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Abstract Energy requirements constitute a significant

cost in groundwater production and can also add to a large

carbon footprint when fossil fuels are used for power.

Wind-enabled water production is advantageous as it

minimizes air pollution impacts associated with ground-

water production and relies on a renewable resource. Also,

as groundwater extraction represents a deferrable load (i.e.,

it can be carried out when energy demands within an area

are low), it provides a convenient way to overcome the

intermittency issue associated with wind power production.

Multiple turbine wind farms are needed to generate large

quantities of power needed for large-scale groundwater

production. Turbines must be optimally located in these

farms to ensure proper propagation of kinetic energy

throughout the system. By the same token, well placement

must reconcile the competing objectives of minimizing

interferences between production wells while ensuring the

drawdowns at the property boundary are within acceptable

limits. A combined simulation–optimization based model

is developed in this study to optimize the combined wind

energy and water production systems. The wind farm lay-

out optimization model is solved using a re-sampling

strategy, while the well field configuration is obtained

using the simulated annealing technique. The utility of the

developed model is to study wind-enabled water produc-

tion in San Patricio County, TX. Sensitivity analysis indi-

cated that identifying optimal placement of turbines is vital

to extract maximum wind power. The variability of the

wind speeds has a critical impact on the amount of water

that can be produced. Innovative technologies such as

variable flow pumping devices and aquifer storage recov-

ery must be used to smooth out wind variability. While

total groundwater extraction is less sensitive to uncertainty

in hydrogeological parameters, improper estimation of

aquifer transmissivity and storage characteristics can affect

the feasibility of wind-driven groundwater production.

Keywords Water energy nexus � Total dissolved

solids � Brackish groundwater � Energy

Introduction

Groundwater resources are more easily accessible and

reliable than surface water resources in most arid and semi-

arid regions of the world. The over-appropriation of surface

water resources and increased awareness of environmental

and ecological services, provided by rivers coupled with

their sensitivity to climate change, have resulted in a

greater push towards the use of groundwater resources in

recent years. Shallow groundwater supplies are susceptible

to anthropogenic pollution (Uddameri and Honnungar

2007) and are affected to a greater degree by climatic

phenomenon [Uddameri et al. 2013 (in press)]. Shallow

groundwater systems interact with surface water bodies,

provide baseflows and sustain riparian ecosystems (Soph-

ocleous 2002). Furthermore, shallow aquifer systems are

tapped extensively by small users for meeting rural,

domestic, and livestock uses; and large-scale production

can lead to drying up of wells and spring flows, and, as

such, pose both economic as well as ecological risks.

Deeper aquifer formations are noted to not be influenced by

climatic phenomenon (Uddameri 2007) and are seen to be

more reliable sources of water supplies for large-scale uses.

By the same token, new groundwater users (e.g., for
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hydraulic fracturing operations) may be required to obtain

their water from deeper sources to avoid the above stated

economic and environmental externalities.

Deeper aquifers are typically under confined conditions

and have considerable hydrostatic pressure; as such, the

potentiometric surface is higher than the top of the deeper

aquifer. However, hydrostatic pressure loss is to be

expected as greater amounts of groundwater are withdrawn

from the aquifer. The lifting of water from the deeper

formation to the surface requires considerable energy

which increases over time as these aquifers are not readily

recharged. Energy costs, therefore, form a major factor in

producing groundwater from deeper formations (NAP

1997). The volatility of the fossil-fuel-based energy market

adds a significant level of uncertainty to the long-term

planning of groundwater resources from deeper aquifer

formations. By the same token, reliance on these fossil-

fuel-based energy sources for water production has other

environmental consequences, such as an increased carbon

footprint and air quality issues [Hernandez et al. 2013 (in

press)]. Therefore, while the usage of deeper aquifers for

groundwater production has certain economic and envi-

ronmental benefits, it can also have negative economic and

environmental consequences arising from the need for a

greater amount of energy for lifting water.

