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Abstract The Wuwei oasis, situated in the upper reaches

of the Shiyang River basin in the arid inland of northwest

China, is intensively cultivated using both groundwater and

irrigation water originating from the Qilian Mountains.

Groundwater levels are declining due to overuse of irri-

gation water. To estimate the decline over the entire

Wuwei oasis, eight different interpolation methods were

used for interpolating groundwater levels over 3 years, i.e.

starting in 1983, followed by 1988 and ending with 1992.

Cross-validation and orthogonal-validation were applied to

evaluate the accuracy of the different methods. Root mean

squared error and the correlation coefficient (R2) were

calculated for each of the interpolation methods and years.

Three kriging methods (simply, ordinary, and universal)

gave the best fit. Modified ordinary kriging was found

better than simple and universal kriging methods with a

smaller number of points having large differences ([50 m)

between estimated and predicted values. Based on the

groundwater surfaces determined by the ordinary kriging as

modified by Yamamoto, the groundwater decline was

found from 1983 to 1992 to be a modest 2.1 m in average.

Keywords Wuwei oasis � Groundwater level �
Interpolation method � Yamamoto’s method � China

Introduction

Scarcity of water in many parts of the world has become a

common problem (Oki and Kanae 2006). Over 2 billion

people live in water stressed river basins with less than

1,700 m3/year of available water per person constraining

economic development, particularly agriculture (Johnson

et al. 2001). Groundwater is often overexploited to relieve

water stress (Yang and Zehnder 2002), and in several

regions, such as in the North China Plain, it represents the

only source for irrigated agriculture. To estimate the degree

of overexploitation of water in these basins the groundwater

surface should be known and can be determined from the

available well data integrated in various interpolating tech-

niques. However, there are questions concerning the best

interpolating method for estimating groundwater surfaces.

The objective of the present manuscript is to test different

interpolating techniques to find the best method by which
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estimating the temporal and spatial variations of the

groundwater level. The Wuwei oasis in northwest China was

chosen as a test case because groundwater level data was

publicly available (Tang 2009). In addition, in the oasis

irrigation takes place from both groundwater and surface

water sources that originate from the mountainous area.

However, the depletion of the groundwater source is not

known in the mountainous area to the south, and for the

domain to the east of the oasis which is located in an arid area

(i.e. desert, please see Fig. 1) the amount of overuse of

groundwater is still unknown.

Various interpolation methods have been developed to

date, consisting of global and local interpolators, and

geostatistical methods (see Meijering 2002 for a historical

overview). Global interpolation methods consist of trend

surfaces (Whitten and Koelling 1973) and regression

models (Gllbert et al. 2005). Local interpolation methods

comprise Thiessen polygons (Goovaerts 2000), inverse

distance weighting (IDW) (Bartier and Keller 1996), and

splines (Unser 1999; including thin-plate smoothing

splines, shorten as ANUSPLIN; Hutchinson 1995a). Geo-

statistical methods include kriging methods and a statistical

method termed ‘gradient plus inverse-distance-squared’

(GIDS, Price et al. 2000). Interpolation methods have long

been used in cartography (Keys 1981; Grevera and Udupa

1996, 1998; Frakes et al. 2008). Kriging methods consist-

ing of simple, ordinary, and universal kriging (UK) were

originally developed for the mine industry but are now

used for interpolation of scalar values in such applications

as three-dimensional medical image surface rendering,

wind speed spatial estimation, regional analysis of irriga-

tion water requirements, forest inventory, finding the spa-

tial variability of soil properties, etc. Stytz and Parrott

(1993) found that kriging is an accurate interpolation

technique for 3D medical imaging. A fourth-order non-

linear interpolation procedure based on the essentially non-

oscillatory (ENO) methodology has been presented and

evaluated by Hermosilla et al. (2008), with the purpose of

increasing the geometric accuracy of edge detection in

digital images. They found that the proposed methodology
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Fig. 1 Location of Wuwei oasis and observation wells (d) in the Shiyang River basin
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based on ENO interpolation improves the detection of

edges in images. In addition, many interpolation methods

have been applied on climatic variables. As an example,

Hutchinson (1995b) interpolated mean rainfall using

ANUSPLIN. Martinez-Cob (1996) interpolated long-term

mean total annual reference evapotranspiration and long-

term mean total annual precipitation using three geosta-

tistical interpolation methods [ordinary kriging (OK),

co-kriging and modified residual kriging] in a mountainous

region. Nalder and Wein (1998) estimated 30-year aver-

ages of monthly temperature and precipitation at a specific

site in western Canada using four forms of kriging (detr-

ended kriging, co-kriging, UK, OK) and three simple

alternatives (GIDS, nearest neighbour, inverse distance

squared). Goovaerts (2000) used simple kriging (SK) with

varying local means, kriging with an external drift and

collocated cokriging for incorporating a digital elevation

model into a spatial prediction of rainfall. Price et al.

