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Abstract In most arid zones, groundwater (GW) is the

major source of domestic, agriculture, drinking, and

industrial water. Accordingly, the monitoring of its quality

by different techniques and tools is a vital issue. The

purpose of this paper is the evaluation of the combination

of principal components analysis (PCA) and geostatistics

as a technique for (1) identifying the processes affecting

the groundwater chemistry of the detrital unconfined

Middle Miocene Aquifer (MMA) of the Hajeb elyoun

Jelma (HJ) aquifer (Tunisia) and (2) mapping the control-

ling variables for groundwater quality. This work is based

on a limited database recorded in 22 wells tapping the

aquifer and unequally distributed in the field. The proposed

approach is carried out in two steps. In the first step, the

application of PCA revealed that rock–water interaction,

agriculture irrigation and domestic effluents could explain

85 % of the observed variability of the chemical GW

quality of the MMA. As a result, two new variables are

defined: V1 (rock–water interaction influence) and V2

(irrigation and domestic effluent influence). In the second

step, the spatial variability of these variables over the

extent of the MMA is mapped by applying a kriging

interpolation technique. The results of this study suggest

that, while both natural and anthropogenic processes con-

tribute to the GW quality of the MMA, natural impacts can

be considered as the most important.

Keywords Geostatistics � Principal component analysis �
Groundwater quality � Arid zone � Hajeb El Youn–Jelma �
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Introduction

Especially in arid zones, groundwater resources worldwide

are considered as major sources for freshwater supply

worldwide, especially in arid zones. The weak rainfall as

well as the intensive extraction of groundwater from

shallow aquifers reduces freshwater budget and creates

local water aquifer depression, causing a threat to

groundwater budget. Furthermore, the increase of chemical

fertilizers applications has been considered as an additional

cause of groundwater pollution during the last decades. In

arid regions, added to a severe water scarcity, water

resources are characterized by a significant spatio-temporal

variability (Zekai 2008).

Studies undertaken in arid and semi-arid showed the

importance of the water assessment and management in

any integrated development strategy. Accordingly, results

could serve as an available scientific background for sus-

tainable land use planning and groundwater management in

the considered region.

The combination of statistics and geostatistics in a

context of groundwater resources management has already

been explored by many authors. The combination of

principal component analysis and kriging was originally

proposed by Espinosa et al. (1993) to characterize
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anomalies in soil geochemical composition. The same

approach was later used to characterize groundwater

quality in a variety of situations (e.g. Sanchez-Martoz et al.

2001; Jiang et al. 2009). Kriging can also be used directly

to map groundwater quality (e.g. Uyan and Cay 2010), or

in combination with other techniques than PCA, such as

cluster analysis (e.g. Yidana et al. 2010). Either both kri-

ging and co-kriging or semi-variance analysis were applied

for mapping GW spatio-temporal level fluctuations in arid

and semi-arid regions (e.g. Ta’any et al. 2009).

Based on the previous overview, the combined use of

PCA (and factor analysis) and kriging in hydrochemical

analysis is well documented in the literature. In all these

cases, ordinary kriging was used to interpolate factor scores

which represented the weight of the respective processes

affecting the hydrochemistry in the various basins. In this

case study, PCA and geostatistics were combined and

evaluated for GW quality mapping across an unconfined

aquifer in Hajeb Elyoun–Jelma (HJ) basin under arid cli-

mate conditions and using limited database from 22 wells

out of 35 wells belonging to the aquifer. In addition, the

evaluation was made under an unequal geographic distri-

bution of boreholes throughout the study. The selected

wells have complete data sets and chemical analysis bal-

ance below 5 %.

The study is based on both the hydrogeochemical evo-

lution in the aquifer and the physicochemical characteris-

tics. Based on this multivariate and complex information,

using PCA, it is intended to establish a series of factorial

variables that summarize all the hydrogeochemical infor-

mation. A geostatistical study of these derived variables

allows working in a reduced multivariate space, and

establishing their spatial distribution throughout the aquifer

by the calculation of variograms and cross-validations.

Likewise, it is intended to identify the spatial development

of the principal processes acting on groundwater quality by

mapping of groundwater quality using these factorial

variables and ordinary kriging (OK) technique. In fact, OK

is the most popular method which is based on the

assumption of intrinsic stationarity and ergodicity of the

data, and the availability of sufficient data to model spatial

autocorrelation (Yidana et al. 2010). In this way, it is aimed

in this case study to verify whether these new variables

permit location of the zones where various physicochemi-

cal processes are superimposed, considering the hydrog-

eochemical and geological parameters.

Study area

Located in the northern part of Central Tunisia (Fig. 1), the

HJ Basin is characterized by an arid climate with large

temperature and rainfall variations. The mean annual

temperature and rainfall are about 19 �C and 230 mm,

respectively (Saidi et al. 2009). In addition, it is charac-

terized by high evaporation of about 1,200 mm (Dassi et al.

