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Abstract In this paper, a new methodology is developed

for optimization of water and waste load allocation in

reservoir–river systems considering the existing uncer-

tainties in reservoir inflow, waste loads and water demands.

A stochastic dynamic programming (SDP) model is used to

optimize reservoir operation considering the inflow

uncertainty, and another model called PSO-SA is devel-

oped and linked with the SDP model for optimizing water

and waste load allocation in downstream river. In the PSO-

SA model, a particle swarm optimization technique with a

dynamic penalty function for handling the constraints is

used to optimize water and waste load allocation policies.

Also, a simulated annealing technique is utilized for

determining the upper and lower bounds of constraints and

objective function considering the existing uncertainties.

As the proposed water and waste load allocation model has

a considerable run-time, some powerful soft computing

techniques, namely, Regression tree Induction (named

M5P), fuzzy K-nearest neighbor, Bayesian network, sup-

port vector regression and an adaptive neuro-fuzzy infer-

ence system, are trained and validated using the results of

the proposed methodology to develop real-time water and

waste load allocation rules. To examine the efficiency and

applicability of the methodology, it is applied to the Dez

reservoir–river system in the south-western part of Iran.

Keywords Water and waste load allocation �
Reservoir–river systems � Particle swarm

optimization (PSO) � Simulated annealing (SA) �
Nonlinear interval optimization � Operating rules

Introduction

Increasing pollution loads necessitates the incorporation of

water quality issues in water resource planning and man-

agement. Nowadays, the integration of water quality and

quantity targets in reservoir–river systems planning is

receiving more attention by researchers. de Azevedo et al.

(2000) investigated multiple strategic planning alternatives

for water quality and quantity management in a river basin.

They used the MODSIM model for water allocation and a

model named QUAL2E-UNCAS for water quality routing

considering the parameters uncertainties. In their study,

some performance measures such as reliability of water

quality standard compliance, spatial and temporal unifor-

mity of water quality as well as total reliability, total vul-

nerability, and total resiliency for quantitative assessment

were used to compare the alternatives. The alternatives

include various water release policies and corresponding

levels of refinement.
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Dai and Labadie (2001) introduced a model for water

allocated called MODSIMQ which is an extended version

of the MODSIM. The MODSIMQ incorporates the river

water quality assessment model of QUAL2E. They used

the Frank–Wolfe nonlinear programming to link the water

quantity and quality simulation models and attain optimal

water allocation policies considering water quality issues.

Kerachian and Karamouz (2007) developed a stochastic

model for water quantity and quality management in res-

ervoir–river systems. In their model, the uncertainty of

inflow to the reservoir was taken into account. They used

the Nash bargaining theory to manage the conflict of

interests of stakeholders. A water quality simulation model

was developed and linked to the optimization model that

simulates the thermal stratification cycle in the reservoir

and the temporal and spatial variations of pollutants in

downstream river.

Karamouz et al. (2006) presented a model based on the

Nash bargaining theory for a reservoir–river operation

system. They used a GA-based optimization model whose

objective function was based on Nash theory. Also Water

Quality for Reservoir–River Systems (WQRRS) and

QUAL2E models are used for water quality considerations

in reservoir and river, respectively. de Moraes et al. (2010)

utilized coupled water quantity and quality simulation–

optimization models to consider the hydrologic, agronomic

and economic aspects of water allocation in a river basin in

Brazil. They used the piece-by-piece method, which was

introduced by Cai et al. (2001), to solve their optimization

model.

Paredes–Arquiola et al. (2010) considered water quality

and quantity issues in a basin-scale water resource man-

agement problem. They used two models of SIMGES and

GESCAL to deal with the modeling of a reservoir–river

system. These two models are parts of AQUATOOL

which is a generalized decision-support system for water

resources planning and management. A coupled water

quality–quantity model was also proposed by Zhang et al.

(2010). They divided the river basin into a network of

reaches and tanks to analyze a water allocation optimi-

zation problem. In each tank, pollutant loads and water

supply are evaluated and, in each river reach, water

quality is simulated.

Nikoo et al. (2012a) developed a methodology for

optimal allocation of water and waste load in rivers uti-

lizing a fuzzy transformation method (FTM). The FTM, as

a simulation model, was used in an optimization frame-

work for constructing a fuzzy water and waste load allo-

cation model. In this methodology, economic as well as

environmental impacts of water allocation to different

water users are considered.

Many researchers have developed operating rules for

hydrosystems based on the results of optimization models.