The use of renewable and cleaner energy technologies

for lifting water provides a way to overcome some of the

economic and environmental disadvantages of producing

groundwater from deeper aquifers. Coastal areas generally

have favorable winds due to atmospheric instabilities at the

coastal-land boundary (Barthelmie 1999). Wind resources

offer a cleaner alternative to fossil-fuel-based energy pro-

duction and as such have a smaller carbon footprint and do

not cause air quality issues. However, wind speeds exhibit

considerable spatial and temporal variability which makes

reliable forecasts of available wind resources a challenging

task (Monteiro et al. 2009). In addition, wind energy cannot

be stored readily and the possibility of having low winds

during high-energy needs calls for innovations in managing

wind resources (Black and Strbac 2007). There is a

growing interest in storing wind energy in the form of

water. The coupling of wind power production with

hydropower production has been an active area of interest

in recent years (Castronuovo and Lopes 2004; Benitez

et al. 2008). As short-term storage of groundwater can be

easily accomplished, the production of groundwater can be

viewed as a deferrable energy load. Groundwater can be

produced when winds are high and when demands on the

produced energy are low and stored for later use. The

concept of using wind resources for groundwater extraction

is not completely new. Small-scale windmills are ubiqui-

tous in South Texas and many other rural areas of the world

and are used to extract small amounts of water from

shallow aquifers for satisfying domestic and livestock

needs. For large-scale production, this technology needs to

be up-scaled using modern day wind turbines that convert

wind energy to electrical energy, and cylindrical pumps must

be replaced with more powerful and reliable submersible

centrifugal pumps that overcome problems with cavitation

that arise when the elevation between the pump and the fluid

level is large. An array of wind turbines (wind farm) becomes

necessary when the energy requirements are high; and, in a

similar fashion, water quality and specific capacity con-

straints will warrant multiple groundwater wells for pro-

ducing the necessary water to meet demands.

Wind turbines extract energy from incoming wind

streams, which result in the formation of a wake and tur-

bulence in the downwind direction. Improper placement of

wind turbines results in a greater loss of efficiency and

diminishes the overall energy production. Therefore,

characterization of the wake effects as well as optimization

of wind farm layouts, in recent years, has been an active

area of research (Chowdhury et al. 2012; Gonzalez-Longatt

et al. 2012). In particular, analytical wake models have

been combined with evolutionary optimization models for

identifying wind farm layouts that lead to maximization of

wind energy (Grady et al. 2005; Elkinton et al. 2008;

Kusiak and Song 2010; Gonzalez et al. 2010; Chowdhury

et al. 2012). Generally speaking, the wind farm layout

model uses a simulation model to characterize wake effects

and the velocity deficits and couples it with an optimization

routine to identify the best subset of possible wind turbine

sites within a given area of interest; and therefore, from a

mathematical standpoint, represents an unconstrained

mixed-integer nonlinear optimization problem.

In a similar vein, a groundwater well field consists of

several wells. Groundwater well fields are not only

required to produce necessary amounts of water but are

also useful to regulate water quality, particularly of trace

elements. Proper spacing between the wells is necessary to

avoid interference effects and ensure minimal overlap

between the cones of depressions of individual wells.

Therefore, from a field development standpoint, wells must

be spaced as far apart as possible. In addition to water

quality and geologic factors which control the production

capacity at the well, the spacing is also constrained by any

drawdown policies that are enforced at the boundaries. In

most areas, the drawdown at the boundary of the well field

cannot be more than what is to be expected due to natural

variability in hydraulic heads.

The energy generated at each wind turbine is sent to a

collector substation where it is aggregated and tied into a

grid and transmitted to meet an electrical power load

requirement. The pump at each well represents a load. In a

similar manner, water at different wells is collected and

transmitted to a treatment facility for distribution. While
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maximizing the spacing between the wells is warranted to

achieve minimal interference, it also adds energy require-

ments, as water pumped at the well has to be piped to a

central collection facility. Distributed electric loads result

in voltage drops and energy losses during transmission.

Thus, from an energy efficiency standpoint, it is better to

keep the wells as close as possible. However, doing so

results in higher drawdowns at each well due to well

interferences, which, in turn, increases the lift required and

hence the energy requirements. Therefore, optimal opera-

tion of wind-enabled groundwater production represents a

careful balance between lifting needs at individual wells

and the energy losses associated with conversion and

transmission of power across the well field.

Combined simulation–optimization models for well

field development have been proposed in the literature

(Varljen and Shafer 1993; McKinney and Lin 1994; Wang

and Zheng 1998; Coppola et al. 2007; Fowler et al. 2008).

These models typically combine a groundwater flow model

with optimization routines to maximize the amount of

production from a fixed set of wells or identify optimal

well locations from a set of fixed (integer formulation) or

nearly infinite set of possibilities available within the

domain of interest (nonlinear formulation). Evolutionary

programming approaches, such as the derivative free

sampling methods, genetic algorithms and simulated

annealing, have been used and are noted to provide better

results than traditional optimization schemes (Fowler et al.

2008). In particular, simulated annealing is seen to produce

similar results to the genetic algorithm but with fewer

iterations (Wang and Zheng 1998). Most well field design

models seek to minimize costs by minimizing the lift

requirements. Recently, Madsen et al. (2009) integrated a

groundwater flow and pipe network model to simulate

transmission from the well field and used an enumeration

strategy to determine optimal (energy efficient) well field

configuration. However, the source of energy has not been

explicitly considered in any of the above studies.

