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Abstract Simple yet physically based models to evaluate

stream–aquifer interactions during a flooding event subject

to triangular stream stage variation were developed in this

study. The results from the developed models were com-

pared with other analytical and numerical solutions and

noted to be very accurate. The study fills an important gap

with regard to available analytical and semi-analytical

solutions for modeling stream–aquifer interactions, which

can be used for evaluating numerical codes. In particular,

the developed models are very useful to obtain preliminary

insights with regard to bank storage in ungaged watersheds

as required for watershed management and planning stud-

ies in rapidly urbanizing watersheds. The utility of the

model is illustrated by applying it to study the effects of

urbanization on stream–aquifer interactions in the Arroyo

Colorado River Watershed along the US–Mexico border

region. The results indicate that increased urbanization

reduces the amount of influx into the banks. The reduction

in flood passage time was noted to have a greater impact

than the associated rise in stage. The presence of a semi-

permeable barrier was seen to mask the effects of urbani-

zation. The model results also implicitly highlight the

importance of how water quality variations caused due to

urbanization can affect stream–aquifer interactions.

Keywords Stream–aquifer interactions �
Urbanization impacts � Water quality � Water

conservation � Arroyo Colorado River Watershed �
Texas

Introduction

Hydraulic interactions between surface water flow channels

and their adjoining aquifers play a critical role in defining

the ecological characteristics of riparian areas. During high

rainfall events, the stream stage may be at a higher ele-

vation than the water table in the connected aquifer,

resulting in a pressure wave that causes the water to move

from the stream into the aquifer (Serrano et al. 2007). This

phenomenon, wherein water is released from the stream

into the adjoining aquifer is referred to as the bank storage

(Squillace 1996). The water stored in stream banks is later

released back into the stream during periods of low flow,

when the stream stage falls below the water table. This

release of water helps maintain flows in the stream during

dry periods and sustains aquatic habitat (Postel and Richter

2003). In addition, the stream storage also provides water

to riparian flora, particularly phreatophytes. Brush control

and management of phreatophytes are being promoted as a

water conservation strategy that can help sustain in-stream

flows and also increase water availability for anthropogenic

uses (Wilcox 2002). Understanding stream–aquifer

hydraulics is vital for successfully implementing such

management endeavors (Sophocleous 2002). In addition,

the movement of water between the stream and the aquifer

is also important to evaluate cross migration of contami-

nants from the stream into the aquifer and vice versa (Chen

and Chen 2003).

Despite their importance, there is seldom sufficient field

data to evaluate stream–aquifer hydraulics (Todd and Mays

2005). Therefore, mathematical models play a critical role

in fostering an understanding of the stream–aquifer inter-

actions. These models can be developed at a variety of

scales with varying levels of complexity. For comprehen-

sive site-specific evaluations, fully coupled three-
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dimensional, spatially distributed models may be warranted

(Panday and Huyakorn 2004). However, in many regula-

tory and management applications—time, fiscal, and

logistic constraints, as well as data availability limit the

application of comprehensive models. In such instances,

simpler mathematical representations are better suited to

obtain preliminary insights and guide engineering and

management decisions. Mathematical models amenable to

analytical solutions can be very useful in this regard, as

they are often easier to implement and quickly provide

fundamental insights (Hantush 2005). In addition, these

models also serve a valuable purpose of verifying the

correctness of numerical codes. Furthermore, analytical

solutions can be coupled with optimization and other

operations research tools to develop decision support sys-

tems for engineering design and policy planning. In recent

years, analytical solutions have been applied in field set-

tings as well (Moench and Kisiel 1970; Barlow et al. 2000;

Koussis et al. 2007).