(2000) interpolated 30-year monthly mean minimum and

maximum temperature and precipitation data from regions

in western and eastern Canada using ANUSPLIN and

GIDS. Dalezios et al. (2002) investigated the spatial vari-

ability of reference evapotranspiration in Greece using

geostatistic methods. Mardikis et al. (2005) predicted the

spatial variability of long-term mean daily reference

evapotranspiration for each month in Greece using OK,

inverse distance squared, residual kriging and GIDS. Boer

et al. (2001) predicted monthly maximum temperature and

monthly mean precipitation in Jalisco State of Mexico

using four forms of kriging and three forms of thin plate

splines. Swan and Sandilands (1995) applied the spatial

interpolation method for geological data analysis.

There is not a general agreement on what constitutes the

best interpolation method (Goodin et al. 1979; Caruso and

Quarta 1998; Weng 2006; Sun et al. 2009; Yang et al.

2011). Indeed, each interpolation method comes with some

drawbacks, and the reliability of the results from the

interpolation strongly depends on external factors as the

amount of available input data, their spatial and temporal

coverage, their characteristics, the kind of spatial model

desired and the like. Hutchinson (1995b) concluded that the

final reliability of the interpolation depends on the temporal

and spatial coverage of the data when using thin plate

smoothing splines for interpolating mean rainfall. Tabios

and Salas (1985) found out that for estimating annual

precipitation in North Central US, the kriging technique

performed best. In contrast, Nalder and Wein (1998) found

that for estimating 30-year averages of monthly tempera-

ture and precipitation in western Canada, the GIDS was the

most accurate interpolation method because it was simple

to apply and avoided the subjectivity involved in defining

variogram models and neighbourhoods. However, Price

et al. (2000) found that thin-plate smoothing splines

(ANUSPLIN) performed better than GIDS. Mardikis et al.

(2005) compared kriging and other interpolation methods

for daily evapotranspiration on a monthly basis and found

that the optimal method was not unique but depends on the

specific month. In addition, Martinez-Cob (1996) found

that the differences among the studied spatial interpolation

methods could be determined by the data’s spatial config-

uration and the assumptions drawn, rather than the spatial

interpolation method itself. For the Wuwei oasis, under-

standing temporal and spatial variations of groundwater

level is a prerequisite to achieving sustainable water use in

the oasis. However, groundwater level in the whole area is

rather difficult or costly to be measured directly. Moreover,

because of the excessive exploitation and disorderly man-

agement of groundwater resources, the groundwater level

presents significant spatial variability. Therefore, it is very

difficult to gain the real groundwater spatial distributions

according to limited observation wells. Interpolation is one

advisable method to achieve this goal based on some

measurements of groundwater levels. Determining an

optimal interpolation method which is suitable for this

region is the key point of the present study.

With the introduction of geographic information sys-

tems (GIS), interpolation of groundwater level data has

become feasible (Burrough 1986; Flowerdew and Green

1994). Sun et al. (2009) found that in northwest China, SK

performed best for groundwater table interpolations. GIS

has been an important tool in analysing the character of

groundwater. Wei et al. (2003) discussed GIS and its

application to groundwater from five aspects: groundwater

simulation and evaluation, evaluation of groundwater

environment, well-field protection, conjunctive groundwa-

ter and surface water management in a watershed, decision

support systems and expert systems. Finally, they pros-

pected the development tendencies of the applications of

GIS to groundwater research.

Kriging methods are one of the exact and powerful

interpolation schemes based on geostatistics (Davis 1973;

Journel and Huijbregts 1978; Deutsch and Journel 1993;

Kitanidis 1997; Chiles and Delfiner 1999). Nowadays,

kriging methods are widely used for studying the spatial

distribution of groundwater (Volpi and Gambolati 1978;

Domenico and Schwartz 1990; Knotters and Bierkens

2001) in America (Dunlap and Spinazola 1984), India

(Sharda et al. 2006), Iran (Ahmadi and Sedghamiz 2007)

and China (Sun et al. 2009).