Mousavi et al. (2007) used fuzzy regression (FR) and

adaptive network-based fuzzy inference system (ANFIS) to

extract operating rules for reservoir. The results indicated

that the FR model was better for extracting rules for long-

term optimization models, while the ANFIS model was

useful for medium-term implicit stochastic optimization

models. Chaves and Chang (2008) developed reservoir

operating rules using an artificial neural network named as

ANN. Their ANN model benefits from genetic algorithm

(GA) to identify its parameters. Karamouz et al. (2009)

proposed a Bayesian stochastic genetic algorithm (BSGA)

to define the lower and upper bounds of monthly releases

from reservoir considering just the water quantity aspects.

Using the obtained ranges for releases, the exact values of

releases were defined considering the reservoir water

quality. The WQRRS model was linked to the optimization

model to define the exact values of monthly releases.

Finally, a support vector machine (SVM) was utilized to

extract the operating rules for real-time reservoir operation.

Malekmohammadi et al. (2009) employed a variable length

chromosome genetic algorithm (VLGA) for reservoir

operation with the objectives of flood damage control and

water supply to agricultural demands. They also used a

Bayesian network (BN) to define the operating rules for

cascade reservoirs.

Soltani et al. (2010) used an ANFIS-based model and a

hybrid genetic algorithm to define the optimal reservoir

operation policies considering some objectives related to

the quantity and quality of water. An ANFIS-based model

was employed to simulate the reservoir water quality and it

was linked to a genetic algorithm to obtain the optimal

water supply policies. The monthly reservoir operating

rules were also proposed using ANFIS. Recently, an arti-

ficial immune recognition system (AIRS) was employed by

Wang et al. (2011) to extract reservoir operating rules.

They compared the extracted rules with those obtained

using a radial basis function (RBF) neural network. The

review of the previous works reveals that none of the

existing soft computing techniques can outperform other

models in all cases. Therefore, in our case study, five well-

known techniques are used for developing water and waste

load allocation rules and their results are compared.

In this paper, a stochastic dynamic programming (SDP),

which incorporates the inflow uncertainty, is developed for

reservoir operation management. Also, a nonlinear interval

optimization model based on particle swarm optimization

(PSO) and simulating annealing (SA) is developed for

optimal water and waste load allocation in downstream

river. This model incorporates the uncertainties of water

demand and return flow quality of different water users. In

the proposed model, called PSO-SA, a nonlinear interval

number optimization method is utilized to consider the

constraints and objective function uncertainty. Finally, an
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integrated model for long-term water and waste load allo-

cation in reservoir–river systems is developed by embed-

ding the SDP and nonlinear interval PSO-SA model. Using

the results of the proposed methodology, five soft com-

puting models, namely, fuzzy K-nearest neighbor (FKNN),

BN, regression tree induction (named M5P), support vector

regression (SVR) and an adaptive neuro-fuzzy inference

system (ANFIS) are trained and validated to develop water

and waste load allocation rules. In the proposed method-

ology, the SDP optimization model provides real-time

operating rules for reservoir based on the values of reser-

voir water storage and inflow to the reservoir in each time

step. Then the trained soft computing techniques provide

the water and waste load allocation policies based on the

reservoir release, which is obtained using the SDP model,

return flow quality as well as monthly water demands of

water users along the river. Therefore, a decision maker

can use the methodology presented in this paper for real-

time water and waste load allocation in reservoir–river

system. The application of the methodology in the Dez

Primary economic
analyses

Determining the total benefit of water and waste load allocation in 
reservoir-river system for long term planning horizon

Start

Primary analyses of uncertainties in 
order to determine the main 

uncertainties in reservoir-river system 
and estimate the lower and upper 

bounds of the uncertain parameters 

Gathering existing data 
related to the quality of 

released water from reservoir 
and quality of return flow of 

each water user

Gathering physical and 
hydrologic data including 
physical characteristics of 

reservoir, water users’
demands, time series of 
inflow to the reservoir

Step 2: Developing a
Stochastic Dynamic 
Programming (SDP) 
model for reservoir 

operation

Developing the PSO-SA model for water and waste load allocation in 
downstream river with the capability of coupling with the SDP-based 

reservoir operation model 

Linking the SDP and PSO-SA models

Determining the optimum policies for water and waste 
load allocation in reservoir-river system