Based on the above discussion, it is clear that while the

importance of energy optimization at well fields is

explicitly recognized and the potential of using wind power

for groundwater production at well fields is beneficial there

are currently no models available for performing a wind-

enabled water production evaluation. An integrated deci-

sion support framework that characterizes the maximal

energy that can be generated from available wind resources

(energy supply), along with the best way to use it in

groundwater production (energy demand) through proper

siting of wind turbines and water wells, has not been pre-

sented in the literature. The focus of the present study is to

develop such a decision support system (DSS) framework

for wind-enabled groundwater production. The proposed

framework consists of two modules. The first module uses

an analytical wake model coupled with re-sampling based

optimization methods for identification of optimal wind

turbine siting in a wind farm. The second model uses the

results from the wind farm optimization module to identify

optimal locations of groundwater production wells in a

well field. This latter model integrates the analytical solu-

tion for radial groundwater flow (Theis solution) in con-

junction with the superposition principle and the simulated

annealing (SA) optimization technique to develop best well

configuration. The developed DSS is used to identify fac-

tors controlling wind-enabled water supply, and its utility is

illustrated using a case-study based in San Patricio County

in the coastal bend region of South Texas.

Mathematical model

Modeling wind wake fields in the presence of turbines

The Jensen multiple wake model was used in this study to

simulate wake fields (Jensen 1983). This approach has

been used in many wind farm optimization studies and is

based on the principle of conservation of momentum and

yet is parsimonious for use in practical design applica-

tions (Grady et al. 2005). To apply the simulation model,

the wind turbines are assumed to be located at several

sites with the coordinate of each turbine given by (xi, yi).

The X axis is assumed to be parallel to the predominant

wind direction, which may not necessarily be the highest

wind speed. The turbines in the wind farms are all

assumed to have the same rotor diameter and turbine

heights. Following Jensen (1983), the following expres-

sions can be used to obtain wind velocity downstream of

a turbine:

pr2u ¼ pR2ur þ p r2 � R2
� �

uz ð1Þ

ur ¼ 1� að Þ uz ð2Þ

a ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� CT

p
ð3Þ

r ¼ Rþ a x ð4Þ

R ¼ ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

1� 2a

r

ð5Þ

a ¼ 0:5

ln z=zo

� � ð6Þ

where, r is the downstream wake radius, R is the radius of

the wake immediately after the rotor (downstream rotor

radius), ro is the rotor radius, u is the wind velocity at a

distance x downwind of the turbine; ur is the wind

velocity immediately after the rotor; uz is the free wind

speed at the height of the turbine. The constant, a is the

wake decay constant which depends upon the roughness
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of the surface terrain (zo) and turbine (rotor) height (z).

From Eq. (2), the axial induction factor, a, can be seen as

the percentage reduction in the wind speed from free

wind speed to that behind the rotor and is a function of

the thrust coefficient (CT). The wind speed is usually

measured at a reference height, za (typically 10 m from

the ground surface) and is referred to as the ground level

(ambient) wind speed. The free wind speed at any height,

z can be obtained via power law scaling expressions

(Turner 1972) as:

uz

ua

¼ z

za

� �b

ð7Þ

where, za is the ambient wind speed measurement height,

z is the height of the rotor, ua and ur are wind speeds

corresponding to ambient measurement height and rotor

height, respectively. The exponent, b is a function of the

surface roughness as well as meteorological stability con-

ditions (Hsu et al. 1994).

The above equations describe the wind speed variation

in space due to the presence of a single turbine. When there

are multiple turbines, the downwind turbines will experi-

ence wakes from all upwind turbines. The wind speed

experienced by a downwind turbine at location j, due to the

presence of an upwind turbine, i, can be obtained by cal-

culating the velocity deficit, vdij, as follows (Lackner and

Elkinton 2007):

vdij ¼
2a

1þ a xij

R

� �2
ð8Þ

where, xij is the distance between turbines i and j and the

wind speed (uj) experienced at the downwind turbine, j can

be calculated as:

uj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i2wðjÞ
vdij

� �2
s

ð9Þ

where, w(j) is the list of upwind turbines that affect turbine

j. As can be seen from Eq. (8), the farther the upwind

turbine is, the smaller will be its contribution to the overall

velocity deficit and hence a smaller influence on the

downwind velocity.

Once the wind velocity at each turbine is determined,

the power generated by the jth turbine can be calculated as:

Pj ¼
1

2
gwtqair u3

j p r2
o

� �
ð10Þ

where, Pj is the power generated by the jth turbine, gwt is

the efficiency of the wind turbine, and qair is the density of

the air. The density of air varies with altitude and

neglecting moisture effects can be calculated using the

ideal gas law as follows (Brutsaert 2005):

qair ¼
pM

RuT
ð11Þ

T ¼ To � Lh ð12Þ

p ¼ po 1� Lh

To

� � gM
RuLð Þ

ð13Þ

where, h is the height above sea level where the density is

being calculated, To and po refer to standard temperature

and pressure at sea level. Ru is the universal gas constant,

L is the temperature lapse rate and M is the molar mass of

air.