Given their advantages, there has been a significant

interest in developing analytical and semi-analytical solu-

tions for stream–aquifer interactions. Starting with the

seminal work of Cooper and Rorabaugh (1963), the one-

dimensional Boussinesq equation, particularly in its line-

arized form, is commonly used to model stream–aquifer

interactions under a variety of boundary conditions and

external forcings. In more recent times, Govindaraju and

Koelliker (1994) provided an analytical solution for a semi-

infinite aquifer wherein the stream-stage exhibits a sudden

change at the start of the simulation and stays there at

subsequent times. Hogarth et al. (1997) improved the

solution for both constant head and time-varying cases.

Workman et al. (1997) used the principle of superposition

and the concept of semi-groups to develop an analytical

solution for time-varying stream-stage elevations in an

aquifer whose landward boundary was assumed to be at a

constant head. Barlow and Moench (1998), Moench and

Barlow (2000) developed several transient analytical

solutions for modeling aquifer response to stream-stage and

recharge variations under step-response. These step-

responses can be used in conjunction with the convolution

integral to obtain the aquifer response under arbitrary

forcing functions if the aquifer is assumed to be a linear

time-invariant system. Singh (2004) provided analytical

solutions for linear and sinusoidal stage variations and their

effects on a semi-infinite aquifer under no recharge and

also demonstrated the use of step and instantaneous stage

variations in conjunction with the superposition principle.

Serrano et al. (2007) developed analytical solutions for

modeling sinusoidal stream fluctuations in a finite aquifer

(i.e., a no-flow landward boundary) under both linear and

non-linear aquifer behavior. The hydraulics of an aquifer

bounded between two canals or streams has been studied

by several researchers including Mustafa (1987), Rai and

Singh (1992), Ram et al. (1994), Upadhyaya and Chauhan

(2001) and Wang et al. (2011). Other relevant studies of

stream–aquifer interaction modeling include Gill (1985),

Srivastava et al. (2006), Akylas and Koussis (2007), Kim

et al. (2007), Intaraprasong and Zhan (2009), Chen et al.

(2010), and Moutsopoulos (2013).

Most analytical solutions for the Boussinesq equation

assume the flood wave in the stream causes sinusoidal

variations in the stream or require the use of superposition

to model arbitrary time-variations of the river stage.

However, if the basin is ungaged, a complete temporal

profile of the stream stage will not be known. This limi-

tation makes it difficult to ascertain the suitability of

assuming a sinusoidal profile or modeling arbitrary varia-

tions using unit step responses. In such instances, the

stream stage variations have to be specified based on pro-

fessional judgment. Standard hydrologic analyses such as

the rational method and the SCS-Curve number technique

can be used to obtain a preliminary estimate of maximum

discharge corresponding to a rainfall event, which in con-

junction with a stage-discharge technique, can be used to

obtain an estimate of the maximum stage (Bedient and

Huber 2005). Furthermore, linear stream-stage rises have

been employed in the literature to predict the arrival of a

flood wave (Naba et al. 2002; Li et al. 2008). In the same

vein, a triangular temporal stage variation profile can be

constructed to model the rise and fall of the stream stage

and to obtain preliminary insights with respect to stream–

aquifer interactions in ungaged watersheds. Such a model

is also helpful in assessing the impacts of future urbani-

zation on stream–aquifer interactions, a situation where

measured data are impossible to obtain.

Despite the above-mentioned importance, analytical

solutions for the Bousinnesq equation under triangular

stream variations are not readily available in the literature.

A direct solution is more convenient than the application of

the superposition principle as it avoids the need to perform

cumbersome integrations. The primary goal of this study,

therefore, is to develop an analytical solution for stream–

aquifer interactions under triangular stream-stage varia-

tions. The developed model is then used to study the effects

of urbanization on stream–aquifer interactions in a fast-

growing watershed along the US–Mexico border region.