End

Determining the potential benefits of water users in the case of 
fully supplying water demands and estimating the costs of waste 

load treatment or diversion 

Defining the state and decision 
variables of the SDP model

Defining the objective 
function of the SDP model

Developing the SDP-based reservoir operation model with the goal of 
the maximization of the total benefit of water and waste load allocation

Step 1: Analysis of data and uncertainties

Step 3: Determining 
the optimal water 

and waste load 
allocation policies

Step 4: Water 
and waste 

load 
allocation 

rules Developing optimum rules for real-time water allocation in 
reservoir-river system using the best soft computing model

Training and testing the FKNN, M5P, SVR, BN and ANFIS models for prediction 
of water and waste load allocations using the results of SDP-PSO-SA model

Assessing the models and selecting the best model

Step 3: 
Developing the 
SDP-PSO-SA 

water and waste 
load allocation 

model 

Fig. 1 A flowchart of the proposed methodology for water and waste load allocation in reservoir–river systems
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reservoir–river system in the south-western part of Iran

demonstrates that it is a useful tool for water and waste

load allocation in reservoir–river systems under

uncertainty.

Model framework

In this section, the framework of the proposed methodol-

ogy for the long-term water and waste load allocation in

reservoir–river systems is described. This methodology

includes a stochastic reservoir operation optimization

model and water and waste load allocation model in

downstream river under uncertainty. An SDP is used for

reservoir operation optimization to consider reservoir

inflow uncertainty. Also a PSO-SA model is developed for

nonlinear interval optimization of water and waste load

allocation in downstream river.

In the PSO-SA water and waste allocation model, con-

sidering a large number of water quality and quantity

constraints, a PSO model, which uses a dynamic penalty

method for constraint handling, is developed. In each

iteration of the PSO model, an SA optimization model is

used to determine the lower and upper bounds of water

quality constraints and objective function which are

required in the nonlinear interval number optimization

method. A flowchart of the proposed methodology is

shown in Fig. 1.

As can be seen in Fig. 1, in the first step, the required

data such as physical characteristics of reservoir, time

series of inflow to the reservoir, water users’ demands, the

quality of released water from reservoir as well as the

quality of return flow of each water user are gathered. Also,

a primary economic analysis is done to determine the

potential benefit of each water user in the case of fully

supplying its water demand. The results of this analysis are

used in estimating crop production functions.

In the next step, the SDP-based reservoir operation

optimization model is coupled with the PSO-SA model.

Then, the optimal long-term policies for water and waste

load allocations in reservoir–river system are determined

by considering the uncertainties of reservoir inflow, water

demands and quality of each return flow.

Finally, using the results of the proposed water and

waste load allocation methodology, the soft computing

models are trained and validated to develop water and

Determining the total benefit of water and waste load 
allocation to various water users in downstream river 

First step: 
Developing a

nonlinear 
interval PSO-
SA model for 

water and 
waste load 

allocation in 
downstream 

river

Developing nonlinear 
interval PSO-SA model 

Lower and upper values of 
interval parameters

SA optimization model

Calculating the intervals of objective function
and water quality at the checkpoints

Determining the interval of constraints 
and objective function

Is the stopping criterion of the SA satisfied?

Determining the optimum interval of water and waste load allocations

Water quality
constraints in 
checkpoints

Start

Yes

No

No

Yes

Running the PSO model

Is the stopping criterion of the PSO satisfied?

End

Second Step: 
Determining the 
total benefit and 
water and waste 
load allocation

policies

Fig. 2 A flowchart of the nonlinear interval PSO-SA model for water and waste load allocations in rivers under uncertainty
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waste load allocation rules. A trained soft computing model

which provides the best performance can be utilized for

real-time water and waste load allocation. In the following

sections, the formulation and the structure of the SDP

reservoir operation optimization model and the PSO-SA

water and waste load allocation model are explained.

Stochastic dynamic programming (SDP) for reservoir

operation

In reservoir–river systems, the amount of flow in down-

stream river is controlled by the upstream dam. On the

other hand, the water and waste load allocation to the

downstream water users depend on the volume of the water

released from the upstream dam. Therefore, in such sys-

tems, the relationship between the reservoir operation and

water and waste load allocation in downstream river should

be considered. In this paper, an SDP reservoir operation

model, which can be easily linked with the nonlinear

interval PSO-SA water and waste load optimization model,

is developed. The objective function of the SDP model is

the maximization of the total net benefit of water users in

downstream river. The main constraints of SDP reservoir

operation model are related to the mass balance of water in

reservoir, maximum capacity of outlets and their rating

curves, as well as the maximum and minimum water

storage of the reservoir. The decision variables of this

model show the optimal policies for water release from

reservoir and water and waste load allocation in down-

stream river considering the uncertainties of reservoir

inflow, water demand and quality of each agricultural

return flow. In other words, by coupling the SPD and PSO-

SA models, the water release from reservoir is optimized in

a way that water quality in downstream river does not

violate the water quality standards. In this study, it is

assumed that the thermal stratification of water in reservoir

does not have any considerable effect on temporal variation

of quality of outflow from the reservoir. The recursive

function of the SDP model is as follows:

ftðSt;QtÞ ¼ Max ½ gðQt; St;RtÞ
þ aEQtþ1jQt

½ ftþ1ðStþ1;Qtþ1Þ� � 8 St; Qt; t

2 f1; . . .; Tg:
ð1Þ

where Rt is the reservoir release during time step t [million

cubic meters (MCM)], St the reservoir storage at the

beginning of time step t (MCM), Stþ1 the reservoir storage

at the beginning of time step t ? 1 (MCM), Qt the reser-

voir inflow during time step t (MCM), Qtþ1 the reservoir

inflow during time step t ? 1 (MCM), ftþ1ðStþ1;Qtþ1Þ the

total benefit of the reservoir–river system from the time

step t ? 1 to the end of the planning horizon ($),

gðQt; St;RtÞ the benefit of the reservoir–river system during

time step t ($), ftðSt;QtÞ the total benefit of the reservoir–

river system from the time step t to the end of the planning

horizon ($), a the discount factor (in this paper is equal to

1), and EQtþ1jQt
is the conditional expectation operator.

In order to calculate gðQt; St;RtÞ, we used PSO-SA

model, which provides the optimal benefit of the system in

each time step.

The PSO-SA model for water and waste load allocation

in rivers

A nonlinear interval number programming is utilized in the

PSO-SA model to incorporate the uncertainties of water

demand and quality of return flow of each water user. In

this model, the environmental impacts of water allocation

are taken into account by controlling the water quality

along the river and supplying the environmental demands.

A PSO model has been developed for water and waste

load allocation. The PSO model uses a dynamic penalty

method for constraints handling. The incorporation of

uncertainties in water and waste load allocation model

provides interval values for decision variables. For com-

paring the interval numbers in the process of handling

constraints and updating local and global best solutions in

the PSO model, a nonlinear interval number optimization

method proposed by Jiang et al. (2008) and Nikoo et al.

(2012b) is utilized. A simulated annealing (SA) optimiza-

tion model has been also employed to calculate the lower

and upper bounds of the interval numbers. This PSO-SA

allocation model has the ability to link with the reservoir

Fig. 3 A schematic view of a reservoir–river system
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operation model. Figure 2 illustrates a flowchart of the

nonlinear interval PSO-SA model.

As can be seen in this flowchart, the nonlinear interval

PSO-SA water and waste load allocation model consists of

two main steps. In the first step, main procedures of PSO-

SA model are described. In this step, for handling con-

straints, the SA optimization model is used to determine

interval bounds of water quality at checkpoints and objec-

tive function due to uncertainties. Thus, in each iteration of

PSO model, several SA models will be run depending on the

number of particles and the number of constraints which are

dealt with. In the second step, the optimum water and waste

load allocation policies, and the total net benefit of each

agricultural water user are calculated.

Figure 3 illustrates a schematic view of a reservoir–river

system, which is considered to present the formulation of

the water and waste load allocation model. The decision

variables of this optimization model are the amounts of

allocated water to water users and the diverted agricultural

waste load to evaporation ponds. In this paper, the crop

production function is used to determine the losses due to

deficit irrigation. The uncertainty of water demand and

return flow quality of each water user are also taken into

account in this model. The objective function of the model

is maximization of benefits of simultaneous water and

waste load allocation:

Max Z ¼ BðX;UÞ

¼
Xn

i¼1

½ðCPDi � ui � ð1� kyi � ½1�
xi

ui

�Þ � Ai Þ

� ðcdi � xdiÞ� ð2Þ
Xn

i¼1

ð1� aiÞxi þ
Xn

i¼1

xdi� X � ð1� acÞdc � Ed ð3Þ

u1i ¼ ½dli ; dui� i ¼ 1; 2; ::; n ð4Þ
0� xi� dui 8 i ¼ 1 ; 2 ; . . .; n ð5Þ
0� xdi� ai dui 8 i ¼ 1; 2 ; . . .; n ð6Þ
ck � cs 8k ¼ 1; 2; . . .;m ð7Þ