The model presented above calculates the wind power

at a given turbine that is potentially experiencing wake

interactions caused by upwind turbines. The total power

for a given turbine network can be obtained by summing

up the power generated by each turbine within the net-

work. The efficiency of the wind farm can be calculated by

taking the ratio of the total power generated for a given

network configuration against the total power that could be

potentially generated if the turbines did not experience any

wake (i.e., they were spaced very far apart in a uniform

flow field). The wind farm efficiency (gwf) can be calcu-

lated as:

gwf ¼
PJ

j¼1 Pj

J � Ptheo

where Ptheo ¼
1

2
gwtu

3
z pr2

o

� �
ð14Þ

It is important to recognize that the model presented

above calculates wind power for a given wind direction

parallel to the X axis. It is possible for winds to blow in

directions other than that considered here. Therefore,

coordinate transformation must first be performed such

that the X axis is parallel to the wind direction under

consideration using the following transformed coordinates

to make the necessary distance calculations prior to using

the above equations for wind power calculations.

x�

y�

	 

¼ cos hð Þ � sin hð Þ

sin hð Þ cos hð Þ

	 

x

y

	 

ð15Þ

The transformation angle, h, is measured in the counter-

clockwise direction. If the wind speeds and the probability

of their occurrence along different angles (wind speed

classes) are known, then the expected power generation can

be computed as follows:

EðPÞ ¼
XM

m¼1

XJ

j¼1

Pj;mpm ð16Þ

where E(P) is the expected power, Pj,m is the power gen-

erated at the jth turbine under mth wind speed class and pm

is the probability of occurrence of the mth wind speed

class.
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Re-sampling approach to evaluate near-optimal wind

turbine locations

The model presented above calculates the wind power

for a given network configuration. The goal of wind

farm optimization studies is to identify the locations for

a given set of wind turbines that yield the maximum

power. Generally, there are a finite number of locations

where wind turbines can be placed within a farm. It is

important that turbines are placed at least a few rotor

diameters apart to not only avoid collisions but also

ensure compatibility with the Jensen’s model (Vermeer

et al. 2003). As the objective is to identify a subset of

locations from a larger finite population, the wind farm

optimization problem represents a combinatorial pro-

gramming model. Classical derivative based approaches

are typically not suited for combinatorial optimization

models as the response surface is discrete and discon-

tinuous. Evolutionary optimization schemes such as

Genetic Algorithms (Grady et al. 2005) and particle

swarm optimization (Chowdhury et al. 2012) have been

adopted. In a similar spirit, a re-sampling based opti-

mization methodology is adopted in this study. In this

technique, a large number of configurations are generated

by sampling without replacement and the wind power

associated with each configuration is calculated. The

configuration providing the maximum power is selected

as the optimal wind farm layout. In a manner analogous

to most evolutionary algorithms, the re-sampling tech-

nique makes random sweeps across the decision space

and as such is less likely to converge to a locally opti-

mal solution. However, the global optimality of the ideal

solution cannot be directly checked. Therefore, the

solution provided is interpreted as a reasonable value (if

not necessarily the optimal value) of the power generated

for a given set of meteorological conditions and network

size.

Simulation model for establishing

production-drawdown relationships

The groundwater flow equation in the radial coordinate

system was used to simulate the effects of groundwater

production within the study area and establish a relation-

ship between production and drawdown. As the modeled

domain is fairly small, the aquifer was assumed to be

homogeneous and isotropic and represented using effec-

tive hydraulic conductivity (K) and storage coefficient (S).

The mathematical model for groundwater flow in this

case, is given by the following equation (Todd and Mays

2005).

S

T

oh

ot
¼ o2h

or2
þ 1

r

oh

or
and h x; t ¼ 0ð Þ ¼ ho and

h! ho as r !1 ð17Þ

Replacing the production (Q) by a mathematical sink

leads to the well-known Theis solution which is given as:

ho � h ¼ s ¼ Q

4pT

Z1

u

e�udu

u
where u ¼ r2S

4Tt
ð18Þ

where, ho is the initial hydraulic head, h is the hydraulic

head at a distance, r, from the production well at time t, and

Q is the groundwater production rate. The integral in

Eq. (18) is referred to as the well function in hydrologic

literature. The term, s is the drawdown at the well and

represents the drop in the hydraulic head from the initial

condition (i.e., prior to the start of pumping).

The groundwater flow model and the solution presented

in Eqs. (17) and (18) capture the production-drawdown

relationship for a single well. When there are multiple

wells producing in an area, the total drawdown at an

observation well can be obtained via the principle of

superposition, which states that the total drawdown at the

observation well is the summation of drawdowns caused by

production from all (multiple) wells in the area up to that

point in time.