Mathematical model

The conceptual model under consideration is depicted in

Fig. 1. The major assumptions in the development of the

analytical solution include the following: (1) the aquifer is

homogeneous and isotropic; (2) the vertical variations of

the hydraulic head are assumed to be negligible (Dupuit
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assumption); (3) the base of the aquifer is assumed to be

horizontal and impermeable; (4) groundwater flow takes

place in the horizontal plane that is normal to the stream;

(5) the aquifer adjoining the stream is bounded (by a

topographic high) at a finite distance from the stream; (6)

the stream is either in perfect hydraulic connection with the

aquifer or separated by a thin semi-permeable membrane

whose thickness is negligible; and (7) there is also a net

recharge (i.e., evapotranspiration—recharge) imposed on

the aquifer, which is assumed to be uniform and time-

invariant. These assumptions have been commonly

invoked while developing analytical solutions (Barlow and

Moench 1998). A detailed discussion of the modeling

assumptions is presented as part of the model evaluation

section.

The governing equation that describes the hydraulic

head in the aquifer can be obtained by substituting Darcy’s

law into the conservation of mass equation as follows:

Sy

oh

ot
¼ o

ox
Kh

oh

ox

� �
þ R; ð1Þ

where Sy is the storage coefficient (dim), K is the horizontal

hydraulic conductivity (m/days), and R is the net recharge

rate (m/days). The recharge rate, R, will be negative when

the evapotranspiration (ET) from the aquifer exceeds

recharge due to precipitation or irrigation. Equation (1) is

commonly referred to as the 1-D nonlinear Boussinesq

equation. This equation is commonly linearized by

assuming the product of the hydraulic head and hydraulic

conductivity to be constant. The 1-D linear Boussinesq

equation is written as (Govindaraju and Koelliker 1994)

Sy

oh

ot
¼ o

ox
D

oh

ox

� �
þ R; ð2Þ

where D is the effective transmissivity (m2/days). The

linearized version is strictly applicable for confined

formations. However, it can be used to model hydraulic

heads in an unconfined aquifer when the variations in the

head are small relative to the thickness of the aquifer

formation. For mathematical completeness, two boundary

conditions and the initial hydraulic heads in the aquifer

prior to the start of a simulation must be specified. The

landward boundary condition and the initial conditions are

specified as follows:

oh

ox
ðx ¼ L; tÞ ¼ 0 ð3Þ

hðx; t ¼ 0Þ ¼ ho ð4Þ

The specification of the stream-side boundary condition

depends upon how the connection between the stream and

the aquifer is conceptualized. If the stream and the aquifer

are in perfect hydraulic connection, then the inlet boundary

condition can be specified as a time-varying head boundary

as follows:

hðx ¼ 0; tÞ ¼ H ¼ FðtÞ; ð5Þ

where H is the time-varying stream-stage (m) and is

measured from the same datum as the water levels in the

aquifer. If the stream and the aquifer are separated by a thin

semi-permeable layer of thickness (Dz) and hydraulic

conductivity, Ks (see Fig. 1, inset), then, invoking Darcy’s

law, and equating the flux on either side of the stream–

aquifer boundary results in

�Ks

h� H

Dz

� �
¼ �K

oh

ox
; ð6Þ

which is re-arranged to obtain the following expression:

oh

ox
� Ch ¼ �CH, ð7Þ

where the constant, C (termed conductance in this study), is

the reciprocal of the streambank leakance (Barlow and

Moench 1998), has the units of 1/m, and is given as

C ¼ Ks

KDz

� �
ð8Þ

The conductance is a measure of the hydraulic

connection between the stream and the aquifer. If the

conductance value is high, the stream and the adjoining

aquifer are well connected. Note that when (h \ H) the flux

is positive (i.e., the flow is into the aquifer) and when

(h [ H) the flux is negative. The stream-stage, H, has the

same meaning as in Eq. (5). Depending upon the conditions

in the field, either Eq. (5) or (7) must be used in

conjunction with Eqs. 2–4 to describe groundwater

movement in the stream bank. Generally speaking,

Eq. (7) is more appropriate when the stream carries

significant amounts of silt and clay particles that could

migrate into the stream bank and create the semi-permeable

Fig. 1 Conceptual model of stream–aquifer interaction
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barrier. On the other hand, Eq. (5) may provide a

reasonable approximation when the sediment load in the

river is low and/or when the stream bank permeability is

sufficiently high that the hydraulic connection between the

stream and the aquifer is not hampered. The model

described using Eqs. 2–5 is referred to as the ‘‘head

controlled model’’, while the model described using

Eqs. 2–4 and 7 is referred to as the ‘‘flux controlled

model.’’