Other constraints of this optimization model can be

found in Nikoo et al. (2012b). Parameters and variables of

the optimization model are defined as follows:

Z ¼ BðX;UÞ Total benefit of water and waste load

allocation in river system (benefit of

allocation of water to the water users

minus the cost of diversion of waste

load to the evaporation ponds) ($),

X Available water for allocation to the

agricultural sector (MCM),

n Number of water users,

m Number of water quality checkpoints,

Fig. 4 The Dez reservoir–river system and its location in Iran
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U Vector of uncertain parameters,

B Total net benefit of water and waste load

allocation ($),

kyi Crop response factor for water user i,

cdi Unit cost of diversion of waste load to

the evaporation pond for water user

i ($),

CPDi Average annual benefit of water user

i using one unit of water [this ratio is

called crop per drop (CDP)],

Ai Farm land area of water user i (ha),

ui ði ¼ 1; 2 ; 3Þ Uncertain water demands of agricultural

water users i (MCM),

dli/dui Lower/upper bound of water demand of

water user i (MCM),

xi Amount of water allocated to water user

i (MCM),

xdi Amount of waste load diverted to

evaporation pond by water user

i (MCM),

dc Monthly domestic water demand (MCM),

ac Ratio of generated waste load to allocated

water to the domestic water user,

ai Ratio of generated waste load (return

flow) to allocated water to agricultural

water user i,
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Ed Environmental water demand (MCM),

ck Concentration of water quality indicator

at checkpoint k (mg/L),

cs Standard level for the concentration of

water quality indicator (mg/L).

For more details about the nonlinear interval number

optimization model, the reader is referred to Nikoo et al.

(2012b).

Soft computing models

In this paper, the results of the optimization models are

used to develop water and waste load allocation rules using

five soft computing techniques of FKNN, M5P, SVR, BN

and ANFIS. Details and applications of FKNN, M5P,

ANFIS, SVR and BN models can be found in Keller et al.

(1985), Etemad–Shahidi and Mahjoobi (2009), Mesbah

et al. (2009), Bashi–Azghadi and Kerachian (2010); Bashi–

Azghadi et al. (2010), Etemad–Shahidi and Ghaemi (2011)

and Malekmohamadi et al. (2011).

Case study

The proposed methodology is used for water and waste

load allocation in the Dez reservoir–river system in the

south-western part of Iran. Figure 4 illustrates a view of the

Dez reservoir–river system and its location in Iran.

The Dez River is located downstream of the Dez Dam

and after passing the Dezful City goes toward the south to

join the Karoon River in the Band-e-Ghir region. The Dez

River, with average flow of 8.5 MCM per month, supplies

the agricultural demand of the Dez irrigation network,

domestic water demand of the Dezful City and some vil-

lages as well as water demands of some agro-industrial

units. The Dez Dam is a concrete arch dam with a total

volume and height of 3,340 MCM and 190 m, respectively.

The minimum and maximum monthly inflow to the Dez

Dam is 0.16 and 1.7 MCM in October and April, respec-

tively. Results of a frequency analysis show that the

average annual discharge of the Dez River is equal or more

than 6,200 MCM with the probability of 0.8. Most of

agricultural lands in the Dez water basin have modern

irrigation and drainage networks. Since the groundwater

quality in the study area is not appropriate, the agro-

Table 1 Upper bounds of reservoir inflow in different classes

(MCM)

Month 1 2 3 5 6

January 259.1 333.9 391.2 530.7 580

February 370.3 477.2 559 758.4 830

March 518.9 668.7 783.3 1062.8 1,160

April 750.3 966.9 1132.7 1536.8 1,700

May 670.4 864 1012.1 1373.2 1,500

June 370.7 477.7 559.6 759.3 850

July 227.7 293.5 343.8 466.4 520

August 146.4 188.7 221 299.9 330

September 107.3 138.3 162 219.8 240

October 89 114.7 134.3 182.3 200

November 135 174 203.9 276.6 310

December 234.8 302.6 354.5 481 525
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industrial water demands are supplied by the Dez Dam.

The study area is composed of three large agro-industrial

water users which are located from the Dez Dam to the

Band-e-Ghir region (Fig. 4). The lower and upper bounds

of water demands of the agro-industrial water users are

shown in Fig. 5.