Simulated annealing model for well field optimization

Simulated annealing is a search based optimization tech-

nique that was first proposed by Kirkpatrick et al. (1983).

The algorithm is inspired by the metallurgical technique of

annealing wherein a solid is slowly cooled such that its

structure is eventually frozen at its minimum energy con-

figuration (Bertsimas and Tsitsiklis 1993). Simulated

annealing is an iterative technique wherein during each

iteration, a decision is to be made whether the system

should continue to stay in its current state or move to its

neighboring state. Acceptance probabilities are used to

facilitate transitions to a better (lower energy) state and are

controlled by a global time varying parameter called tem-

perature which controls the rate of transitions. At early

times, the temperature is high which allows both uphill and

downhill transitions and thus provides a greater sweep over

the solution space, which, in turn, facilitates movements

away from locally optimal solutions. However, once a

reasonably optimal solution is identified, the temperature

becomes closer to zero and the algorithm mainly facilitates

downhill descent for local refinement of the solution. The

algorithm also uses several meta-heuristics to fine-tune the

search process.
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The optimization model used to site the wells seeks to

minimize the maximum drawdowns caused at the end of a

planning horizon in the production wells in order to keep the

energy requirements of the lift to a minimum. The draw-

down minimization requirement at the production wells will

cause the wells to be spaced as far apart as possible to avoid

interferences for a given level of pumping. On the other

hand, the drawdown at the property boundaries must be

within acceptable regulatory limits which will limit the

extent to which the well field can spread at a given site. In

addition, lower and upper bounds of pumping are specified

at each well to ensure the required wells are in use. The

optimization model can therefore be written as:

Min:
XK

k¼1

ddk;t drawdown minimization constraintð Þ ð19Þ

Subject to:

ddo;t� ddacc property boundary drawdown constraintð Þ
ð20Þ

XJ

j¼1

Qj ¼ Qreq demand requirement constraintð Þ ð21Þ

Qj;min�Qj�Qmax production boundsð Þ ð21Þ

xj;min� xj� xmax coordinate bounds along the X axisð Þ
ð22Þ

yj;min� yj� ymax coordinate bounds along the Y axisð Þ
ð23Þ

The simulated annealing algorithm is not capable of

handling constraints other than the bounds on decision

variables which constrain the search space. Therefore, the

constraints presented in Eqs. (20) and (21) are folded into

the objective function using penalty functions. A simple

deviation penalty is used for the less than or equal to

property boundary drawdown constraint, and a squared

error penalty function is used for the equality constraint.

The addition of these penalty functions results in the

following modified objective function:

Min:
XK

k¼1

ddk;t þ co

X

o2O

ddo;t � ddacc

� �

þ cQ

XJ

j¼1

Qj � Qtot

 !2

ð24Þ

The terms co and cQ represent penalties for property

boundary drawdown and total production constraints. The

coordinates of the production wells can be obtained by

setting the total requirement to a high value to correspond to

some maximum anticipated demand in the future as doing so

will ensure that the wells are sufficiently spaced far apart to

cause minimal interferences at lower levels of production.

While not explicit in the formulation, the primary function of

the above optimization model is to identify optimal spacing

of the wells within the area of interest. The model also

provides the relative fraction of water that is expected to be

produced by each well within the well field.

Wind energy availability (supply) and water production

(demand) assessment

The optimization model presented above does not explic-

itly consider the power available from wind sources for

lifting groundwater. The second phase of the optimization

model considers this aspect by establishing an energy

production curve. The curve plots the energy requirements

(over a planning horizon) for lifting a known quantity of

water from a given well configuration. The available

energy from the wind resources is intersected with this

energy production curve to obtain the achievable ground-

water production. The total energy required for ground-

water production is calculated as follows:

Egw ¼ qwgð Þ
XJ

j¼1

ZT

0

Qj ELj � hj;t

� �
dt ð25Þ

where, qw is the density of the water, g is the acceleration

due to gravity and EL is the elevation of the land surface

(measured from the same datum as the hydraulic head h) at

the jth well.

Illustrative case-study

The utility of the mathematical model developed above is

illustrated by applying it to assess wind-enabled water

resources development in San Patricio County, TX

(Fig. 1). Given the proximity to the coast, availability of

wind and land resources as well as nearness to demand

centers has spurred significant wind resource development

in this region (SPMWD 2011). The county has a strong

agricultural base and is a leading producer of Cotton and

Sorghum and is home to several major industries near the

Corpus Christi metropolitan area. Therefore, water

demands in the region are high and expected to increase in

years to come. The availability of wind resources can help

considerably reduce the energy costs associated with water

production, and therefore forms the basis of this case-study.