The stream stage, H, is assumed to increase linearly

from some starting head H1 to a maximum value Hmax

which occurs at time t1. Subsequently, the stream stage will

decrease linearly back to H1 at time t2 and continue to stay

at that level. Mathematically, the stream-stage variation

can be written as

H ¼ at þ H1 80� t� t1

H ¼ bt þ c 8t1� t� t2

H ¼ H1 8t [ t2;

ð9Þ

where

a ¼ Hmax � H1

t1

� �
ð10Þ

b ¼ H1 � Hmax

t2 � t1

� �
ð11Þ

c ¼ Hmax � bt1 ð12Þ

Using the Heaviside step function, the above triangular

variation can be described as

H ¼ at þ H1ð Þ/ tð Þ � at þ H1ð Þ/ t � t1ð Þ
þ bt þ cð Þ/ t � t1ð Þ � bt þ cð Þ/ t � t2ð Þ
þ H1/ t � t2ð Þ; ð13Þ

where, /(t-ti) is the Heaviside step function, which

assumes a value of 1 for t [ ti and zero otherwise.

Solution scheme

The governing partial differential equation and the

associated initial and boundary conditions can be

solved using several different approaches (Powers

1972). The Laplace transform approach is selected here

as it is well suited to handle piece-wise continuous

functions and has been used in other similar problems

(Barlow and Moench 1998). Taking the Laplace trans-

form with respect to time and assuming that the

derivatives with respect to the untransformed variable

pass through the transform, the governing equation can

be re-written as

Sy sU � hoð Þ ¼ D
d2U

dx2
þ R

s
; ð14Þ

where U is the hydraulic head in the Laplace domain and s

is the transform variable. Equation 14 can be re-written as

e
d2U

dx2
� sU ¼ � ho þ

R�

s

� �
; ð15Þ

where

e ¼ D

Sy

and R� ¼ R

Sy

ð16Þ

The second-order ordinary differential equation can be

easily solved using the method of undetermined

coefficients to obtain the following general solution:

U ¼ C1 sinh

ffiffi
s

e

r
x

� �
þ C2 cosh

ffiffi
s

e

r
x

� �
þ ho

s
þ R�

s2

� �
;

ð17Þ

where C1 and C2 are the unknown constants that have to be

determined from the boundary conditions. These constants

are separately determined for the ‘‘head-controlled’’ and

the ‘‘flux-controlled’’ cases as follows:

Head-controlled case

The boundary conditions in the case of the head-controlled

case can be written as

U x ¼ 0ð Þ ¼ F sð Þ ð18Þ
dU

dx
x ¼ Lð Þ ¼ 0 ð19Þ

From Eq. (17), the derivative in Eq. (19) can be obtained

as

dU

dx
¼ C1

ffiffi
s

e

r
cosh

ffiffi
s

e

r
x

� �
þ C2

ffiffi
s

e

r
sinh

ffiffi
s

e

r
x

� �
ð20Þ

Using the above equations, the unknown coefficients can

be expressed as

C2 ¼ F sð Þ � ho

s
þ R�

s2

� �� �
ð21Þ

C1 ¼ �C2 tanh

ffiffi
s

e

r
L

� �

¼ � F sð Þ � ho

s
þ R�

s2

� �� �
tanh

ffiffi
s

e

r
L

� �
ð22Þ

Note that F(s) is the Laplace transform of the stream-

stage function given in Eq. (13). Using the second shift

theorem, and with some algebraic manipulations, the

Laplace transform, F(s) can be obtained as
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F sð Þ ¼ a
s2
þ H1