However, a common drawback of all kriging methods is

related to the so-called ‘‘smoothing effect’’ in which small

values are usually overestimated and large values under-

estimated (Yamamoto 2005). Moreover, Isaaks and

Srivastava (1990) found that using more sample values will

increase the smoothness of the estimates. In order to cor-

rect for the smoothing effect, some solutions based on
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postprocessing of the resulting image have been proposed

by Guertin (1984), Olea and Pawlowsky (1996) and Journel

et al. (2000). These studies found that global accuracy and

local accuracy are conflicting objectives because they

corrected the smoothing effect at a loss of local accuracy.

For example, based on Yao’s spectral postprocessing

algorithm which has been proven to be efficient in repro-

ducing the semivariogram model, Journel et al. (2000) have

proposed a solution, and concluded that this semivariogram

reproduction is achieved at a loss of local accuracy.

Yamamoto (2000, 2005, 2007) developed a post-processing

approach to correct the smoothing effect of OK estimates.

Subsequently, Rocha et al. (2007) and Yang et al. (2011) has

successfully applied such approach and presented the real

spatial distributions of regionalized variables without losing

local accuracy.

Therefore, to select an optimal interpolation method

given a study area, eight interpolation methods including

IDW, polynomial interpolation, radial basis function and

different kriging methods were evaluated. Furthermore,

Yamamoto’s post-processing method was used for cor-

recting the smoothing effect for the OK method for

groundwater levels interpolation. At the last, the temporal

and spatial variations of groundwater level in the study area

were analysed based on the corrected interpolation method.

Materials and methods

Study area and data

The Wuwei oasis, situated in the upper reaches of the

Shiyang River basin in the arid inland of northwest China,

includes ten irrigation districts (Fig. 1c). In this study, the

Xiying, Jinta, Zamu, Yongchang, Jinyang and Qinghe

irrigation districts in Wuwei oasis were selected as the

study area. The study area occupies an area of

2,524.56 km2 and has a typical arid climate with annual

precipitation of 164 mm and annual pan evaporation of

2,000 mm. Average annual temperature is 7.7 �C. The

main surface water sources are the Xiying, Jinta and Zamu

rivers. Surface runoff has significantly decreased in the last

40 years (from 8.42 9 108 m3 in 1956 to 6.56 9 108 m3 in

1995). Groundwater plays an important role for agriculture,

social economy development and maintaining ecological

environment in this area. As a result of a recent increase in

population (from 0.51 million in 1979 to 0.74 million in

2000), in irrigated land (from 7.2 9 108 m2 in 1979 to

10.04 9 108 m2 in 2000) and further economic develop-

ment, groundwater levels have been declining over the last

40–50 years (Kang et al. 2004).

Eight interpolation methods for groundwater level were

evaluated and optimized for asserting groundwater level

variations during 3 years, namely 1983, 1988 and 1992.

Groundwater level records for 75 observation wells (the

locations are shown in Fig. 1d) in the Wuwei oasis were

available for 1983 and 1992, and 92 observation wells were

available for 1988. The groundwater data were provided by

the Water Resources Department of Wuwei. Based on the

monthly average groundwater level, a dataset of average

annual groundwater level was established for each obser-

vation well and its geodetic coordinates. All observed data in

the Wuwei oasis were used for interpolating, i.e. for 1983 and

1992, groundwater level records for 75 observation wells

were used for interpolating, and for 1988, groundwater level

records for 92 observation wells were used for interpolating,

based on the interpolated results (used all wells), the inter-

polated results of the study area were plotted.

To understand the character of the groundwater levels

dataset, observed values for 75 observation wells (Sample

size is 75 which can be found in Table 4) for 1983 have

been statistically analysed (Fig. 2a). It was found that the

groundwater level ranges from 1,691.4 to 1,415.06 m with

a mean value of 1,501.2 m. The standard deviation of the

data is 45.93 m; the kurtosis is 1.561; and the skewness is

0.732. Therefore, the kriging interpolation could be applied

due to the fact that the dataset follows a normal distribu-

tion. Groundwater level records for 75 observation wells

were used for interpolating, the groundwater level records

for 50 observation wells (random selection) of these 75

observed data were used to model the space structure and

to create the interpolated surface, while the remaining

groundwater level records for 25 observation wells were

used for validation and prediction. The parameters were

adjusted to minimize the error generated in the process of

model operation and the final parameters are summarized

in Table 1.