A considerable amount of allocated water to users

returns to the system. This waste load contains high con-

centration of pollutants such as fertilizers, heavy metals,

pesticides and total dissolved solids (TDS). The main

water pollutant in the Dez reservoir–river system is TDS

because the TDS concentration frequently violates the

water quality standards. The lower and upper bounds of

TDS concentration in return flow of water users are pre-

sented in Fig. 6.

The main crop in agricultural lands in the study area is

sugarcane. Therefore, the sugarcane’s yield response fac-

tors are considered in crop production function. Also, in
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this study, the monthly environmental and domestic water

demands are constrained to be fully supplied. Based on the

Dezab Consulting Engineers studies, the environmental

water demand (instream flow) in the Dez River is

240 MCM per month (Dezab Consulting Engineers 2001).

The return flow coefficients are considered to be 0.4 and

0.6 for agricultural and domestic water users, respectively.

In this study, it is assumed that the water pollution due to

return flow of an agro-industrial water user can be con-

trolled by diverting a part of its return flow to an evapo-

ration pond. The annual evaporation rate in the Dez

reservoir–river system is about 2,400 mm.
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Fig. 10 Lower and upper bounds of TDS concentration in the second water quality checkpoint during the period of January 1990 to December

1999
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Fig. 11 Lower and upper bounds of TDS concentration in the third water quality checkpoint during the period of January 1990 to December

1999
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Results and discussion

The optimal policies for water allocation and diversion of

waste load to evaporation ponds can be developed using

the proposed water and waste load allocation optimization

model. These policies are defined to maximize the total

benefit of the water and waste load allocation in the Dez

reservoir–river system and minimize the range of variation

of the total benefit.

The active water storage of the Dez reservoir is about

2,700 MCM. In the SDP model, the numbers of discreti-

zation of active reservoir water storage and inflow in each

month are considered to be 50 and 6, respectively. The

upper bounds of reservoir inflow in different classes are

represented in Table 1.

The main inputs of the proposed water and waste load

allocation optimization model are a 40-year time series of

monthly inflow (1970–2009) to the Dez Reservoir for

calculating inflow transition probability matrix of the SDP

model, lower and upper bounds of monthly water demands,

lower and upper bounds of TDS concentration in waste

load of water users and the rating curves of the reservoir

outlets. In this study, the initial storage of the Dez Dam

during the simulation period is considered to be 70 % of

normal reservoir storage (i.e., 2,900 MCM). Also, the

water quality is controlled at three checkpoints along the

Dez River to maintain the TDS concentration at the stan-

dard level (1,000 mg/L).

As the quality of inflow to the Dez Reservoir is excel-

lent, it is assumed that this reservoir acts like a completely

mixed reactor and variations of water quality in different

layers of the reservoir are not taken into account. The

outputs of the proposed methodology are optimal policies

for water and waste load allocation in Dez reservoir–river

system by considering the main uncertainties. As an

example, Fig. 7 shows the time series of reservoir inflow,

downstream water demand and reservoir water releases

during the first 240 months of the simulation period

(1990–2009).

The uncertainties of water demand and the quality of

return flow of water users, which are considered as interval

numbers, provide the upper and lower bounds of TDS

concentrations at water quality checkpoints. As an exam-

ple, time series of allocated water to different water users

during the first 10 years of the planning horizon

(1990–1999) are represented in Fig. 8. Also the time series

of diverted waste load (return flow) of water users 1 and 3

to evaporation ponds during the period of January 1990 to

December 1999 are illustrated in Fig. 9.

In order to investigate the effects of uncertainties on

water quality along the Dez River, the TDS concentration

of the Dez River in the second and third water quality

checkpoints for the period of January 1990 to December

1999 are shown in Figs. 10 and 11, respectively. As shown

in these figures, the water quality standard (i.e., 1,000 mg/

L for TDS) is always satisfied using the proposed policies.

It is seen that the uncertainties of system led to lower and

upper bounds instead of a unique value for river water

quality. Figure 12 illustrates the lower and upper bounds of

the optimal total benefit of the reservoir–river system

during the period of January 1970 to December 2009.

