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Abstract In this study, non-Darcian flow to a larger-

diameter partially penetrating well in a confined aquifer

was investigated. The flow in the horizontal direction was

assumed to be non-Darcian and described by the Izbash

equation, and the flow in the vertical direction was

assumed to be Darcian. A linearization procedure was used

to approximate the nonlinear governing equation. The

Laplace transform associated with the finite cosine Fourier

transform was used to solve such non-Darcian flow model.

Both the drawdowns inside the well and in the aquifer were

analyzed under different conditions. The results indicated

that the drawdowns inside the well were generally the same

at early times under different conditions, and the features

of the drawdowns inside the well at late times were similar

to those of the drawdowns in the aquifer. The drawdown in

the aquifer for the non-Darcian flow case was larger at

early times and smaller at late times than their counterparts

of Darcian flow case. The drawdowns for a partially

penetrating well were the same as those of a fully pene-

trating well at early times, and were larger than those for a

fully penetrating well at late times. A longer well screen

resulted in a smaller drawdown in the aquifer at late times.

A larger power index n in the Izbash equation resulted in a

larger drawdown in the aquifer at early times and led to a

smaller drawdown in the aquifer at late times. A larger well

radius led to a smaller drawdown at early times, but it had

little impact on the drawdown at late times. The wellbore

storage effect disappears earlier when n is larger.

Keywords Non-Darcian flow � Wellbore storage �
Partially penetrating well � Laplace transform �
Finite cosine Fourier transform

Introduction

Pumping test is one of the most important investigation

ways to estimate aquifer parameters in the hydrogeology

(Barker and Herbert 1982; Wang et al. 2013; Li et al.

2014). Because of the large storage capacity, large-diam-

eter pumping wells have been commonly used all over the

world especially in developing countries such as China and

India (Wang et al. 2005; Sushil 2006). The hydraulics of

groundwater flow to a larger-diameter well might be

somewhat different from that of flow to an infinitesimal

well because the pumping rate mainly comes from the

storage of the well at early times for a large-diameter

pumping well. In the past few decades, groundwater flow

to an infinitesimal well has been extensively investigated

(Theis 1935; Hantush and Jacob 1955; Hantush 1959;

Neuman and Witherspoon 1969). The first mathematical

model for unsteady groundwater flow to an infinitesimal

pumping well was the well-known Theis model (Theis

1935). Later, numerous models had been established for

different aquifer systems (Hantush and Jacob 1955; Han-

tush 1959; Neuman and Witherspoon 1969; Salcedo et al.

2013; Yeh and Chang 2013). For instance, Hantush and

Jacob (1955) investigated the groundwater flow to an

infinitesimal well in a leaky aquifer. Boulton (1954)

developed a mathematical model for groundwater flow to a

pumping well in an unconfined aquifer. Meanwhile,
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research on flow to a finite-diameter pumping well had also

been reported (Papadopulos and Cooper 1967; Lai and Su

1974; Fenske 1977; Sen 1982; Patel and Mishra 1983;

Cimen 2001).

All the above-mentioned studies were based on the

assumption that the flow was Darcian. However, flow could

be non-Darcian under certain circumstances when the

pumping rate is relatively large (Sen 1990; Wen et al.

2008a, 2009), meaning that the relationship between the

specific discharge and hydraulic gradient was no longer

linear. Non-Darcian flow can be classified into two general

types, i.e., pre-linear flow and post-linear flow. When the

specific discharge (or the hydraulic gradient) is less than a

critical value and the linear relationship between the spe-

cific discharge and the hydraulic gradient becomes invalid,

the flow can be regarded as pre-linear. On the other hand, if

the specific discharge (or the hydraulic gradient) is larger

than a critical value and such a linear relationship is also

invalid, the flow can be regarded as post-linear. The pre-

linear flow often happens in petroleum engineering or

groundwater flow in silt–clay aquitards because of the low

flow velocities, while the post-linear flow often happens in

fractured media (Kolditz 2001) or near the pumping well

because of the high velocities of flow (Sen 1987, 1989).

During the past few decades, non-Darcian flow to a

pumping well has caught the attention of many investigators.