Interpolation methods for groundwater level

Altogether eight interpolation methods—the IDW, the

global polynomial interpolation (GPI), the local polyno-

mial interpolation (LPI), the regularized spline (Rspline),

the tension spline (Tspline), the OK, the SK, the UK—were

evaluated to spatial interpolation of regional groundwater

levels.

The GPI method referred to as trend surface analysis has

been originally introduced into the earth sciences by Miller

(1956), Krumbein (1959) and Whitten (1970). They used

the method for analysing environments of sedimentation,

contour-type map and elevation. In trend surface analysis,

the distribution of observational data is described by means

of a two-dimensional polynomial equation of the first,

second or a higher degree.

The LPI method introduce the concept of distance

weight, it combined the advantage of GPI method
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reflecting tendency variation and the advantage of IDW

method reflecting local characters. In general, LPI fits

different polynomials, each within a specified overlapping

surface into which the study area has been subdivided. It

fits the specified order of the polynomial only within the

defined region. Since the regions overlap, the value used

for each prediction is the value of the fitted polynomial at

the centre of the region. The way LPI method works can be

shortly described as follows. At first a complex plane is

divided into small (sub) planes, then by predicting the other

values in the study area using the central value in every

small plane; one accurate and real surface thus can be

presented by fitting. The curved surface created in this way

is more depended on the variation of local data.

Journel and Huijbregts (1978) and Sun et al. (2009) gave

detailed descriptions about theory and application for kri-

ging, IDW and RBF.

Cross-validation and orthogonal-validation

The cross-validation and orthogonal-validation are used to

assess which method gives the best interpolation effect

(Zhang 2005; Sun et al. 2009). Root mean squared error

(RMSE) was selected as a main criterion for cross-vali-

dation and orthogonal-validation. It considers stationary

points and extrema, and can be calculated as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðPi � QiÞ2
s

; ð1Þ

where Pi is the estimated value; Qi is the measured value at

sampling point i (i = 1, …, n); and n is the number of

values used for the estimation.

Another criterion to assess the interpolation method is

the correlation coefficient (R2) which is a measure of the

correlation between the observed and estimated values

(Sun et al. 2009). It can be calculated as follows:

R2 ¼
Pn

i¼1 Pi � Paveð Þ Qi � Qaveð Þ
� �2

Pn
i¼1 Pi � Paveð Þ2

Pn
i¼1 Qi � Qaveð Þ2

;

where Pave is the averaged estimated value; Qave is the

averaged measured value; and n is the number of values

used for the estimation.

Yamamoto’s method

Correcting the smoothing effect of OK estimates by

Yamamoto’s (2005) method was based on a reliable mea-

surement of the uncertainty associated with them. The

kriging variance is not available for uncertainty assessment

because only a configuration index of data points was used

to make the OK estimate and the kriging variance does not

measure the local data dispersion (Yamamoto 2005).

Therefore, the kriging variance was replaced by the inter-

polation variance in Yamamoto’s method. The local data

dispersion is measured by the interpolation variance,

because the interpolation variance depends on data-value

and semivariogram function through the OK weights

(Yamamoto 2005). More detailed description of Yamam-

oto’s method has been given in Yamamoto (2005).
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Results and discussion

Cross-validation and orthogonal-validation

Table 2 shows the cross-validation and orthogonal-valida-

tion results of groundwater level for 1983. The orthogonal-

validation results in the table (Table 2) show that the

RMSE sorting is IDW [ Rspline [ UK [ SK [ OK [
LPI [ Tspline [ GPI, with their values being 28.10, 25.20,

24.64, 24.31, 24.22, 23.45, 22.09, 21.41, respectively.

However, the cross-validation results in the table shows

that the RMSE sorting is Rspline [ IDW [ Tspline [
LPI [ OK [ UK [ SK [ GPI, with their values be 31.65,

27.27, 24.63, 23.37, 22.25, 22.22, 20.90, 20.08, respec-

tively. By combining the results from both validation

methods, it was found that GPI and kriging methods share

the smallest RMSE value. Moreover, both the cross-vali-

dation R2 results and the orthogonal-validation R2 results

corroborate this conclusion. The cross-validation R2 sorting

is Rspline \ IDW \ LPI \ Tspline \ OK = UK \ SK \
GPI, with their values be 0.57, 0.65, 0.70, 0.71, 0.76, 0.76,

0.77, 0.78, respectively. The orthogonal-validation R2 is

sorting IDW \ Rspline \ LPI \ Tspline \ UK = OK \
SK \ GPI, with their values be 0.71, 0.72, 0.75, 0.77, 0.78,

0.78, 0.79, 0.86, respectively. Similar conclusions can be

derived by comparing simulated and measured groundwa-

ter levels for IDW, GPI, LPI, Rspline, Tspline, OK, SK and

UK (Fig. 3). As for GPI and kriging (including OK, SK and

UK) interpolation, the fitting effect is relatively better.

