum entropy principle was based originally on

statistical mechanics and information theory, according to

the concept that the best approximation of an unknown

probability distribution is one with maximum entropy

subject to certain known constraints (Jaynes 1957; Sivia

and Skilling 2006).

Phillips et al. (2006) proposed the maximum entropy

model specifically designed for species distribution

Study area

Korean Peninsula

Fig. 1 Location of the study area and landslide inventory map. Landslide locations are denoted by black dots and the background is a shaded

relief map

Table 1 Description of the data sets used in this case study

Factor Source (scale)

Elevation Digital topographic map (1:5,000)

Slope Digital topographic map (1:5,000)

Distance from lineaments Aerial photos and visual interpretation

Forest type Digital forest map (1:25,000)

Soil drainage Digital soil map (1:25,000)

Lithology Digital geology map (1:50,000)
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modeling, when only presence data are available for

modeling. The goal of maximum entropy modeling is to

find the probability distribution (p) of target occurrences

over the set locations X within the study area. Causal

factors or features are used to define the moment con-

straints on the distribution p. The moment, such as the

mean, is defined from the values of the causal factors at all

presence locations. For example, the expected slope value

of the estimated distribution should be close to the average

slope value at all presence locations. There may be many

possible distributions that satisfy the above constraints. By

applying the maximum entropy principle, the most uniform

distribution is chosen from among these many possible

distributions (Phillips and Dudı́k 2008).

In this paper, only the salient aspects of the maximum

entropy model for predictive modeling are given, synthe-

sized from Phillips et al. (2006), Phillips and Dudı́k (2008),

and Elith et al. (2011). Let x denotes a random site over the

study area and pðxÞ be the target probability distribution

value at each location x, which is non-negative and sums to

one. If y = 1 denotes the target occurrence, pðxÞ can be

regarded as the probability that is found at location x, given

the target is present, as Pðxjy ¼ 1Þ. The probability that the

target is present at location x, denoted as Pðy ¼ 1jxÞ, is

expressed using Pðxjy ¼ 1Þ by applying Bayes’ rule, as

shown:

Pðy ¼ 1jxÞ ¼ Pðy ¼ 1ÞPðxjy ¼ 1Þ
PðxÞ ¼ Pðy ¼ 1ÞpðxÞ

1=jXj ð1Þ

where Pðy ¼ 1Þ is the prevalence of target occurrences and

jXj is the number pixels or locations over the study area.

Pðy ¼ 1Þ cannot be determined exactly from occurrence-

only data; therefore, in maximum entropy modeling, pðxÞ
in Eq. (1) is modeled using occurrence data, instead of

directly estimating Pðy ¼ 1jxÞ.
As discussed in Phillips et al. (2006), pðxÞ estimated by

the maximum entropy principle is equal to a Gibbs prob-

ability distribution expressed as an exponential distribu-

tion. If n features ðfi; i ¼ 1; . . .; nÞ are considered, then the

Gibbs probability distribution is defined as:

qkðxÞ ¼
exp

Pn
i¼1 kifiðxÞ

� �

Zk
ð2Þ

where Zk is a normalization constant that ensures qkðxÞ
sums to one and k is the vector of weights assigned to the

features.

During the estimation of qkðxÞ, maximum entropy

modeling tries to find the distribution closest to the con-

straints using l1 regularization to avoid overfitting. There-

fore, maximum entropy modeling aims to find the Gibbs

distribution that maximizes the penalized log likelihood. If

there are m occurrences in the study area, the difference

between log likelihood and regularization, which should be

maximized, is expressed as (Phillips and Dudı́k 2008):

1

m

Xm

i¼1

ln(qkðxiÞÞ �
Xn

j¼1

bjjkjj ð3Þ

where bj is the regularization parameter for the jth feature

fj.

The first term in Eq. (3) is a log likelihood, which gets

larger as the fit of the model to the data improves. The

second term in Eq. (3) is used for regularization. Conse-

quently, maximum entropy modeling finds the Gibbs dis-

tribution that not only fits the occurrence data well, but also

generalizes well (Elith et al. 2011).