The meteorological data pertaining to wind speed and

direction were collected from the Texas Crop Weather

Program (CWP) near Sinton, TX. The Wind Rose plot

presented in Fig. 2 indicates that the winds are
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Fig. 1 Location of the study

area in San Patricio County, TX

Fig. 2 Wind speed and energy characteristics at the study area
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predominantly from east-southeast (from the sea towards

the land) or from west southwest (land to sea). Based on the

wind data, the region is in the wind power class of 3–7 and

as such well suited for wind resource development (NREL

2013). The wind data fit the Weibull distribution

(shape = 2.685 and scale = 4.389), which resulted in a

mean value of 3.90 m/s. The temporal variability of wind

speeds are also shown in Fig. 2. Wind speeds tend to be

highly variable and median wind speeds tend to be higher

during the months of January through May with lower wind

speeds encountered during fall and winter (September–

December). The variation in the median wind speeds

between different months is not significant, particularly

when compared to variations experienced within a month.

Therefore, the median wind speed represents a reasonable

value for long-term planning and to design the wind farm

layout.

A small wind farm [1.6 km (1 mi) long 9 0.8 km

(0.5 mi) wide] was selected in this study for illustrative

purposes. The X axis of the farm was assumed to be aligned

along the predominant wind direction and an assumed

median wind speed of 3.75 m/s was used here to obtain

conservative wind energy estimates. The median wind

speeds along other major quadrants were calculated as

well. A total of 98 potential turbine locations were iden-

tified within the study area to site 60 turbines, which result

in 2.167 9 1027 different configurations. The hydrogeo-

logic properties required for evaluation were obtained from

data presented in Shafer and Baker (1973). The wells were

assumed to tap the Evangeline aquifer and the thickness of

this aquifer in the study area was ascertained from the

Central Gulf Coast groundwater availability model

(Chowdhury et al. 2004). The initial potentiometric head

was based on groundwater monitoring data collected

within the San Patricio County by the Texas Water

Development Board (TWDB). All other information nec-

essary for calculations were obtained from the literature

and summarized in Table 1.

Results and discussion

Near-optimal wind turbine placement

The near-optimal wind turbine placement was obtained by

performing 10,000 location re-sampling runs and identi-

fying the optimal network configuration which yielded the

most power. Figure 3 depicts the selected locations of the

wind turbines with the algorithm focused on identifying

the optimal turbine configuration along the predominant

wind direction. This configuration yielded a power of

approximately 1,700 J/s. The frequency distribution of

power generated under various wind farm configurations

is presented in Fig. 4, which indicates that the power

generated by various configurations ranges from 1,450 J/s

to nearly 1,700 J/s; therefore, optimizing wind farm

operations can yield a 20 % increase in the amount of

power that is generated for a given design wind speed.

Albeit not optimal, the results in Fig. 4 also indicate that

different wind farm configurations can yield very similar

power output.

Table 1 Model input parameters for illustrative case-study

Parameter Symbol Value

Wind farm characteristics

Wind farm length – 1,600 (m)

Wind farm width – 800 (m)

Minimum distance between turbines – 120 (m)

Number of turbines – 60

Roughness of the surface terrain zo 0.5

Wind turbine characteristics

Rotor radius ro 20 (m)

Thrust coefficient CT 0.88

Turbine height z 60 (m)

Efficiency of wind turbine gwt 50 %

Air and atmospheric characteristics

Standard atmospheric pressure po 101.325 KPa

Standard air temperature To 288.15 K

Temperature lapse rate L 0.0065 K/m

Molar mass of air M 0.0290 Kg/mol

Groundwater and aquifer characteristics

Storage coefficient S 0.002

Aquifer transmissivity T 273 m2/days

Density of water qw 998 Kg/m3

Physical constants

Acceleration due to gravity g 9.810 m/s2

Universal gas constant Ru 8.314 J/K/mol

Fig. 3 Optimal wind farm and well field layout showing potential

wind turbine locations (open circles), optimal locations of wind

turbines (closed circles), and groundwater well locations (triangles)
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Power calculations were also made for median wind

speeds along other major directions and presented in

Fig. 5. As can be seen, the maximum energy can be

obtained when the winds are from the northwest direction.

However, the probability of obtaining winds in this direc-

tion is rather low and only about 3 %. Based on the

information presented in Fig. 6, the average annual wind

power is calculated to be about 1,335 J/s, which corre-

sponds to an annual energy of nearly 11,500 kWh. The

efficiency of the optimized wind farm was estimated to be

around 74 %, which indicates that placing the turbines

within a confined space of 1.3 km2 (0.5 mi2) creates wakes

and reduces the kinetic energy availability in the farm.

Placing the windmills very far apart, such that they are not

in the wake of another turbine, increases the amount of

energy that can be harnessed from available wind resources

by over 25 %. However, it is important to recognize that

doing so will likely lead to other inefficiencies, particularly

those associated with conversion and transmission of the

electrical energy that is generated.