Performance of GPI is the best (R2 = 0.777), followed by

SK (R2 = 0.765), then UK (R2 = 0.755) and OK

(R2 = 0.754). But there are more data with absolute error

greater than 20 m for GPI than for the three kriging

methods (as shown in Table 3). This last aspect can be

attributed to GPI requirements of lots of input data and of

having an interpolated surface which should change

smoothly. It can be concluded that the calculated surfaces

using GPI method are highly susceptible to outliers (e.g.

extremely high and low values), especially at the edges;

thus, GPI is inexact (Johnston et al. 2001). For the kriging

methods, SK regards the mean value of variable as constant

which leads to an over/under-estimate of the values of

extreme points. However, as shown in Table 3, OK and

UK are more flexible to deal with extreme points com-

paring with SK. Moreover, OK is more flexible to deal with

extreme points comparing with UK. Therefore, OK method

is the optimal method for interpolating groundwater level

in the study area.

Spatial variation of groundwater level interpolated

with different methods

Figure 4 shows the interpolation effect of groundwater

level in the Wuwei oasis from the eight interpolation

models for the 1983 dataset. There is evidence of a so-

called ‘‘buphthalmos’’ phenomenon (look rough, it means

the interpolation effect is not so good) in the map generated

based on IDW method. The ‘‘buphthalmos’’ (Yang et al.

2011) phenomenon is caused by those overestimated or

underestimated values in the process of interpolation. This

is because the distribution of observation wells is nonuni-

form, i.e. anisotropy in IDW method. There are ‘‘buph-

thalmos’’ phenomenon in the map of IDW method, which

are caused due to extreme data, which resulted in those

Table 1 Parameters using in

the interpolation model for 1983

a The exponential value in the

formula of calculating weight,

or the times of fitting surface

polynomial

Interpolation

methods

Data

conversion

P parameter

or smooth

parametera

The maximum

predicted points used

in search radius

The minimum

predicted points used

in search radius

Direction

search

angle (�)

IDW None 2 5 3 0

GPI None 4 - - -

LPI None 2 10 6 0

Rspline None 1.8 9 10-4 5 3 0

Tspline None 1.5 9 10-8 5 2 0

SK None 1 10 5 45

UK Logarithm 2 5 3 45

OK Logarithm 1 10 5 45

Table 2 The statistic of the errors in the process of groundwater

interpolation for 1983

Interpolation methods Cross-validation Orthogonal-validation

RSME (m) R2 RSME (m) R2

IDW 27.274 0.651 28.100 0.714

GPI 20.076 0.778 21.410 0.856

LPI 23.373 0.702 23.452 0.748

Rspline 31.651 0.565 25.202 0.718

Tspline 24.630 0.712 22.090 0.771

SK 20.899 0.77 24.311 0.789

OK 22.253 0.758 24.221 0.784

UK 22.216 0.759 24.644 0.777
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overestimated or underestimated values in the final inter-

polation. For GPI, the interpolation effect is very smooth as

its treatment of the globality of data. However, GPI

neglected local variations, a fact that makes this method

not conforming to practical situations. The interpolated

surface using GPI method changes gradually and captures

coarse-scale pattern in the data, it can use low-order

polynomials that possibly describe some physical process

to create a slowly varying surface. However, the more

complex the polynomial, the more difficult it is to ascribe

physical meaning to it (Apaydin et al. 2004). Tspline

considered local variations and the interpolated trend sur-

face is also smooth, but the fitting effect is relatively bad

(Fig. 3), i.e. there are more data with absolute error larger

than 20 m than obtained by all kriging methods (Table 3).