Procedures for landslide susceptibility mapping

All the modeling steps applied in this study are shown in

Fig. 3. As with other machine learning models, the maxi-

mum entropy model requires some optimization proce-

dures. Thus, before the generation of the landslide

susceptibility map, optimal settings are first searched by

predictive performance measures based on cross-valida-

tion. Using optimal settings, the landslide susceptibility

map over the study area is generated, and the relationships

between the input causal factors and landslide suscepti-

bility are interpreted. For comparison purposes, the pre-

dictive performance of the maximum entropy model will

be compared with that of logistic regression.

Optimal setting search

Tests on optimal settings for modeling focus on two

aspects that affect the predictive performance and pro-

cessing time significantly: the best feature selection for

continuous data representation and the number of back-

ground samples. Categorical data are used directly as their

original types in maximum entropy modeling. For contin-

uous data representation, however, the maximum entropy

model uses features that are a set of transformations of the

original continuous factors. Consequently, when using

continuous data for maximum entropy modeling, a greater

number of features than input continuous factors are used.

The selection of proper feature types is important in terms

of both model performance and processing time. As shown

in Eq. (3), using too many features for continuous data

representation tends to increase the complexity of the target

model, and additional regularization is necessary to control

the effects of the greater complexity of features. Thus, the

present study compares the resulting performance of vari-

ous feature combinations, especially for continuous data
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representation. The considered feature types are linear,

product, quadratic, and hinge. The linear feature is the

original continuous factor itself. The product and quadratic

features are the products of any possible two continuous

factors and the square of any factor, respectively. The

hinge feature is a linear feature truncated at a given

threshold (Phillips and Dudı́k 2008).

Background data or samples are used intrinsically dur-

ing the modeling procedure because only past landslide

occurrences are available. The background data, which are

defined as all locations or random samples within the study

area, are used to compare the differences between the

probability of the presence sites and that of the other sites

(i.e., background locations) (Phillips and Dudı́k 2008; Elith

et al. 2011). If the numbers of background samples used for

modeling are too small, the proper discrimination of the

characteristics at landslide occurrence sites from those at

background sites may be failed. Conversely, using too

many background samples (e.g., the full data set from the

entire study area) requires unnecessary processing time. In

this study, predictive performance is compared according

to varying numbers of background samples for landslide

susceptibility mapping. The following nine different

background sizes are considered for modeling: 481, 1,000,

2,500, 5,000, 10,000, 20,000, 40,000, 80,000, 160,000, and

290,000. A total of 481 background samples, correspond-

ing to the number of past landslide occurrences, are chosen

first and then a geometric progression of background sizes

considered. The final size considered of 290,000 is similar

to the total size of the study area (290,068).

Factor contribution analysis and generation of landslide

susceptibility maps

Once the optimal settings have been determined, the

landslide susceptibility map is generated and interpretation

of the results is performed. In addition, a quantitative

analysis of factor contribution on susceptibility mapping is

also carried out. A jackknife technique is used to estimate

the factor contribution to the modeling. In this approach,

each factor in turn is excluded intentionally and a model

constructed using the remaining factors. Then, the

predictive performance from the model created using all

factors is compared with that of the model constructed

using the remaining factors. Consequently, the contribution

of the excluded factor can be examined. A response curve

is also used to derive relationships between each causal

factor and the prediction modeling.

Comparison with other model and cross-validation

The final step is to compare the predictive performance of

the maximum entropy model with that of the conventional

model. Logistic regression, which has been used widely for

assessing landslide susceptibility, is chosen for this com-

parison. For a fair comparison, the same background

samples used for the maximum entropy modeling are also

used as pseudo-absence data for logistic regression.

For all predictive performance comparisons, fivefold cross-

validation is applied to restrict the use of landslide occur-

rences. All landslide occurrences are divided randomly into

five groups with an equal number of landslide occurrences

(about 96 occurrences). Each group is set aside to evaluate the

maximum entropy model constructed using the remaining

80 % of all landslide occurrences (about 385 occurrences).

This procedure is repeated five times by changing the vali-

dation group. In each validation procedure, the predicted

values over the entire study area are sorted in ascending order,

and then the relative rank values at the validation locations

are recorded. Thus, through this approach, the relative sus-

ceptibility rank values at all landslide locations are obtained.

These values are then used to compute the cumulative portion

of the landslide occurrences within each relative susceptibility

level. After constructing the prediction rate curves (Chung

and Fabbri 2003), the area under the curve (AUC) values is

computed using the trapezoidal method and used for predic-

tive performance comparisons.