However, progress on non-Darcian flow is still very limited

because of the nonlinearity nature of the problem. Sen (1987,

1989, 1990) might be one of the first hydrologists to investi-

gate non-Darcian flow to a pumping well. The methodology

used by him was one type of the similarity methods, called the

Boltzmann transform. The basic idea of the Boltzmann

transform was to convert the partial differential equation of

unsteady groundwater flow to an ordinary differential equa-

tion by combining the spatial and the temporal coordinates

into a single Boltzmann variable (Özisik 1989). For example,

Sen (1987) used the Boltzmann transform to solve non-Dar-

cian flow to a pumping well in a confined aquifer based on the

assumption that the non-Darcian flow can be described by the

Izbash equation. Sen (1990) also used the Boltzmann trans-

form to solve non-Darcian flow to a large-diameter well on the

basis of the Forchheimer equation. Although Sen used

Boltzmann transform to solve non-Darcian flow to a pumping

well under different conditions and a series of papers had been

published, the Boltzmann transform had been proven to be

problematic for some problems (Mathias et al. 2008; Wen

et al. 2008a). In a rigorous sense, the Boltzmann transform was

only applicable for an infinitesimal pumping well. It may

bring in errors when the pumping well radius was not infini-

tesimal. Especially, when the wellbore storage was consid-

erable, the errors associated with such a transform might be

unacceptable. Recently, Wen et al. (2008a, b) developed a

linearization procedure which can deal with the nonlinear

term in the governing equation for non-Darcian flow suc-

cessfully. The linearization procedure worked generally well

when the pumping time was relatively large meaning that the

flow approaches a quasi-steady state, while it would under-

estimate the drawdown at early times (Wen et al. 2009). As

mentioned before, the solutions obtained by the Boltzmann

transform and the linearization procedure were approximate

analytical solutions. It is very difficult, if not impossible, to

obtain closed-form analytical solutions for non-Darcian flow

problems because of the nonlinear nature of the problem.

Meanwhile, numerical approaches had also been used to solve

non-Darcian flow problems (Ewing et al. 1999; Mathias et al.

2008; Wen et al. 2009).

After a careful check on the literature, one can find that

most of the studies on non-Darcian flow to a pumping well

focus on the fully penetrating wells. Research on non-Dar-

cian flow to a partially penetrating well was limited. In fact,

partially penetrating wells were commonly used in the real-

field applications, especially in the site where the thickness

of the aquifer was large (Shu et al. 2013). Wen et al. (2013)

firstly investigated non-Darcian flow toward a partially

penetrating well in a confined aquifer, and some approximate

analytical solutions were obtained. In addition, the wellbore

storage should also be considered when the radius of the well

is relatively large. Therefore, it was necessary and interesting

to investigate the non-Darcian flow to a larger-diameter

partially penetrating well. This study was an extension of a

previous study (Wen et al. 2013), which did not consider the

wellbore storage. The main purpose of this study was to

analyze the impact of the wellbore storage under non-Dar-

cian flow and partially penetrating condition.

In this study, non-Darcian flow to a partially penetrating

well was investigated taking into account the wellbore

storage. Both the Izbash equation and the Forchheimer

equation describing the non-Darcian flow were used

widely. The Izbash equation was used in this study, and the

Forchheimer equation will be investigated separately

elsewhere. The Izbash equation had been proven to

describe non-Darcian flow very well in coarse porous

media (Bordier and Zimmer 2000; Moutsopoulos et al.

2009). The linearization procedure associated with the

Laplace transform and the finite cosine Fourier transform

were used to solve the mathematical model. The draw-

downs inside the well and in the aquifer had been thor-

oughly analyzed for different possible field cases.