2005). The precipitation/evaporation ratio (P/E) is about

0.19 classifying study area as an arid region (Maliva and

Missimer 2012). The dry climate and low precipitation

accentuate the drawdown of water resource and can also

affect the water quality by salinization (Maoui et al. 2009).

In addition, groundwater quality is highly influenced by an

increasing exploitation, hydrogeological conditions, and

human impacts (Saidi et al. 2009; Abid et al. 2010).

The HJ basin is part of Tunisian Atlas domain extending

over 1,350 km2. It shows a complex geological situation

characterized by numerous NE–SW and E–W anticlines

associated with Triassic salt intrusions (J. Hamra and Ko-

diet El Halfa). The hydrogeologic basin is featured by a

NE–SW synclinal structure developed through the major

compressive movement (Atlasic event). The surrounding

mountains are made up mainly of Cretaceous outcrops, The

Eocene sediments are encountered only in the southern and

the north eastern limits of the study area. In the central part

of the region, the Quaternary crust (1–2 m), which covers

the whole region, constitutes the superficial formation

(Burrolet 1956; Zammouri 1988; Zouari and Mamou 1998;

Koshel 1980).

Groundwater in the (HJ) synclinal basin is hosted in

three main reservoirs namely the Cretaceous, the Middle

Miocene, and Mio–Plio Quaternary aquifers. The second

one is the most important. Indeed, it provides water for

irrigation and drinking water for the whole region and part

of the town of Sfax (900,000 inhabitants) located 170 km

from these resources. Total groundwater abstraction in

2006 is estimated at 20 Mm3.

The cross-section AA’ (Figure S1 ESM only) shows hy-

drostratigraphic units consisting of the three aquifer layers.

Middle Miocene Aquifer with thickness ranging between 10

and 300 m is made up of coarse to medium grained sand-

stone. The MMAGW flows from the northwestern and

northern highlands (Mghilla and Labeidh Mountains), where

the MM outcrops to the southeast (Fig. 2).

Materials and methods

Hydrochemical data

Hydrochemical data were obtained from a sampling net-

work of 22 wells tapping the MMA. The density of wells is

slightly higher in Hajeb and Jelma zones (East and South)

than in Baten El Ghzel and Mghilla (Fig. 2). Sampling was

carried out during the high-water period (May 2006).

Electrical conductivity, temperature and pH were deter-

mined directly in situ using a field conductivity meter.
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Major elements were analysed in the LARSEN Laboratory

at the National School of Engineers of Sfax. A list of

analytical methods used in this study is reported in Table 1.

Methodology

Principal component analysis

The main problem solved by PCA is to transform a set of

correlated variables into groups of elements, which could

be interpreted in an ideal context as independent factors

underlying the phenomenon (Espinosa et al. 1993; Wack-

ernagel 1995; Sanchez-Martoz et al. 2001; Hachicha et al.

2008; Maoui et al. 2009; Hamzaoui et al. 2009). It is used

to distinguish the contributions of natural processes and

anthropogenic impacts to the chemical composition of

MMAGW. PCA can provide information on the most

meaningful parameters that can describe the whole data

sets with minimal loss of original information (Wunderlin

et al. 2001). The maths behind PCA was detailed in many

references (e.g.: Davis 1986; Sanchez-Martoz et al. 2001;

Yidana et al. 2010).

Data were standardized to their corresponding z scores

(Eq. 1). Data standardization is essential in PCA because in

the computation of the Euclidean distances, the parameters

with the highest variances tend to have a greater influence

over those with lower variances (Güler et al. 2002; Cloutier

et al. 2008).

z ¼ x� l
r

: ð1Þ

where, x is the data, l, r are respectively the mean and

standard deviation of the datasets.

Moreover, PCA is generated using the rotation method

Varimax with Kaiser Normalisation. Indeed, rotation

method (Varimax) is the application of an orthogonal

matrix to the factor matrix to maximize the differences

among the factors which facilitate interpretation of the

analysis the results (Yidana et al. 2010). Frequently, this

method is applied to increase the participation of the

variables with higher contribution and reduce those with

lesser contributions. In this way, PCA was subjected to raw

Varimax rotation. The so-called factor 1 is related to the

largest eigenvalue and is able to explain the greatest

amount of variance in the data set. The second factor

(orthogonal and uncorrelated with the first one) explains

most of the remaining variance, and so forth (Jiang et al.

2009).

Kaiser’s normalisation (Kaiser 1960) is applied in this

study. In fact, this criterion is widely used in factor rotation

for sizing down the number of factors that can be included

in the final factor model. Factors selected are having

eigenvalues at least equal to 1 (Ogasawara 1999; Yidana

et al. 2010). The PCA is realized with SPSS software. After

establishing the associations between the physico-chemical

variables of the MMAGW, PCA factors are analysed by

geostatistics to interpolation and mapping.