Optimal setting search results

Implementation of maximum entropy modeling was done

using the Maxent software (version 3.3.3k), but entire vali-

dation procedures, such as the construction of prediction rate

Fig. 3 Schematic diagram of

the processing flow adopted in

this study
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curves and the computation of AUC values, were imple-

mented using Fortran programming.

First, the change of predictive performance according to

the change of feature types for continuous data was tested.

The resultant AUC values from cross-validation are shown

in Fig. 4. The AUC values from the combination of com-

plex features for continuous data with categorical data

(LPQHC, HQC, and HQPC in Fig. 4) were the highest

among the various feature combinations. However, the

combination of hinge features for continuous data with

categorical data also generated the same best predictive

performance. Even though many complex feature types for

continuous data were used for maximum entropy modeling,

non-zero coefficient values were assigned to only a few

feature types through regularization, as shown in Eq. (3).

The linear features, which are the original continuous data,

gave the worst results, when combined with categorical

data. The hinge features, which are basis functions for

piecewise linear splines, are very similar to the nonlinear

smooth functions in generalized additive models (Elith

et al. 2011). Thus, the superiority of hinge features implies

that there are nonlinear relationships between the contin-

uous data and landslide occurrences. The above charac-

teristics from the hinge features enabled the proper

modeling of the nonlinear relationships between the con-

tinuous data and landslide susceptibility. Consequently, the

use of only hinge features for continuous data produced the

best predictive performance when combined with cate-

gorical data. If both complex and simpler models show

similar performances, simpler models are generally pre-

ferred from a modeling viewpoint. Therefore, the above

combination is the best for the data sets in the study area.

The predictive performance using only features for con-

tinuous data without categorical data (LQP, HQP, and H in

Fig. 4) gave the worst results in this case study, indicating

that categorical data such as the forest type should be

combined with continuous data for landslide susceptibility

mapping. From these test results, the combination of the

hinge features of continuous data with categorical data was

used for subsequent modeling procedures.

As the next step, the effect of the number of background

samples was tested. As shown in Fig. 5, the background

sample test indicated that more than 10,000 background

samples (3.45 % of the entire study area) produced a

similarly high predictive performance. The smallest back-

ground sample (i.e., 481) produced the worst prediction

performance, which means that if the number of back-

ground samples is too small, they cannot represent the

background environment accurately for comparison with

the characteristics at landslide locations. In terms of pro-

cessing time, the use of 10,000 background samples was

the best choice in this case study.

Factor contribution analysis results

Based on the optimal setting search tests, landslide sus-

ceptibility analysis was performed using the combination

of hinge features for continuous data and categorical data

with 10,000 randomly chosen background samples. Before
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generating the susceptibility map, the manner in which

each environmental factor affected the prediction result

was investigated based on a response curve. The response

curve shows the changes of the modeling output within the

range or value for the factor. This curve was generated

using only the considered factor.

Figure 6 gives the response curves for six environmental

factors used for landslide susceptibility mapping. The

relationships between landslide occurrence and topo-

graphic factors are as follows. In the elevation map, most

landslides occurred in the range of elevation between 180

and 260 m, in which most mountain areas are located.

However, landslide susceptibility decreased in the highest

areas with few surficial deposits. Landslide susceptibility

increased with increasing slope angle, as expected. With an

increase of slope angle, the shear stress in soil or uncon-

solidated material generally increases as well. However,

the decrease of susceptibility for slope values in excess of

35� is related to the reduction of surficial deposits in those

areas.

In the case of the forest type, needle-leaf trees, such as

Korea nut pine, Rigida pine, and pine, exhibited relatively

higher susceptibility values. The root systems of those tree

types are relatively less extensive than those of broad-leaf
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trees. Therefore, areas covered with those trees are much

more susceptible to landslides.

As for soil drainage, landslide susceptibility increased in

accordance with improved drainage. This result is in

agreement with other Korean case studies, such as Lee and

Min (2001) and Lee et al. (2004). When there is heavy rain,

well-drained soils can control the water flow and thus,

contain more water. The soil materials of the excessively

drained areas were mainly granite residuum, which consists

of rocky sandy loam and sandy loam. These materials have

relatively coarse grains; thus, during heavy rain, the soil

can contain more water because of the additional space

between the grains. The characteristics of these soil layers

are also related to the geology of the study area, being

mainly granite areas.