Problem statement and semi-analytical solutions

Problem statement

The schematic diagram of the problem investigated here is

shown in Fig. 1. In order to simplify the flow system and
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make the problem mathematically tractable, the following

assumptions have been used in this study: (1) the aquifer is

homogenous, horizontally isotropic, and laterally infinite

with a constant thickness; (2) the well partially penetrates

the aquifer, and the radius of the well is relatively large and

equal to rw, meaning that the wellbore storage cannot be

ignored; (3) the pumping rate is constant and equal to Q

(positive for pumping); (4) the whole system is hydrostatic

before the pumping starts; (5) the horizontal flow is assumed

to be non-Darcian, while the flow in the vertical direction is

assumed to be Darcian (the dominating flow component is

generally along the horizontal direction, supplemented by a

secondary vertical flow component close to the well. The

vertical flow component drops quickly when moving away

from the well). Based on these assumptions, the flow

mathematical model can be established:

oqr

or
þ qr

r
þ oqz

oz
¼ Ss

osðr; z; tÞ
ot

; ð1Þ

sðr; z; 0Þ ¼ 0; ð2Þ
sð1; z; tÞ ¼ 0; ð3Þ
osðr; 0; tÞ

oz
¼ 0; ð4Þ

osðr;B; tÞ
oz

¼ 0; ð5Þ

lim
r!rw

2prðl� dÞqr � pr2
w

dswðtÞ
dt

¼ �Q½Uðz� dÞ � Uðz� lÞ�; 0� z�B;

ð6Þ

where qr is the radial specific discharge [m/h]; qz is the

vertical specific discharge [m/hr]; r is the radial coordinate

[m]; z is the vertical coordinate [m]; s(r, z, t) is the draw-

down [m]; Ss is the specific storage coefficient [m-1]; Q is

the pumping rate [m3/h]; B is the thickness of the aquifer

[m]; rw is the radius of the pumping well [m]; sw(t) is the

drawdown inside the well [m]; l is the distance from the top

of the well screen to the bottom of the aquifer [m]; d is the

distance from the bottom of the well screen to the bottom

of the aquifer [m]; U(.) is the Heaviside step function,

U(z - d) is zero when z is less than d, otherwise U(z - d)

equals one. The origin of coordinates is located at the

intercept of the vertical axis through the center of the well

and the bottom of the aquifer.

The flow in the radial direction is assumed to be non-

Darcian and can be described by the Izbash equation, that is,

qrjqrjn�1 ¼ Kr

osðr; z; tÞ
or

; ð7Þ

where n is a power index, Kr is an empirical coefficient

[mn/hn], and it can be regarded as an apparent radial

hydraulic conductivity when n is 1. As qr is negative, which

is the case for a pumping scenario, the above equation can

be rewritten as:

�jqrjn ¼ �ð�qrÞn ¼ Kr

osðr; z; tÞ
or

ð8Þ

The flow in the vertical direction is assumed to be

Darcian described as:

qz ¼ Kz

osðr; z; tÞ
oz

; ð9Þ

where Kz is the vertical hydraulic conductivity [m/h].

Approximate analytical solutions in Laplace–Fourier

domain

Substituting Eqs. (8) and (9) to Eq. (1), one can obtain

Kr

nð�qrÞn�1

o2sðr; z; tÞ
or2

þ Kr

rð�qrÞn�1

osðr; z; tÞ
or

þ Kz

o2sðr; z; tÞ
oz2

¼ Ss

osðr; z; tÞ
ot

ð10Þ

The above equation has a nonlinear term (-qr)
n-1, which is

very difficult to handle analytically. Fortunately, Wen et al.

(2008a) proposed a linearization procedure which can be

used to solve such nonlinear equation successfully. In this

study, the linearization procedure was also used to deal with

the nonlinear term in the above equation. According to Wen

et al. (2008a), one has the following approximation:

ð�qrÞn�1 � Q

2prB

� �n�1

: ð11Þ

Then, Eq. (10) can be transformed as:

o2sðr; z; tÞ
or2

þ n

r

osðr; z; tÞ
or

þ Kzn

Kr

Q

2prB

� �n�1
o2sðr; z; tÞ

oz2

� n

Kr

Q

2prB

� �n�1

Ss

osðr; z; tÞ
ot

: ð12Þ

Fig. 1 Schematic diagram of the flow system
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Eq. (12) indicates that the flow rate at any cylindrical

cross section is equal to the pumping rate Q. It should

be pointed out that this is exactly true only at the center

of the pumping well (the inner boundary). Obviously, for

the area far away from the pumping well, the flow rate

at the cylindrical cross section is less than the pumping

rate Q. It has been proven that such a linearization

procedure will underestimate the drawdown at early

times and it works generally well at late times (Wen

et al. 2009).