s
þ b� að Þ e

�t1s

s2
� b

e�t2s

s2
ð23Þ

Flux-controlled case

The boundary conditions for the flux-controlled case in the

Laplace domain are given as

dU

dx
� CU

				
x¼o

¼ �CF sð Þ ð24Þ

dU

dx
x ¼ Lð Þ ¼ 0 ð25Þ

The unknown coefficients C1 and C2 are obtained using

Eqs. 17, 20, and 23 in conjunction with the above boundary

conditions.

C2 ¼
CF sð Þ � ho

s
þ R�

s2


 �
ffiffi
s
e

p
tanh

ffiffi
s
e

p
L

� 

þ C

� 

2
4

3
5 ð26Þ

C1 ¼ �C2 tanh

ffiffi
s

e

r
L

� �
ð27Þ

These coefficients can be used in Eq. 17 to obtain values

of hydraulic heads in the aquifer in the Laplace domain for

the flux-controlled case.

The final step of the Laplace transform solution scheme is

to invert the solution in the Laplace domain to that in the

time domain. Given the algebraic complexity of the solu-

tions, numerical inversion is used in many similar applica-

tions (Moench and Barlow 2000; Kim et al. 2007;

Intaraprasong and Zhan 2009), and the same strategy is

adopted here, as well. The Stehfest–Gaver algorithm

(Stehfest 1970) and the de Hoog algorithm (de Hoog et al.

1982) are the two most commonly utilized numerical

inversion methods in groundwater applications (Moench

and Barlow 2000; Boupha et al. 2004; Kim et al. 2007). The

Stehfest (1970) algorithm is known to perform poorly when

the function is oscillatory or has increasing exponential

characteristics (Hassanzadeh and Pooladi-Darvish 2007).

As such, this algorithm was deemed unsuitable for this

application, as the hydraulic heads are expected to exhibit an

increasing trend at early times. Therefore, the de Hoog et al.

(1982) algorithm was adopted. The model was implemented

in the MATLAB programming environment using the

inversion function developed by Hollenbeck (1998).

Model evaluation

Comparison with the analytical solution in Singh

(2004)

In order to gain confidence in the developed solutions, it is

imperative that the model results be compared with other

similar schemes. Singh (2004) presented a closed-form

solution, originally developed by Carslaw and Jaeger

(1959) for the following problem:

o2h

ox2
� 1

b
oh

ot
¼ 0; h 0; tð Þ ¼ ct; h x; 0ð Þ ¼ 0;

h 1; tð Þ ¼ 0; b ¼ D

Sy

ð28Þ

While the outer boundary in the above formulation does

not match the ‘‘head-controlled’’ model developed here, a

close agreement is to be expected at short distances from

the stream and at early times. The head-controlled model

was parameterized to the values provided in Singh (2004)

and compared at distances of 1, 5, 10, and 100 m from the

stream. The parameter values used are presented in Table 1

and the comparison in Fig. 2 indicates that the model

matches the analytical solution reasonably well even at

distances as high as 100 m from the stream. The analytical

solution provided by Singh (2004) can also be used to

approximately evaluate the flux-controlled solution when

the streambed conductance is specified as a large value

(i.e., the impervious bed is of negligible thickness to offer

any resistance). The results shown in Fig. 3 again dem-

onstrate a close agreement between the two analytical

solutions and corroborate the correctness of the developed

solutions.