In the lithology map, most landslides occurred in the

two mica adamellite areas, and granite areas generally

exhibited relatively higher susceptibility values. Deep

weathering was considerably well progressed in these

granite areas and therefore, landslide susceptibility was

relatively high. High susceptibility in acidic dykes can also

be explained by the fact that the top layer covering the

acidic dykes consists of deeply weathered rocks or soils.

The highest susceptibility in the two mica adamellite areas

was also related to their topography, i.e., erosion basin.

With regard to the distance from lineaments, most land-

slides occurred very close to lineaments owing to an

increase in the degree of weathering. From these relation-

ships between geological factors and landslide suscepti-

bility, it is concluded that weathering has a dominant effect

of the degree of susceptibility within the study area.

To investigate the factor with the strongest effect on the

prediction result, a jackknife-based test was implemented.

The test results in Table 2 are summarized as a decrease of

AUC values (i.e., loss of performance) by comparing the

prediction based on all factors with that when one factor

had been excluded intentionally. The larger the decrement,

the greater the influence of the excluded factor. The rela-

tive decrease of AUC values as a percentage (RD) was also

computed to quantify the factor contribution as:

RDi ¼ 100 � ½AUCall � AUCi�
AUCall

ð4Þ

where AUCall and AUCi denote the AUC values computed

from the prediction using all factors and the prediction

when the i-th factor has been excluded, respectively.

The most influential factor was the distance from lin-

eaments, which afforded the largest decrease of AUC

values (RD = about 4.4 %) when excluded in the predic-

tive modeling. This result can be explained from the

response curve of that factor in Fig. 6. With increasing

distances from the lineaments, the susceptibility values

decreased drastically and constant values were reached at a

distance greater than about 20 m. Therefore, locations very

close to lineaments with large susceptibility values could

be separated from other locations, and the greatest contri-

bution to prediction could be obtained. Overall, the con-

tributions of three continuous data were strong, but those of

the three categorical data sets were relatively very weak.

The forest type was the most influential factor among the

three categorical data sets and the next dominant factor was

lithology. These results can be explained by the proportion

of classes in the categorical data layers. The soil drainage

and lithology layers have relatively small numbers of

classes, which means that they only provide overall pat-

terns of soil drainage and lithology classes within the study

area. For example, well-drained or excessively drained

soils consist mainly of granite residuum originated from

granite, which occupy large portions of the study area.

Therefore, these two categorical data sets provided overall

information, such that weathered granite areas with

excessively drained soils are susceptible to landslides.

Conversely, the forest-type map includes 11 classes and

therefore, some forest types with high susceptibility in

small areas could be separated from other types. Conse-

quently, a relatively higher contribution for prediction was

observed among the three categorical data layers.

However, these lesser contributions of categorical data

sets did not mean that the categorical data sets were useless

for landslide susceptibility mapping. As discussed in sec-

tion on feature selection results, all these categorical data

sets did affect the final prediction result when combined

with continuous data sets. In addition, a certain class that

showed high susceptibility in a relative sense could still be

extracted from the soil drainage and lithology data sets,

such as the excessively drained soils and the two mica

adamellite areas.

Landslide susceptibility mapping and comparison

with logistic regression

Finally, the landslide susceptibility map in the study area

was generated using both hinge features of continuous data

Table 2 Jackknife test results in terms of the decrease of AUC values

when each factor is excluded in maximum entropy modeling

Factor Decrease of

AUC

Relative decrease

of AUC (%)

Elevation 0.0076 0.875

Slope 0.0218 2.509

Distance from lineaments 0.0382 4.396

Forest type 0.0048 0.552

Soil drainage 0.0002 0.023

Lithology 0.0009 0.104
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and categorical data with 10,000 background samples.

Relative landslide susceptibility levels throughout the

study area were generated as the landslide susceptibility

map. Thus, the final susceptibility map was visualized with

200 classes at a 0.5 % interval, as shown in Fig. 7. This

visualization procedure was used because the main objec-

tive of this case study was to express relative susceptibility

levels within the study area. In the landslide susceptibility

map, the highly susceptible areas are found in the northern

and central parts of the study area, where the forest and

lithology types are needle-leaf trees and two mica adam-

ellite, respectively. Overall, the steeply sloping areas that

are also located near lineaments showed high susceptibil-

ity. Flat areas consisting of alluvium and non-forest types

showed the lowest susceptibility values.