To develop water and waste load allocation rules, five

soft computing models, namely, FKNN, Regression tree

Induction (named M5P), SVR, BN and ANFIS, are trained

and verified using the results of optimization models. The

operating rules for monthly outflow of the reservoir are

directly provided by the SDP model. Each soft computing

technique has eight inputs which are month number, water
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Fig. 12 Lower and upper

bounds of the total benefit of the

reservoir–river system during

the period of January 1970 to

December 2009
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Table 2 Comparing the performances of the trained FKNN, M5P, SVR, BN and ANFIS in the validation process

Statistical measure Class of allocated

water to user 1 (MCM)

Models

ANFIS M5P SVR FKNN BN

Allocated water to water user 1

RMRE 70 \ AW* \ 120

Value 0.477 0.228 0.321 0.399 0.371

Rank 5 1 2 4 3

120 \ AW \ 160

Value 0.250 0.227 0.329 0.275 0.493

Rank 2 1 4 3 5

AW [ 160

Value 0.246 0.270 0.402 0.208 0.589

Rank 2 3 4 1 5

Total

Value 0.343 0.240 0.348 0.308 0.486

Rank 3 1 4 2 5

RMSE 70 \ AW \ 120

Value 0.411 0.056 0.126 0.177 0.160

Rank 5 1 2 4 3

120 \ AW \ 160

Value 0.086 0.061 0.133 0.092 0.262

Rank 2 1 4 3 5

AW [ 160

Value 0.070 0.077 0.167 0.061 0.351

Rank 2 3 4 1 5

Total

Value 0.248 0.064 0.141 0.122 0.263

Rank 4 1 3 2 5

Bias 70 \ AW \ 120

Value 8.699 0.585 -5.565 -2.041 -12.792

Rank 4 1 3 2 5

120 \ AW \ 160

Value -1.744 2.429 12.954 0.328 26.541

Rank 2 3 4 1 5

AW [ 160

Value 7.451 11.205 22.784 5.778 42.402

Rank 2 3 4 1 5

Total

Value 4.381 4.259 9.410 1.049 17.609

Rank 3 2 4 1 5

CC 70 \ AW \ 120

Value 0.977 0.998 0.992 0.985 0.992

Rank 4 1 2 3 2

120 \ AW \ 160

Value 0.997 0.998 0.998 0.997 0.994

Rank 2 1 1 2 3

AW [ 160

Value 0.999 1.000 0.999 0.999 0.999

Rank 2 1 2 2 2

Total

Value 0.993 0.999 0.994 0.995 0.982

Rank 4 1 3 2 5
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release from the reservoir during the month, water demands

and waste loads of three water users. 75 and 25 % of input–

output data sets are used for training and validating the

models, respectively. In order to evaluate and compare the

performances of the developed simulation models, five

different statistical performance measures, namely, root

mean relative error (RMRE), root mean square error

(RMSE), Bias, correlation coefficient (CC) and scatter

index (SI), are used:

RMRE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

oi � p�i
p�i

����

����

s
ð8Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

oi � p�i
p�i

� �2

vuut ð9Þ

Table 2 continued

Statistical measure Class of allocated

water to user 1 (MCM)

Models

ANFIS M5P SVR FKNN BN

Allocated water to water user 1

SI 70 \ AW \ 120

Value 0.205 0.055 0.131 0.179 0.139

Rank 5 1 2 4 3

120 \ AW \ 160

Value 0.076 0.055 0.063 0.083 0.098

Rank 3 1 2 4 5

AW [ 160

Value 0.047 0.022 0.034 0.041 0.030

Rank 5 1 3 4 2

Total

Value 0.114 0.056 0.112 0.103 0.188

Rank 4 1 3 2 5

Summation of rankings 70 \ AW \ 120 23 5 11 17 16

120 \ AW \ 160 11 7 15 13 23

AW [ 160 14 9 17 10 19

Total 18 6 17 9 25

* Allocated water (AW)

Table 3 Comparing the performances of FKNN, M5P, SVR, BN and

ANFIS models trained for estimating water allocation to water user 2

Statistical measure Models

ANFIS M5P SVR FKNN BN

RMRE

Value 0.435 0.264 0.307 0.411 0.332

Rank 5 1 2 4 3

RMSE

Value 0.476 0.090 0.114 0.208 0.107

Rank 5 1 3 4 2

Bias

Value 0.072 0.534 0.028 -0.833 -1.170

Rank 2 3 1 4 5

CC

Value 0.980 0.996 0.994 0.981 0.992

Rank 5 1 2 4 3

SI

Value 0.203 0.086 0.114 0.204 0.101

Rank 4 1 3 5 2

Summation

of rankings

21 7 11 21 15
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Fig. 13 Comparing the results of FKNN and M5P models trained for

estimating allocated water to water user 1 in the validation stage
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Bias ¼ 1

n

Xn

i¼1

ðoi � p�i Þ ð10Þ

CC ¼
Pn

i¼1 oip
�
i

ð
Pn

i¼1 o2
i

Pn
i¼1 p�

2

i Þ
1=2

ð11Þ

SI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n
Pn

i¼1 ððoi � OÞ � ðp�i � P�ÞÞ2
q

O
ð12Þ

where oi and p�i are ith optimized and predicted values,

respectively. n is the number of data in the validation data

set. Also O and P� denote the average optimized and

predicted values in the validation stage, respectively.