Optimal placement of groundwater well locations

The well network considered here consisted of six wells.

The optimal locations for these wells were ascertained

using the Simulated Annealing (SA) algorithm and are also

depicted in Fig. 3, in the interest of brevity. The location of

the wells represents a compromise between minimizing the

interferences, which will cause them to be spread far apart,

and ensuring that the drawdowns along the property

boundaries are within acceptable limits which pushes them

closer. The maximum spacing between the wells is

Fig. 4 Variability in wind

power for evaluated wind farm

layout configurations

Fig. 5 Wind power generated using median wind speeds along

different flow directions

Fig. 6 Relationship between annual wind energy (KWh) and daily

groundwater production (MGD)
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approximately 112 m and the minimum spacing is roughly

20 m with the mean distance between the wells being

approximately 51 m. The well locations exhibit symmetry

around the central diagonal of the study area. If minimizing

the drawdowns at the property boundaries were the only

criterion, then all wells would fall in the center of the

rectangular study area as this represents the farthest dis-

tance from all boundary monitoring wells. However, the

minimization of well interferences will cause the wells to

move further away from each other till moving any further

will cause the violation of drawdown constraints at the

boundary. Repeated runs of the SA algorithm indicated that

while the diagonal parallel to which the wells were placed

changed directions based on the starting conditions, the

distances between the wells were always the same. The

fraction of production at each well hovered around the

average value of 16.7 % with around ±2 % variability

among different wells. No visible trends could be discerned

to characterize this variability. However, given the sym-

metric nature of the well placement, the expectation would

be to obtain fairly uniform production at all wells such that

the drawdowns are minimized to the same extent. The

model results generally confirm this reasoning and any

noted deviations are likely due to numerical approxima-

tions and round-off errors.

Wind power–groundwater production relationship

The relationship between annual energy requirements and

the average daily groundwater production is schematically

depicted in Fig. 6. The energy requirements increase

exponentially with increasing production rate. For the

expected annual energy generated from the wind farm

[*42,120 MJ (*11,700 kWh)] and the assumed hydro-

geological conditions at the site, the average daily

groundwater production is close to 1.0 megaliters per day

(0.26 MGD), which is enough to serve a community of

1,500 people. It is important to remember that wind energy

is highly erratic; therefore, while the production of

1.0 MLD (0.26 MGD) can be expected on average, the

daily production can exhibit considerable fluctuations.

Based on the measured wind speeds, the groundwater

production rate can be as high as 3.9 MLD (1 MGD) on

certain days of the year, and on the other extreme the wind

power could be lower than the cut-in speed of the turbine,

which will result in no wind energy production, resulting in

zero groundwater production.

Meteorological impacts on wind-enabled groundwater

production

A detailed Monte Carlo simulation was carried out with the

optimized network configuration to study how variability

in wind speeds affects groundwater production. The results

presented in Fig. 7a depict the wind speed distribution that

was created using 10,000 random realizations. This vari-

ability in wind speed is then propagated through the wake

model to obtain the distribution of power generated as

depicted in Fig. 7b. The skewness in the generated power

stems from the fact that the power is a cubic function of

wind speed (Fig. 7c); therefore, the effects of large wind

speeds are greatly amplified relative to the small wind

speeds. This stretches the abscissa and the skewness results

because small wind speeds occur with a higher probability

than the extreme upper values. The variability in ground-

water production rates due to variable wind speeds is

depicted in Fig. 7d. The relationship between power and

production (Fig. 6) is noted to increase exponentially albeit

at a slower rate. Based on this information and the gener-

ated power probability distribution (Fig. 7b), the ground-

water production variability with wind speed exhibits a

slow exponential decay as depicted in Fig. 7d. As can be

seen, while the median production is about 1.0 MLD

(0.25 MGD), the groundwater production varies over an

order of magnitude with changing wind speeds.

The variability in wind speeds presents additional

challenges to using wind for groundwater production.

Firstly, the pump used for production must be capable of

adapting itself to varying energy availability; and secondly,

there is a need for proper water storage structures to

smooth out water supply fluctuations that arise from supply

variability. The variable frequency drive (VFD) pumps

provide one approach to make production compatible with

energy availability. Storage structures (including the option

of storing the water in a shallower aquifer), which are filled

when water is available and used during periods of low or

no wind energy, must also be part of the design. The cur-

rent analysis does not consider energy requirements asso-

ciated with these operations. If the demands are to be met

with a high degree of reliability, then other energy sources

must also be included as a backup.