Comparison with numerical solutions

A more comprehensive evaluation of the analytical solu-

tions developed here can be made by comparing the results

Table 1 Model parameters for comparison with Singh (2004)

solution

Parameter Value

Hydraulic conductivity (m/days)a 1

Storage coefficient (dim)a 0.1

Aquifer thickness (m)a 500

Initial hydraulic head in the aquifer (m) 0.00

Initial stream stage (m) 0.00

Max. stream stage (m)b 5.00

Time for maximum stream stage (days)b 50.00

Net recharge (m/days) 0.00

Stream bank domain (m) 30,000

Streambed conductance (1/m)c 200

a The values give an aquifer diffusivity (T/Sy) of 5000 which was

used by Singh (2004)
b The values provide a rising slope of 0.1 which was used by Singh

(2004)
c Streambed leakance used only with the flux-controlled model
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with a numerical solution (Hogarth et al. 1997). This

approach is more flexible as both the head and flux con-

trolled boundary conditions can be evaluated against their

numerical counterparts. Fully implicit finite difference

models were developed for this purpose. Comparisons

were made under the following assumptions—(1) no

recharge; (2) positive net recharge, and (3) negative net

recharge conditions for both analytical solutions using

information provided in Table 2. Illustrative results for the

‘‘head-controlled case’’ and the ‘‘flux-controlled case’’ are

presented in Figs. 4 and 5, respectively. As can be seen, the

results from the developed analytical solutions match the

numerical solutions. Similar results were noted at other

locations as well but are not presented here in the interest

of brevity. It can be concluded that the developed analyt-

ical solutions provide accurate results. The advantage of

the analytical solutions, however, lies in the fact that

computations can be directly made at select locations and

times without having to make calculations at all previous

times and over the entire domain as is needed for the

implicit method.

Illustrative case study

The developed analytical solutions were utilized to evalu-

ate the stream–aquifer interactions in the Arroyo Colorado

River Watershed located in south Texas. The river is the

only source of freshwater to the ecologically sensitive

Laguna Madre coastal embayment (Raines and Miranda

2002). The Arroyo Colorado River Watershed is approxi-

mately 1,813 km2 in area, of which 12 % is currently

categorized as urban/developed area and nearly 60 % is

agricultural land. This watershed houses several fast

growing cities along the US–Mexico border region

(Fig. 6). The focus of the study, therefore, was to evaluate

how urbanization in the upstream areas would affect

stream–aquifer interactions in the last 5,000 m downstream

stretch of the river. The shallow aquifer in this region is

formed by alluvial deposits from the Rio Grande River

basin and is known to be roughly 300 m thick in the area of

interest (Rose 1954; Chowdhury and Mace 2007). The

hydrologic characteristics of the region and the hydraulic

properties of the aquifer were obtained from a regional

Fig. 2 Comparison of developed head-controlled model to Singh (2004) model—(analytical solutions)
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groundwater modeling study carried out by the Texas

Water Development Board (Chowdhury and Mace 2007)

and augmented with other available information and

watershed modeling studies (Raines and Miranda 2002)

and are summarized in Table 2 for this case study. The

riparian region belongs to the south Texas plains natural

region (TPWD 2009). Based on model calibration,

Chowdhury and Mace (2007) report recharge and ET rates

on the order of 2.13 9 10-6 and 1.24 9 10-6 m/d. As

such, the net recharge was assumed to be negligible for the

study area. Limited water quality monitoring in the study

area indicated that the river water is relatively turbid with a

significant amount of algae (Raines and Miranda 2002).

Based on this information, a certain degree of impedance is

to be expected between the stream bed and the adjoining

aquifer. However, as site-specific values of streambank

conductance were not available, model runs were carried

out over a set of plausible values.

A triangular hydrograph corresponding to a rainfall

intensity of 1 mm/h for a total duration of 4 h was

constructed using a composite area weighted curve number

for the four different scenarios listed in Table 3. The peak

discharge, time to rise, and time to fall were computed

using the following relationships:

Tr ¼ tp þ
td

2
¼ l0:8 Sþ 1ð Þ0:7

1900
ffiffiffiffiffiffi
Sw

p þ td

2
ð29Þ

Tf ¼ 2:67Tr; ð30Þ

where Tr is the time to rise since the beginning of the storm

(hour); Tf is the time to fall (hour), i.e., when the stream

stage falls back to its pre-flood level; l is the length of the

stream segment to the divide (m); td is the total storm

duration (hour); tp is the lag time (hour); Sw is the average

watershed slope (%); and S is the storage parameter

computed from the curve number as

S ¼ 1000

CN
� 10 ð31Þ

The peak flow was computed assuming a triangular

hydrograph as follows:

Fig. 3 Comparison of developed flux-controlled model to Singh (2004) model—(analytical solutions)
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Qp ¼
2 rAwtdð Þ

Tf

; ð32Þ

where r is the rainfall excess intensity (m/days), Aw is the

watershed area (m2), and td is the storm duration (days).

The stage height corresponding to the peak discharge was

computed from the Manning’s equation assuming a wide

rectangular channel which is given as

Qp ¼
1

n
BH

5
3ð Þ ffiffiffiffiffi

Sc

p
; ð33Þ

where n is the Manning’s coefficient, B is the width of the

channel (m), H is the stage height rise (m), Sc is the slope

of the stream channel (m/m), and Q is the flow rate (m3s).

The unknown stage was obtained by solving Eq. (33) using

the secant method of root finding. The parameters required

in the above equations were computed from high-resolu-

tion spatial datasets using ArcGIS (ESRI Inc., Redland,

CA) and summarized in Table 4. All required calculations

were made in the US customary units and converted to SI

before being input into the stream–aquifer models.

The volume of water discharged per unit area (referred to

here as specific volume) of the river bank was computed by

integrating the flux equation (LHS of Eq. 6). For the four

different urbanization scenarios, the flux was positive (i.e.,

flow into the aquifer) for a period of approximately

13–15 days with the shorter period corresponding to

increased urbanization scenario. The specific volumes

depicted in Fig. 7 indicate that bank storage reduces signifi-

cantly with increasing watershed urbanization. Urbanization

of the watershed will lead to an increased peak flow which in

turn increases the stage height that could lead to greater influx

of water from the stream into the aquifer at least around the

peak value. However, for a given rainfall excess, urbanization

also reduces the time over which the effects of flooding are

felt which in turn reduces the amount of influx into the

aquifer. Model results indicate that this latter effect is more

pronounced than the former for the conditions assumed in this

study. Generally speaking, when the river channel is suffi-

ciently wide, as to be expected in the downstream sections of

the river, the stage height rises are likely to be smaller and the

alteration of flood duration due to urbanization is the domi-

nant factor that influences bank storage.

Table 2 Model inputs used for comparing analytical and numerical

solutions as well as the illustrative case-study

Parameter Model

comparison

Case-study

Hydraulic conductivity

(m/days)

0.30 6.3

Aquifer thickness (m) 150.15 300

Storage coefficient (dim) 0.10 0.05

Aquifer domain (m) 900.90 2,000

Initial hydraulic head in the

aquifer (m)

141.14 141.14

Initial stream stage (m) 141.14 141.14

Maximum stream stage (m) 142.64 Variable (see Table 3)

Final stream stage (m) 141.14 141.14

Streambed conductance

(m-1)

6.66 0.05–5.0

Time to rise (days) 1.00 Variable (see Table 3)

Time to fall (days) 5.00 Variable (see Table 3)

Net recharge (m/days) -0.02, 0.00,

0.02

0.00

Space step (m) 3.00 Not applicable

Time step (days) 0.05 Not applicable

Total simulation time (days) 10.00 30

Fig. 4 Comparison of analytical and numerical results for various

recharge assumptions (head–controlled case)

Fig. 5 Comparison of analytical and numerical results for various

recharge assumptions (flux–controlled case)
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Figure 7 also indicates that the presence of sufficient

impedance between the stream and the adjoining river bank

aquifer can effectively mask the effects of urbanization if

the semi-pervious layer is well developed prior to the

urbanization (see line AB on Fig. 7). By the same token,

urbanization effects are more pronounced when the

hydraulic connection between the aquifer and the stream is

high (see line CD on Fig. 7).