Landslide susceptibility analysis is related to the pre-

diction of unknown future events. For this susceptibility

map to be useful for landslide hazard prevention, predictive

performance should also be conveyed for its interpretation.

The prediction rate curve, which was used for computing

the AUC values, can be used for the interpretation on the

landslide susceptibility map in the study area with respect

to the prediction of future landslides. Figure 8 shows the

prediction rate curve based on fivefold cross-validation

with the same data sets used for generating the suscepti-

bility map shown in Fig. 7. From this prediction rate curve,

it could be interpreted that the top 5 and 10 % classes in

Fig. 7 could contain approximately 34.5 and 57.2 % of

unknown future landslides, respectively.

To test the potential of the maximum entropy modeling,

a quantitative comparison with logistic regression was

finally carried out. For a quantitative comparison, the same

validation procedure that has been applied to the maximum

entropy modeling was also applied to logistic regression.

The prediction rate curve with the AUC value for the

logistic regression model is given in Fig. 8. The top 5 and

10 % classes in the logistic regression model contain 32.8

and 55.0 % of the landslides, respectively. The AUC value

from the entropy modeling (0.869) was slightly greater

than that from logistic regression (0.861). The interesting

result is that the AUC value from logistic regression is very

similar to that from the maximum entropy modeling using

the linear feature for continuous data (0.863). As men-

tioned before, to represent continuous data using the linear

feature means that the original scale value of the continu-

ous data is used for modeling. The logistic regression

model, which is a special form of generalized linear

models, quantifies the linear relationships in a logistic

Top <  5%

5% - 10%

10% - 15%

15% - 20%
20% - 25%

25% - 30%

30% - 35%
35% - 40%

40% - 45%

45% - 50%

< 50%

Fig. 7 Landslide susceptibility

map in the study area using both

hinge features of continuous

data and categorical data. Black

dots denote landslide locations
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space. Therefore, it may not properly fit nonlinear rela-

tionships. Conversely, the maximum entropy model

enables the fitting of complex relationships using various

features. In the case study, the hinge feature used for

continuous data representation can represent well the

nonlinear relationships. This notable characteristic of the

maximum entropy modeling resulted in the improvement

of predictive performance.

Conclusions

Landslide susceptibility mapping can be regarded as an

important preliminary step for assessing the risk of future

landslides. To generate a reliable landslide susceptibility

map, a consistent framework capable of integrating mul-

tiple environmental factors effectively is required. This

study tested the applicability of maximum entropy mod-

eling, which has been used widely for species distribution

modeling, but which has not been investigated fully for

landslide susceptibility mapping.

Based on a case study in the Boeun area of Korea, the

maximum entropy modeling showed its particular charac-

teristics for landslide susceptibility mapping. From a

modeling viewpoint, the hinge feature was the most

appropriate for continuous data representation and its

combination with categorical data showed the best pre-

dictive performance. The hinge feature can provide

smoothed response functions such as those of generalized

additive models. Even though the hinge feature was the

best type for continuous data in this case study, the max-

imum entropy model can properly model nonlinear or

correlated relationships between input continuous data

layers using other feature types.

Unlike the black-box type of other machine learning

algorithms such as neural networks, the maximum entropy

models can provide useful information for interpretations. For

example, factor contribution analysis, based on a jackknife test

and a response curve, determined that the distance from lin-

eaments was the most influential factor in the study area and

the slope layer was the next most influential factor. The

contributions of the three categorical data sets were less than

those of the three continuous data sets in the study area.

However, following interpretation of the response curves, each

categorical layer was found to have a certain category class

that was much more susceptible than others. For example,

most landslides occurred in deeply weathered granite areas

with excessively drained soils and needle-leaf trees.

From a comparison with logistic regression, the maxi-

mum entropy model showed better predictive performance.

This improvement of predictive performance was attrib-

uted mainly to using the hinge features for continuous data

that were the most influential factors among the data layers.

To increase the practical applicability to landslide sus-

ceptibility mapping of the major findings of this study,

additional case studies should be performed considering

different numbers of landslide occurrences and/or a greater

number of data sets. Extensive case studies including

quantitative comparisons with other models will be carried

out in future work.
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