Eq. (12) can be solved by the Laplace transform asso-

ciated with the finite cosine Fourier transform along the z-

direction. When considering the initial and boundary con-

ditions, the final solution for Eq. (12) in Laplace domain

can be expressed as:

in which, d0 ¼ Sspn
Kr

Q
2pB

� �n�1
; d ¼ B2SspnþKznN2p2

KrB2
Q

2pB

� �n�1
. N is

the finite cosine Fourier transform variable. p is Laplace

transform variable, K1�n
3�n

1�n
3�n

� �
and K 2

3�n

2
3�n

� �
are the second

kind of Bessel functions with order 1�n
3�n

and 2
3�n

, respec-

tively. The details for the derivation of the solution can be

found in the ‘‘Appendix.’’

Simplified solutions

If the power index n in the Izbash equation happens to be 1,

the Izbash equation then becomes Darcy’s law. For such a

special case, the solution of Eq. (12) becomes

�sðr; z; pÞ

¼
Qðl� dÞK0 r

ffiffiffiffiffi
Ssp
Kr

q� �

ppBrw 2ðl� dÞKr

ffiffiffiffiffi
Ssp
Kr

q
K1 rw

ffiffiffiffiffi
Ssp
Kr

q� �
þ prwK0 rw

ffiffiffiffiffi
Ssp
Kr

q� �h i

þ 2Q

pp2rw

X1
N¼1

sin Npl
B

� �
� sin Npd

B

� �	 

K0ðr

ffiffiffiffiffi
d00
p
Þ cos Npz

B

� �
N½2ðl� dÞKr

ffiffiffiffiffi
d00
p

K1ðrw

ffiffiffiffiffi
d00
p
Þ þ prwK0ðrw

ffiffiffiffiffi
d00
p
Þ�
;

ð14Þ

where d00 ¼ B2SspþKzN2p2

KrB2 . Equation (14) is the same as the

solution obtained by Mishra et al. (2012) who investigated

Darcian flow to a partially penetrating well with storage in

an anisotropic confined aquifer.

If l = B and d = 0, then the partially penetrating well

becomes a fully penetrating well, and the solution of

Eq. (12) becomes

Equation (15) is the same as the solution obtained by

Wen et al. (2009) who investigated non-Darcian flow to a

fully penetrating well with considering wellbore storage.

If l = B, d = 0, and n = 1, the problem investigated

here is the same as that of Papadopulos and Cooper (1967).

Then, Eq. (13) can be simplified as:

�sðr; z; pÞ ¼
QK0 r

ffiffiffiffiffi
Ssp
Kr

q� �

pprw 2BKr

ffiffiffiffiffi
Ssp
Kr

q
K1 rw

ffiffiffiffiffi
Ssp
Kr

q� �
þ prwK0 rw

ffiffiffiffiffi
Ssp
Kr

q� �h i ;

ð16Þ

which is the solution obtained by Papadopulos and Cooper

(1967).