A comparison among the performances of the trained

FKNN, M5P, SVR, BN and ANFIS in the validation pro-

cess for prediction of allocated water to water user 1 is

presented in Table 2. As shown in this table, the perfor-

mances of M5P and FKNN models are better than the other

simulation models. Comparisons between the results of the

FKNN and M5P models for estimating allocated water to

water user 1 in the validation stage are shown in Fig. 13. As

it is shown in this figure, in general, the M5P model out-

performs the FKNN. The values of the statistical perfor-

mance measures for evaluating the five simulation models

trained for estimating the allocated water to water users 2

and 3 are also presented in Tables 3 and 4, respectively.

As it is shown in these tables, the performances of M5P

and SVR models are better than the other soft computing

models in estimating the allocated water to water users 2

and 3. As an example, a comparison between the optimized

and predicted water allocation to water user 1 using the

M5P and FKNN models is shown in Fig. 14 for a test data

set which has not been used in training of the models. As it

is shown in this figure, M5P and FKNN models can suc-

cessfully predict allocated water to water user 1.

As mentioned in ‘‘Introduction’’, the SDP optimization

model provides real-time operating rules for reservoir

operation, whereas the trained soft computing techniques

provide the real-time water and waste load allocation

policies based on the reservoir release, which is obtained

using the SDP model, return flow quality as well as

monthly water demands of water users along the river. For

instance, Figs. 15 and 16 present the average monthly

allocated water to each water user as well as the volume of

diverted return flow to evaporation ponds based on the

Table 4 Comparing the performances of FKNN, M5P, SVR, BN and

ANIS models trained for estimating water allocation to water user 3

Statistical measure Models

ANFIS M5P SVR FKNN BN

RMRE

Value 0.415 0.315 0.345 0.389 0.386

Rank 5 1 2 4 3

RMSE

Value 0.226 0.123 0.150 0.177 0.185

Rank 5 1 2 3 4

Bias

Value 0.994 0.774 1.797 -0.736 0.806

Rank 5 3 1 2 4

CC

Value 0.983 0.993 0.991 0.985 0.982

Rank 4 1 2 3 5

SI

Value 0.185 0.122 0.137 0.180 0.149

Rank 5 1 2 4 3

Summation of rankings 24 7 9 16 19
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Fig. 14 Comparing the optimized and predicted allocated water to water user 1 using the trained M5P and FKNN models considering 50 data

sets randomly selected from the validation data set
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results of the FKNN-based water and waste load allocation

rules.

Summary and conclusions

In this paper, a new methodology was introduced for

optimization of water and waste load allocation in

reservoir–river systems considering the existing uncer-

tainties in reservoir inflow, waste loads and water demands.

In the proposed methodology, an SDP model was used to

optimize reservoir operation considering the inflow

uncertainty and another model called PSO-SA was devel-

oped and linked with the SDP model for optimizing water

and waste load allocation in downstream river. As the run-

time of the proposed water and waste load allocation model
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Fig. 15 The average monthly

allocated water to different

water users in the Dez

reservoir–river system during

the planning horizon
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Fig. 16 The average monthly diverted return flow to evaporation ponds by water users 1 and 3 during the planning horizon
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can be considerable [run-time of the proposed optimization

model in C?? environment is about 25 h (with operating

system: Windows XP; CPU: Intel�CoreTM2 Duo at

2.5 GHs; SIMM: 2 GB)], some soft computing techniques,

namely, M5P, FKNN, BN, SVR and an ANFIS, were

trained and validated using the results of the optimization

model to develop real-time water and waste load allocation

rules. Results of applying the methodology to the Dez

reservoir–river system in the south-western part of Iran

demonstrated its efficiency and applicability. The results

also showed that in our case study, the M5P, SVR and

FKNN can outperform other soft computing models and

they can accurately be used for developing real-time water

and waste load allocation rules in the Dez reservoir–river

system. In future works, the methodology introduced in this

paper can be extended to incorporate more uncertainties

and multiple water quality indicators.
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