Increasing urbanization in watersheds generally deteri-

orates the stream water quality, which in turn can lead to

Fig. 6 Land use land cover characteristics of the Arroyo Colorado River Watershed, Tx

Table 3 Urbanization scenarios and corresponding flooding

parameters

Scenario Curve

number

Time to

rise

(days)

Time to

fall

(days)

Max. stage

height rise

(m)a

12 % Urbanized

(current conditions)

79 9.80 26.17 1.49

18 % Urbanized (50 %

increase from current

conditions)

80 9.51 25.38 1.52

25 % Urbanized 81 9.21 24.60 1.55

50 % Urbanized 84 8.35 22.30 1.65

a Corresponds to a rise above the pre-flooding level

Table 4 Parameters for estimating peak flow and stream-stage in the

Arroyo Colorado River Watershed

Parameter Value

Length to the divide (km) 142.70

Manning’s n (dim) 0.13

Average width of the channel (m) 22.52

Area of the watershed (sq. km) 1,813.14

Average watershed slope 0.038 %

Average channel slope 0.038 %

Rainfall excess intensity (m/h) 0.083

Rainfall excess duration (h) 4

Fig. 7 Specific volume for various urbanization and conductance

scenarios
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the formation of the semi-permeable barrier between the

stream and the aquifer due to deposition of silts and other

particulates as well as growth of microorganisms (Battin

and Sengschmitt 1999; Schubert 2002; Wett et al. 2002).

Therefore, the streambed conductance is likely to vary

temporally and decrease with increasing urbanization.

While a time-varying conductance has not been employed

in this study, a preliminary understanding of this phe-

nomenon can be ascertained from Fig. 7. By following

along the transect CB, it can be seen that decreasing con-

ductance with increasing urbanization will significantly

reduce the amount of water stored in the river banks. This

result provides an implicit assessment of how water quality

alterations affected by urbanization affect streambank

storage in riparian areas and highlights the need for

understanding how water quality deteriorations affect the

permeability of stream–aquifer interfaces.

Generally speaking, reduction in bank storage implies

the flood wave will pass relatively un-attenuated and

increase the risk of flooding downstream. It will also alter

the inflow patterns in the receiving bodies (such as lakes

and coastal bays) into which the streams and river dis-

charge. The water available to riparian fauna as well as

baseflows during the inter-storm period also decreases due

to urbanization.

Summary and conclusions

The primary goal of this study was to develop a simple

physically-based model to evaluate stream–aquifer inter-

actions during a flooding event. As a first-cut approxima-

tion, the stream stage variation during the passage of the

flood is conceptualized to vary in a triangular fashion.

Semi-analytical solutions based on the numerical inversion

of Laplace transforms were developed for two separate

stream–aquifer boundary conditions, one where the

hydraulic connection is perfect and another where the

connection is impeded by a thin semi-pervious barrier. The

results from the developed models were compared with

other analytical and numerical solutions to evaluate their

accuracy. Excellent agreement was noted during the com-

parisons which confirmed the correctness of the solutions.

The developed model was then applied to study the

effects of urbanization on stream–aquifer interactions in

the Arroyo Colorado River Watershed along the US–

Mexico border region. The results indicate that increased

urbanization reduces the amount of influx into the banks.

The reduction in flood passage time was noted to have a

greater impact than the associated rise in stage. The pre-

sence of a semi-permeable barrier was seen to mask the

effects of urbanization. The model results also implicitly

highlight the importance of how water quality variations

due to urbanization can affect stream–aquifer interactions.

The study fills an important gap with regard to available

analytical and semi-analytical solutions for modeling

stream–aquifer interactions, which can be used for evalu-

ating numerical codes. The developed models can be very

useful to obtain preliminary insights concerning urbaniza-

tion, particularly when the underlying assumptions are

borne in mind.
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