�sðr; z; pÞ ¼
Qðl� dÞr1�n

2 K1�n
3�n

2
3�n

r
3�n

2

ffiffiffiffi
d0
p� �

Bp
½2prwðl�dÞ�n

Qn�1 Krr1�n
w

ffiffiffiffi
d0
p

K 2
3�n

2
3�n

r
3�n

2
w

ffiffiffiffi
d0
p� �

þ pr
5�n

2
w pK1�n

3�n

2
3�n

r
3�n

2
w

ffiffiffiffi
d0
p� �n o

þ 2Q

pp

X1
N¼1

sin Npl
B

� �
� sin Npd

B

� �	 

r

1�n
2 K1�n

3�n

2
3�n

r
3�n

2

ffiffiffi
d
p� �

cos Npz
B

� �
N
½2prwðl�dÞ�n

Qn�1 Krr1�n
w

ffiffiffi
d
p

K 2
3�n

2
3�n

r
3�n

2
w

ffiffiffi
d
p� �

þ pr
5�n

2
w pK1�n

3�n

2
3�n

r
3�n

2
w

ffiffiffi
d
p� �n o

ð13Þ

�sðr; pÞ ¼
Qr

1�n
2 K1�n

3�n

2
3�n

r
3�n

2

ffiffiffiffi
d0
p� �

ð2prwBÞn
Qn�1 Krpr1�n

w

ffiffiffiffi
d0
p

K 2
3�n

2
3�n

r
3�n

2
w

ffiffiffiffi
d0
p� �

þ pp2r
5�n

2
w K1�n

3�n

2
3�n

r
3�n

2
w

ffiffiffiffi
d0
p� � ð15Þ
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Results and discussions

Drawdowns inside the well

For a large-diameter well, it is very interesting to analyze

the drawdown inside the well because the pumping rate is

mainly from the wellbore storage at early times.

Firstly, this solution was compared with some bench-

mark analytical solutions, i.e., the solution of Papadopulos

and Cooper (1967) for Darcian flow to a fully penetrating

well with wellbore storage, the solution of Wen et al.

(2008a, b) for non-Darcian flow to a fully penetrating well

with wellbore storage, and the solution of Mishra et al.

(2012) for Darcian flow to a partially penetrating well with

wellbore storage. The default values of parameters are

given in Table 1. As shown in Fig. 2, it can be seen that all

the curves for different cases converge to the same

asymptotic value at early times, meaning that all the

pumping rate comes from the water stored inside the well.

At late times, the drawdown for Darcian flow case is larger

than that for non-Darcian flow case, and the drawdown for

the partially penetrating case is larger than that for the fully

penetrating case, if the other conditions are the same. The

impacts of different parameters on the drawdown inside the

well have also been analyzed and one found that the early-

time behavior was the same as that reflected in Fig. 2,

while the late-time behavior is the same as those of the

drawdown in the aquifer, which will be explained in more

detail below.

Drawdowns in the aquifer

Figure 3 shows the comparison between the drawdown

calculated at a radial distance of 5 m from the well, using

the model developed in this study and model that have been

analyzed in Fig. 2. The default values of parameters are

given in Table 1. The late-time behavior shown in this

figure is the same as that in Fig. 2. However, at early times,

the drawdown for the non-Darcian flow case is larger than

that of the Darcian flow case. It is also found that the

drawdown for a partially penetrating well is the same as

that of a fully penetrating well at early times.

Figure 4 shows the impact of n value on the drawdown

in the aquifer with n = 1.0, 1.2, 1.5, or 1.8. Other default

values of parameters are given in Table 1. From this figure,

it is found that a larger value of n leads to a larger draw-

down at early times, while a larger value of n will lead to a

smaller drawdown at late times. A larger n means greater

deviation from Darcian flow. For early times, a larger

n implies greater resistance to flow; therefore, a larger

drawdown was found. For the late times, the flow

approaches a quasi-steady state. The elastic release of the

aquifer is nearly completed, and the pumping rate is mainly

from the recharge from the area where it is relatively far

away from the pumping well. It can also be found that the

flow approach the quasi-steady state earlier when n is lar-

ger in this figure. The impact of n value on the drawdown

inside the well has also been analyzed, as shown in Fig. 5.

It is evident to see that the wellbore storage effect at early

times, as shown in this figure, different n values led to the

same drawdowns at early times. The late-time behavior is

the same as that of Fig. 4, which has been explained

before.

In order to analyze the impact of non-Darcian flow on

the wellbore storage effect, one can draw the curves for

different rw values with different n values at the same

figure. As shown in Fig. 6, one can also see the wellbore

storage effect at early times, and a larger n led to a smaller

Table 1 Default value of parameters used in this study

Parameter name Symbol Default

value

Pumping rate Q 50 m3/h

Non-Darcian factor n 1.5

Radial hydraulic conductivity Kr 0.1 m/h

Vertical hydraulic conductivity Kz 0.01 m/h

Specific storage coefficient Ss 0.0001 m-1

Thickness of the aquifer B 20 m

Radius of the pumping well rw 1 m

Radial coordinate r 5 m

Vertical coordinate z 10 m

Distance from the bottom of the well screen

to the bottom of the aquifer

d 5 m

Distance from the top of the well screen to

the bottom of the aquifer

l 15 m

Fig. 2 Comparison between the solution for the drawdown inside the

well of this study and those of the previous studies
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drawdown at late times. Interesting enough, if comparing

the curves for different n values, one can see that the

wellbore storage effect disappears earlier when n is larger

(the disappearing time is 32.5 h for n = 1, 5.0 h for

n = 1.5, and 2.1 h for n = 1.8).