For LPI and Rspline, the created trend surface is not

smooth, there are ‘‘buphthalmos’’ phenomena in the maps,

which may be due to extreme data or due to few input data

available in these areas and to a nonuniform distribution of

groundwater observation wells in the study area. Kriging

combines the influence of distance and direction and it

assumes the properties which may show a continuous or an

irregular change in space, and that cannot therefore be

simulated by any mathematical function, but can be sim-

ulated by stochastic models. Therefore, kriging interpola-

tion is theoretically better than other interpolation methods.

As shown in Fig. 4, the kriging interpolation results are

more approximate to the real situation and the interpolated

Table 3 The statistic of cross-validation absolute errors

Absolute

error (m)

IDW GPI LPI Rspline Tspline OK SK UK

[50 2 1 2 2 2 0 1 1

20–50 2 4 2 3 3 3 3 2

10–20 5 4 3 2 2 2 5 3

\10 18 18 20 20 20 22 18 21

Fig. 4 Interpolation effect of

groundwater level in Wuwei

oasis through the eight

interpolation models in 1983
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groundwater surface looks smooth (it means the interpo-

lation effect is good). Therefore, combined with the anal-

ysis in the above paragraph, OK is to be considered as the

optimal method for interpolating groundwater level in this

region. As shown in Fig. 4, groundwater level as obtained

by OK is high in northwest and southeast, and low in

northeast. In addition, the terrain of the Wuwei oasis slopes

downwards from southwest to northeast. The OK interpo-

lation result is approximate to the real situation. Moreover,

the interpolated groundwater surface used the OK method

looks smooth; it means the interpolation effect is good.

The correction of smoothing effect with Yamamoto’s

method

Although OK was found to be the optimal method for

interpolating groundwater level in the study area, it also

presents a serious inherent drawback known as the

smoothing effect, i.e. decreased variation of estimates. In

this study, Yamamoto’s (2005) method is used to correct

the smoothing effect of OK estimates in observed

groundwater level interpolation, aim to gain the real

groundwater surface.

OK was used to interpolate the groundwater levels for

75 observation wells in the Wuwei oasis (Fig. 5a). As

shown in Table 4, the mean of measured groundwater

levels is very close to estimated values with OK. This

indicates that the OK estimates can be met without any

bias. However, the standard deviation of measured sam-

pling points is far greater than OK estimates. This means

that the smoothing effect has occurred in the process of OK

interpolation. The sharp decrease of range also shows the

smoothing effect in OK estimates. In detail, the coefficient

of variation of groundwater levels in the study area

decreased from 0.031 for measured samples to 0.022 for

OK estimated samples.

Figure 5b shows the image of groundwater level esti-

mated with smoothing corrected OK in 1983. As shown in

Table 4, the mean groundwater level estimated with

smoothing corrected OK is about equal to the mean mea-

sured value. This indicates that Yamamoto’s (2005)

method keeps the un-biasedness of OK estimates. Sec-

ondly, the standard deviation of groundwater levels esti-

mated with smoothing corrected OK estimates almost

equals to that of groundwater levels measured and has been

greatly improved compared with that calculated from OK

estimates. The range of smoothing of corrected OK esti-

mates also has been greatly improved compared with OK

estimates and the variation tendency of the range is the

same as the standard deviation. Thirdly, the coefficient of

variation of groundwater levels estimated with smoothing

corrected OK equals to that of measured groundwater

levels. Therefore, it can be concluded that Yamamoto’s

(2005) method effectively corrects the smoothing effect of

OK estimates. The groundwater surface should look

smooth in the actual situation, because the groundwater

level is a gradual change (except fault). Therefore, the

interpolated surface using corrected OK is able to effec-

tively reflect the real spatial distribution of groundwater

level by comparing Fig. 5a and b. It also concluded that

OK method with Yamamoto’s (2005) method can be suc-

cessfully applied in interpolating groundwater level in the

arid area where the groundwater level presents significant

spatial variability because of the excessive exploitation and

disorderly management of groundwater resources.

To further illustrate how groundwater levels corrected

by the Yamamoto’s (2005) method present a spatial dis-

tribution closer to the real one than OK estimates, the

groundwater level frequency distribution histograms of

sampling points (Observed values for 75 observation wells,

Fig. 2a), OK estimates (Fig. 2b, sample size is 1,248 which

can be found in Table 4) and corrected OK estimates

(Fig. 2c, sample size is 1,248 which can be found in

Table 4) were plotted. As shown in Fig. 2 the estimated

values with OK is distributed into few classes around their
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Fig. 5 Images of groundwater level estimated with OK estimates and

smoothing corrected OK in 1983
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mean values. It is very different from the measured sam-

ples histogram. However, the histogram of corrected OK

estimates is very similar to the measured samples histo-

gram. At the same time, corrected OK estimates represent

the real spatial distribution of groundwater. It follows that

the experimental semivariogram of corrected groundwater

levels is relatively consistent with that of measured sam-

ples; even so, there is still a discrepancy, which may be

attributed to the fact that there are no or very few measured

points in some interpolation areas. However, the lack of

consistency between the semivariogram estimated from

OK and measured samples (as shown in Fig. 6), reflects

that OK presents a serious inherent drawback known as the

smoothing effect.