Sensitivity of hydrogeologic characteristics

on wind-enabled groundwater production

A Monte Carlo simulation was carried out to evaluate how

variations in transmissivity and storage coefficient affected

wind-enabled groundwater production. Both transmissivity

and storage coefficient were sampled from a triangular

distribution, which was developed based on limited avail-

able data and understanding of the hydrogeological prop-

erties in the region. The available energy for groundwater

production was held constant at the average expected

value, and the amount of groundwater that can be produced

was evaluated using the model. In general, increasing the

transmissivity of the aquifer improves the rate at which
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water flows to the well and reduces the drawdowns, which,

in turn, would allow for greater extractions when all other

conditions are equal. Increasing the storage coefficient

results in a greater amount of extracted water coming from

the aquifer in the immediate vicinity of the well, which will

increase the drawdown near the well. The aquifer trans-

missivity and storage coefficient act in tandem; and,

therefore, were varied simultaneously in the Monte Carlo

simulation. Aquifer diffusivity is defined as the ratio of the

transmissivity to the storage coefficient. The simulated

probability distribution functions for diffusivity provides

the combined effect of hydrogeological characteristics on

wind-enabled groundwater production. The results from

the Monte Carlo simulation are presented in Fig. 8. The

generated triangular distributions exhibit skewness, which,

in turn, results in a long-tailed distribution for the aquifer

diffusivity. The relationship between transmissivity and

groundwater production is distinctly nonlinear and the

relatively steep slope in the graph suggests that aquifer

transmissivity is one of the key influencing parameters, at

least in the vicinity of the assumed median value. However,

the increases in production are marginal when the trans-

missivity exceeds 600 m2/days, suggesting that hydrogeo-

logical effects are less limiting and factors other than

transmissivity (e.g., wind speeds) have a greater impact on

the production rate. The combined influence of aquifer

transmissivity and storage coefficient on groundwater

production can be seen in Fig. 8c. More specifically, the

results indicate how the nonlinear trend between trans-

missivity and production is influenced by the storage

coefficient. The variability in produced groundwater due to

uncertainty in hydrogeologic characterization is depicted in

Fig. 8f. It is clear from a comparison of Figs. 7 and 8 that

variability in wind has a bigger impact on groundwater

production than uncertainties in hydrogeologic parameters.

As such, greater benefits are gained from properly assess-

ing winds than focusing too heavily on hydrogeologic

investigations. Nonetheless, the sensitivity ranges noted do

suggest that improper hydrogeological characterization,

particularly under-estimation of transmissivity and storage,

can cause the project to be infeasible.

Summary and conclusions

The overall goal of this study was to develop a decision

support system (DSS) to evaluate wind-enabled ground-

water production. The DSS is based on the integrated

Fig. 7 Sensitivity of wind energy and groundwater production to wind speed
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optimization of wind resources and groundwater produc-

tion. The wind power optimization model focuses on

identifying the proper layout of turbines such that energy

extraction from wind is optimized by minimizing the

wake interactions between turbines. The groundwater well

field optimization model seeks to reconcile the interfer-

ence effects of placing the production wells too close

against spacing them too far, which results in adverse

impacts past the property of the well field and increases

the costs of water collection upon pumping. The optimal

energy produced by the wind farm is used to characterize

the amount of groundwater that can be produced based on

the amount of potential energy that is required to lift the

water. A re-sampling based procedure is used to solve the

combinatorial optimization model of finding optimal tur-

bine locations. The Simulated Annealing technique is used

to identify optimal well field locations and interpolation

techniques are used to find the maximum groundwater

production that is consistent with the available energy.

The utility of the decision support system is demonstrated

by applying it to evaluate an integrated wind–water farm

modeled in San Patricio County, TX. A 60-turbine wind

farm in a 1.3 km2 (0.5 mi2) area is seen to be nearly 75 %

efficient when compared to an infinite farm that has no

wake effects and produces nearly 43,200 MJ

(12,000 kWh) of energy, annually. This level of power

was noted to develop about 1.0 MLD (0.25 MGD) of

water annually without causing excessive drawdowns at

the property boundaries. A Monte Carlo sensitivity ana-

lysis was carried out to systematically evaluate the

impacts of various processes and parameters on the

groundwater production potential from wind farms. Wind

turbine placement in the wind farm controls the amount of

energy that can be extracted from prevailing winds. Sen-

sitivity analysis on the optimized wind farm layout indi-

cates that variability in wind speeds is a crucial parameter

which has a significant impact on the groundwater pro-

duction. Wind speed variability impacts the design of the

water withdrawal operations. The use of variable flow

drive (VFD) pumps and aquifer storage recovery (ASR)

are some ways to combat the intermittency problem.

While wind-enabled groundwater production is less sen-

sitive to uncertainties in hydrogeologic parameters,

improper estimation of aquifer transmissivity and storage

characteristics can render wind-driven groundwater pro-

duction projects infeasible.

Fig. 8 Sensitivity of hydrogeologic parameters on wind-enabled groundwater production
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