Figure 7 is the comparison between the fully penetrating

case and the partially penetrating case with different rw

values. As shown in this figure, the drawdowns for the fully

penetrating case are larger than those of the partially

penetrating case. This is because a longer well screen can

transmit water more easily, which is somewhat like the

aquifer has a larger hydraulic conductivity. Thus, a smaller

drawdown will be found at late times.

The impact of Ss, Kr, and the length of the well screen

l - d on the drawdowns in the aquifer was investigated,

and the features were similar to those without considering

the wellbore storage (Wen et al. 2013), which will not be

repeated here.

Conclusions

In this study, non-Darcian flow to a large-diameter partially

penetrating well in a confined aquifer was investigated. The

wellbore storage was considered. The horizontal non-Dar-

cian flow was assumed to follow the Izbash equation, while

the vertical flow was still assumed to be Darcian. The

Laplace transform associated with the finite cosine Fourier

Fig. 3 Comparison between the solution for the drawdown in the

aquifer of this study and those of the previous studies

Fig. 4 Impact of n value on the drawdown in the aquifer with

n = 1.0, 1.2, 1.5, or 1.8

Fig. 5 Impact of n value on the drawdown in the well with n = 1.0,

1.2, 1.5, or 1.8

Fig. 6 Impact of different rw values with different n values on the

drawdown in the aquifer
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transform was used to solve such non-Darcian flow model.

Both the drawdowns inside the well and in the aquifer were

analyzed under different conditions. The main findings can

be concluded as follows:

1. The drawdowns inside the well are generally the

same at early times under different aquifer condi-

tions, indicating the wellbore storage effect. The

features of the drawdowns inside the well at late

times are the same as those of the drawdowns in the

aquifer.

2. The drawdown in the aquifer for the non-Darcian flow

case is larger than that of the Darcian flow case at early

times, while the drawdown in the aquifer for the non-

Darcian flow case is smaller than that of the Darcian

flow at late times.

3. The drawdowns for a partially penetrating well are the

same as those of a fully penetrating well at early times,

while the drawdowns for the partially penetrating case

are larger than those for the fully penetrating case at

late times, and a longer well screen results in a smaller

drawdown in the aquifer at late times, if the other

conditions are the same.

4. From the curves for different rw values with different

n values, one can see that a larger n led to a smaller

drawdown at late times, and the wellbore storage effect

disappears earlier when n is larger.
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Appendix: Derivation of the analytical solution

in the Laplace domain

Applying Laplace transform to Eq. (12) with considering

the initial condition Eq. (2), one can obtain

o2�sðr; z; pÞ
or2

þ n

r

o�sðr; z; pÞ
or

þ Kzn

Kr

Q

2prB

� �n�1
o2�sðr; z; pÞ

oz2

� n

Kr

Q

2prB

� �n�1

Ssp�sðr; z; pÞ; ð17Þ

in which p is the Laplace variable, over bar means the

variable in Laplace domain. After using the finite cosine

Fourier transform to deal with the second-order derivative

of z, it can be expressed as:

Fc

o2�sðr; z; pÞ
oz2

; z! N

� �
¼
ZB

0

o2�sðr; z; pÞ
oz2

cos
Npz

B
dz

¼ �N2p2

B2
ŝðr;N; pÞ � o�sðr; 0; pÞ

oz
� ð�1ÞN o�sðr;B; pÞ

oz

ðN ¼ 0; 1; 2; 3. . .Þ ð18Þ

The over ^sign means the variable in Fourier domain.