Groundwater levels in 1988 were spatially interpolated,

respectively, with OK and corrected OK and statistical

results were compared (Table 4). Groundwater level fre-

quency distribution histograms (Fig. 7) and semivariograms

(Fig. 8) for the sampling groundwater levels for OK and

corrected OK estimates respectively are presented. As shown

in Fig. 8, there are some errors between the interpolated

results and measured values. This may be due to the distri-

bution of measured points which is non-uniform (i.e. there

are no or very few measured points in some interpolation

areas) thus resulting in the bad interpolation effect in these

areas. Comparing with Figs. 6 and 8 shows that the consis-

tency between the semivariograms estimated from corrected

OK and measured samples is not so good, although more

measured points were used for interpolating groundwater

level in 1988 (Fig. 8). This may be due to the same reason

mentioned above; the amount of measured points is impor-

tant, but more measured points are not always mean that the

distribution is more uniform. The uniform distribution of

measured samples is the key point for the interpolation in

such a large area. For some measured samples (nonuniform

distribution), it is not easy to eliminate the smoothing effect

that occurred during the interpolation used kriging method.

However, as a whole, Figs. 7 and 8 almost show the same

tendency with that in 1983. The interpolated groundwater

surface used corrected OK method looks smoother than

the used OK method. Therefore, it can be concluded that

the Yamamoto’s (2005) method can effectively correct the

smoothing effect.

Analysis of temporal and spatial variations

of groundwater level

Knowledge of the real groundwater distribution is impor-

tant for the planning of a quantitative water management,

especially in the Wuwei oasis of the arid inland of north-

west China, in which the groundwater level presents a

significant spatial variability because of the excessive

exploitation and disorderly management of groundwater

resources. Therefore, groundwater levels in 1983 and 1992

were spatially interpolated with corrected OK method to

investigate temporal and spatial variations of groundwater

level in the study area. Fig. 9 shows the groundwater level

Table 4 Statistical summaries for distribution of sampling points, OK estimates and corrected OK estimates of groundwater level in 1983 and

1988

Samples Sample size Mean Standard deviation Median Coefficient of variation Range Maximum Minimum

1983

Measured samples 75 1,501.20 45.93 1,498.00 0.031 276.34 1,691.40 1,415.06

OK estimates 1,248 1,509.86 32.87 1,511.18 0.022 124.58 1,567.68 1,443.10

Corrected OK 1,248 1,501.20 45.85 1,496.54 0.031 257.16 1,679.10 1,421.94

1988

Measured samples 92 1,510.42 70.25 1,502.96 0.047 390.08 1,792.28 1,402.20

OK estimates 1,248 1,514.74 38.60 1,510.49 0.025 157.76 1,602.41 1,444.65

Corrected OK 1,248 1,510.42 70.21 1,491.66 0.046 382.95 1,785.15 1,402.20
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Fig. 6 Semivariograms for the sampling groundwater level, OK and

corrected OK estimates in 1983
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map as estimated with smoothing corrected OK for the

1992 dataset. As a whole, the groundwater level in 1992 is

generally lower than in 1983 (as shown in Fig. 5b); the

groundwater decline was 2.1 m in average from 1983 to

1992. Averaged annual decline rate of groundwater level

(take average for all measured values for each year, then

getting the difference between the years, i.e. averaged

annual decline) is 0.44 m in the 1990s and greatly larger

than 0.17 m in the 1980s (Table 5). Excessive groundwater

extraction is the main cause of the severe decline in the

water table due to an increase in population. Moreover, the

main surface water sources have reduced every year over

the past 40 years, which has led to lower groundwater

recharge (Ma et al. 2005). In addition, improved irrigation

channel efficiency also leads to lower groundwater

recharge.