Table 1 Used analytical methods

Element Analytical method

Cl- Titration with AgNO3

HCO3- Titration with HCl

SO4
2- Chromatography liquid phase

NO3
- Atomic emission spectrophotometer

Na?

Mg2?

K?

Ca2? Titration with EDTA

Table 2 Descriptive statistics of chemical composition (N = 22)

N Minimum Maximum Mean Standard deviation

TDS 22 225.00 2,494.00 812.8636 482.58059

EC 22 0.28 2.46 1.3877 0.64099

Ca 22 19.00 192.00 61.6818 38.43781

Mg 22 9.80 130.00 39.5273 24.99425

Na 22 10.40 442.00 134.7682 93.16731

K 22 1.90 25.00 6.3118 4.93593

HCO3 22 91.00 185.00 129.2727 25.43373

SO4 22 33.50 800.00 252.8091 173.58121

Cl 22 18.00 746.00 179.2273 158.60101

NO3 22 0.00 47.50 9.1364 14.70373
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Geostatistics components

From variogram analysis through kriging cross-validation

to mapping are performed by single integrated program:

GS? software (1988) (Ta’any et al. 2009; Yidana et al.

2010). The theoretical bases of geostatistics are described

in several papers and textbooks (Matheron 1970; Goovaerts

1997; Ahmadi and Sedghamiz 2008). In addition, from a

hydrochemical point of view there are widely used tech-

niques (Sanchez-Martoz et al. 2001; Cambardella et al.

1994; Harmouzi 2010; Ta’any et al. 2009; Yidana et al.

2010)

The semi-variance analysis is used to measure spatial

dependence or autocorrelation, depending on the distribu-

tion of the data and to check land isotropy (Yidana et al.

2010; Ahmadi and Sedghamiz 2008). The kriging provides

a mean of interpolating values for points not physically

sampled using knowledge about the underlying spatial

relationships in a data set. In this study we used the OK,

which is considered the most commonly used method

(Lefohn et al. 2005; Ta’any et al. 2009; Harmouzi 2010;

Yidana et al. 2010). OK is a spatial estimation method

where the error variance is minimized. This later is called

the kriging variance. It is based on the configuration of the

data and on the variogram, hence it is homoescedastic. It is

not dependent on the data used to make the estimate. Ya-

mamoto (2005) proved that the ordinary interpolation

variance is a better measure of accuracy of the kriging

estimate. The cross-validation analysis is a mean for

evaluating effective parameters for kriging interpolations.

In cross-validation analysis each measured point in a spa-

tial domain is individually removed from the domain and

its value estimated via kriging as though it were never

there. In this way a graph can be constructed of the esti-

mated vs. actual values for each sample location in the

domain.

In others words, the basic process of cross-validation

involves: (1) making estimates at all sampling locations

one at a time, assuming no data value at the given location

(i.e., ignoring its data value), and (2) comparing those

estimates to the actual, known data values. In general, the

two key goals of cross-validation are to compare the

effectiveness and accuracy of two or more spatial estima-

tion methods, and to evaluate the performance of any given

spatial dependence model and/or search strategy in a kri-

ging analysis.

The reliability of semi-variogram and goodness of kri-

ging interpolation describing the linear regression equation

is evaluated by the regression coefficient from cross-vali-

dation approach, which must be near to 1.

Table 3 Loadings of principal component (PCA)

Components Eigenvalue Sum of factors squares selected Sum of factors squares selected after
rotation

Total Variance
explained (%)

Cumulative
variance (%)

Total Variance
explained
(%)

Cumulative
variance (%)

Total Variance
explained
(%)

Cumulative
variance (%)

1 6.914 69.138 69.138 6.914 69.138 69.138 6.860 68.603 68.603

2 1.616 16.160 85.298 1.616 16.160 85.298 1.669 16.695 85.298

3 0.707 7.067 92.365

4 0.460 4.600 96.965

5 0.134 1.336 98.302

6 9.077 9 10-02 0.908 99.209

7 5.739 9 10-02 0.574 99.783

8 1.931 9 10-02 0.193 99.976

9 2.211 9 10-03 2.211 9 10-02 99.998

10 1.716 9 10-04 1.716 9 10-03 100.000

Bold is used to express the most significant Eigenvalues and Variance for PCA

Extraction method: principal component analysis

Fig. 4 Scatter plot (PCA)
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Results and discussion

After hydrochemical parameter analysis, the ion balance

between cations and anions is less than 5 % for all samples.

According to WHO guidelines (1993), the range of pH

value prescribed for drinking purposes is 6.5–8.5. The pH

values of groundwater in the study area varied between

7.68 and 8.35, indicating slightly acidic to slightly basic

water. These pH values were in the range of accepted

values. The exceptional value of 8.82 may be originated

from measurements error.