The vertical boundary equations Eqs. (4) and (5) can be

rewritten after the Laplace transform as:

o�sðr; 0; pÞ
oz

¼ 0; ð19Þ

o�sðr;B; pÞ
oz

¼ 0; ð20Þ

Substituting Eqs. (19) and (20) to (18), one has

Fc

o2�sðr; z; pÞ
oz2

; z! N

� �
¼ �N2p2

B2
ŝðr;N; pÞ;

N ¼ 0; 1; 2. . . ð21Þ

With the finite cosine Fourier transform, Eq. (17) can be

changed to the following equation after some simplifications:

d2 �̂sðr;N; pÞ
dr2

þ n

r

d�̂sðr;N; pÞ
dr

¼ nKzN
2p2 þ B2npSs

KrB2

Q

2prB

� �n�1

�̂sðr;N; pÞ: ð22Þ

Eq. (22) is a Bessel equation, whose general solution can

be expressed as:

�̂sðr;N;pÞ

¼ r
1�n

2 C1I1�n
3�n

2

3� n
r

3�n
2

ffiffiffi
d
p� �

þC2K1�n
3�n

2

3� n
r

3�n
2

ffiffiffi
d
p� �� �

;

ð23Þ

in which d¼ nKzN2p2þB2npSs

KrB2
Q

2pB

� �n�1
, Iv(x) and Kv(x) are the

first and second kinds of modified Bessel functions with

Fig. 7 Impact of different rw values under partially penetrating

pumping well and fully penetrating pumping well on the drawdown in

the aquifer
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order v, respectively. C1 and C2 are constants, which

depend on the boundary conditions. The radial boundary

conditions Eqs. (3) and (6) can be changed to

ŝð1;N; pÞ ¼ 0; ð24Þ

and after using the Laplace transform and the finite cosine

Fourier transform, one has

2prwðl� dÞKr

Q
2prwðl�dÞ

h in�1

d�̂sðrw;N; pÞ
drw

� pr2
wp�̂sðrw;N; pÞ

¼ �Q

p

sin Npl
B

� �
� sin Npd

B

� �
Np=B

: ð25Þ

It should be pointed out that the linearization procedure

has also been used in Eq. (25). With the consideration of

Eq. (24) and the properties of the Bessel functions, one has

C1 = 0. Then, the solution of Eq. (23) can be rewritten as:

�̂sðr;N; pÞ ¼ C2r
1�n

2 K1�n
3�n

2

3� n
r

3�n
2

ffiffiffi
d
p� �

: ð26Þ

With Eqs. (25) and (26), one can obtain C2 as:

C2 ¼
QB sin Npl

B

� �
� sin Npd

B

� �	 

pNp ½2prwðl�dÞ�n

Qn�1 Krr1�n
w

ffiffiffi
d
p

K 2
3�n

2
3�n

r
3�n

2
w

ffiffiffi
d
p� �

þ pr
5�n

2
w pK1�n

3�n

2
3�n

r
3�n

2
w

ffiffiffi
d
p� �n o

ð27Þ

It should be pointed out that the following properties of the

second kind of modified Bessel functions have been used to

obtain C2: xdKv(x)/dx ? vKv(x) = -xKv-1(x), Kv(x) = K-

v(x), KvðxÞ � CðvÞ
2

x
2

� ��v
; v [ 0; x! 0. Therefore, the

solution in Laplace–Fourier domain can be expressed as:

�̂sðr;N; pÞ ¼
QB sin Npl

B

� �
� sin Npd

B

� �	 

r

1�n
2 K1�n

3�n

2
3�n

r
3�n

2

ffiffiffi
d
p� �

pNp ½2prwðl�dÞ�n
Qn�1 Krr1�n

w

ffiffiffi
d
p

K 2
3�n

2
3�n

r
3�n

2
w

ffiffiffi
d
p� �

þ pr
5�n

2
w pK1�n

3�n

2
3�n

r
3�n

2
w

ffiffiffi
d
p� �n o

ð28Þ

With inverse Fourier transform, one can obtain the

solution in Laplace domain finally:

sðr; z; pÞ ¼ 1

B
ŝðr; 0; pÞ þ 2

B

X1
N¼1

ŝðr;N; pÞ cos
Npz

B

� �
ð29Þ
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