To study further the variation trend of groundwater

level, temporal variation of groundwater levels from six

observation wells were analyzed. These wells represent

different land use, including irrigation area (611#), cities

and towns (591# and 601#), grassland (573#), edge of the

desert (617#), and upper reaches of river in the study area

(525#). Table 5 shows that the average annual decline rate

of groundwater level is different for the same land use in

the 1980s and 1990s. In the 1980s, the average annual

decline rate of groundwater level is relatively high with
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rates of 0.13, 0.12 and 0.13 m per year for irrigation area

and cities and towns; however, it is relatively low for

grassland, edge of the desert, and upper reaches of river.

This can be attributed to overexploitation of groundwater

resources in irrigation areas, cities and towns, while the

influence of human activities is relatively minor in grass-

land and edge of the desert. Moreover, the average annual

decline rate of the groundwater level for the upper reaches

of the river reaches its minimum in the selected six

observation wells. This fact may be due to higher amount

of infiltration of surface water into soil and higher amount

of recharge groundwater due to abundance of surface water

in the upper reaches of river. Table 5 also shows that the

average annual decline rate of groundwater level in the

1990s is significantly greater than in the 1980s for the same

land use, especially for grassland and edge of the desert.

This is consistent with the results of the above paragraphs.

The observed trend may be due to the increase in popula-

tion and overexploitation of groundwater in the whole

Wuwei oasis. Due to the lack of surface water, ground-

water has become a major resource of irrigation water

especially in the lower reaches of the Shiyang River basin,

i.e. Minqin oasis. The climate in Minqin oasis is charac-

terized by about 110 mm of rainfall and 2,650 mm of

potential evaporation (Sun et al. 2009). Groundwater

resources have been excessively exploited, and this over-

exploitation resulted in the degradation of the environment;

thus, leading many people to move from the Minqin oasis

to the Wuwei oasis. Therefore, groundwater level has been

decreasing in the Wuwei oasis with the increase of popu-

lation and overexploitation of groundwater.

A continuous decline of groundwater level will lead to a

series of environment problems, e.g. oasis atrophy and die

out, sand storm, the psammophytic vegetations withered

and die, well dried, and so on. Consequently, in order to

slow down the decrease of groundwater level, the exploi-

tation of different groundwater wells should be further

optimally configured. Given the additional fact that the

irrigated area was reduced by the government, some

groundwater wells thus should be closed with the reduction

of irrigated area. Therefore, two exploitation strategies

should be carried out: (1) reducing the number of

groundwater wells, and (2) reducing the exploitation of

groundwater by replacing the groundwater with surface

water to irrigate.

As is known, groundwater level is a very important

index for evaluating the groundwater environment, espe-

cially for the arid regions where water resources is very

deficient; groundwater resources are very important for

promoting economic prosperity in these regions. This study

can provide a theory basis for studying the spatial and

temporal distribution of groundwater, and provide a

quantification of processes affecting the groundwater sys-

tems in the arid region.

Conclusions

Eight spatial interpolation methods to simulate spatial

distribution of groundwater level based on GIS were ana-

lyzed and evaluated in the Wuwei oasis. It is concluded

that OK is the optimal method for interpolating ground-

water level in this region. However, just like other inter-

polation methods, OK estimates also present a serious

inherent drawback well known as the smoothing effect

with decreased variation of estimates. Yamamoto’s method

is used to correct the smoothing effect of OK estimates.

The results showed that Yamamoto’s method effectively

corrected the smoothing effect, and the real spatial distri-

bution of groundwater level thus was presented without

losing local accuracy.

The corrected OK by Yamamoto’s method was used for

studying and analysing the temporal and spatial variations

of groundwater level in the Wuwei oasis. The results

showed that the groundwater level in 1992 is generally

lower than in 1983. Excessive groundwater extraction is

the main cause of the severe decline in the water table with

the increase in population. Therefore, this study can pro-

vide one effective interpolation method (corrected OK

method) for studying the temporal and spatial variations of

groundwater level in arid regions, and provide guidance for

groundwater resources extraction and management. It will

be good for optimizing configuration of the exploitation of

different groundwater wells and slowing down the decrease

of groundwater level. Consequently, it will restore good

ecologic environment.

Table 5 The average annual decline rate of groundwater level for observation wells

Period Averaged annual decline rate Well number

611# 591# 601# 573# 617# 525#

1983–1989 0.17 0.13 0.12 0.13 0.07 0.07 0.02

1990–1999 0.44 0.19 0.19 0.19 1.01 0.26 0.04
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