Electric conductivity (EC) shows the concentration of

ionized substances in water. According to WHO, the

maximum permissible value of EC for drinking water is

1,400 lS/cm. EC values in MMAGW range between 280

and 2,460 lS/cm. The lowest values are located at the

northern and in the north-eastern parts of the study area.

Descriptive statistics of chemical composition

The ten hydrochemical parameters monitored in 22 bore-

holes are summarized in Table 2. It reflects a moderate to

high variability (standard deviation) among samples of the

variables. The piper diagram (Fig. 3) and Schoeller–Ber-

kaloff diagram (Figure S2 ESM only) indicate that the

water is featured by mixed composition. Indeed, the water

of this aquifer has several types of facies, with graduation

between Mg–Ca–SO4, Na–Mg and Cl–SO4 and Na–Cl

types. The enrichment with bicarbonate is due to leaching

of the cretaceous limestones. The enrichment with sul-

phates can be due to a contribution of the triassic evaporitic

rocks (southern part of the basin). To provide a better

understanding of mineralisation mechanisms and spatial

distribution, combination of PCA-geostatistics approaches

was implemented.

PCA results

Geostatistical methods are optimal when data are normally

distributed and stationary (mean and variance do not vary

significantly in space). Significant deviations from nor-

mality and stationarity can cause problems. The first step of

this study is to plotting the histogram of data for checking

normality and a posting of the data values in space to check

for significant trends. Subsequently, PCA was applied to

ten normalized variables data sets, separately (TDS, EC,

Ca2?, Mg2?, Na?, K?, Cl-, SO4
2-, HCO3

-, and NO3
-).

According to the Eigenvalue (6.860 and 1.669, respec-

tively), two principals components PC1 and PC2 were

Table 4 Correlation matrix

TDS EC Ca Mg Na K HCO3 SO4 Cl NO3

TDS 1.000

EC 0.774 1.000

Ca 0.911 0.683 1.000

Mg 0.974 0.712 0.882 1.000

Na 0.982 0.783 0.837 0.936 1.000

K 0.798 0.493 0.606 0.792 0.835 1.000

HCO3 -0.072 0.089 -0.342 -0.104 0.017 0.250 1.000

SO4 0.964 0.762 0.919 0.959 0.913 0.659 -0.180 1.000

Cl 0.967 0.718 0.877 0.927 0.972 0.835 -0.110 0.878 1.000

NO3 0.143 0.225 0.254 0.112 0.132 -0.112 -0.439 0.132 0.230 1.000

Bold is used to express some significant correlation coefficients for PCA

Table 5 Components matrix after rotation

Components

1 2

TDS 0.995 6.770 9 10-2

EC 0.795 5.270 9 10-2

Ca 0.888 0.333

Mg 0.969 6.867 9 10-2

Na 0.985 -1.015 9 10-2

K 0.837 -0.336

HCO3 -6.136 9 10-3 -0.880

SO4 0.945 0.160

Cl 0.966 0.112

NO3 0.107 0.788

Extraction method: principal component analysis. Rotation method:

Varimax with Kaiser normalisation

Rotation is converged after 3 iterations

Table 6 V1 and V2 variogram’s parameters and validation correla-

tion coefficient (Rc)

Parameters Symbols V1 V2

Nugget effect C0 0.001 0.14828

Sill C0 ? C 0.404 1.36235

Range A 658,179 124.01

Validation correlation coefficient Rc 0.75 0.62
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selected, which explain 68.603 and 16.69 %, respectively,

of the total variance, respectively (Table 3). The applica-

tion of rotation Varimax method led to an increase in the

PC1 and reduction in the PC2.

The scatter plot (Fig. 4) and correlation matrix (Table 4)

indicates that the most relevant variables defining water

quality are related to water dissolved salts (Ca2?, Mg2?,

Na?, K?, Cl-, SO4
2-) and (EC, TDS), and the less relevant

one are HCO3 and NO3.

PC2 (16.695 %) of the variance is mainly driven by

HCO3 and NO3
- with correlation coefficient (loadings

[0.77). PC1 which explains 68.603 % of the cumulative

variance is mainly driven by EC, Ca2?, Mg2?, Na?, K?,

Cl-, SO4
2- with correlation coefficient (loadings [ 0.8)

(Table 5), which are chemical variables. PC2 may be

related to the evolution of the bicarbonates and contami-

nation of water by organic fertilizers and manure and the

transfer of pollution by domestic septic tanks. In fact, PC2

has high correlation with NO3 (r = 0.788). The PC1 may

be related to common sources of natural processes of dis-

solution of geological rocks components as following:

1. The high correlation between Mg–Ca (r = 0.882) can

be related to dolomitisation phenomenon;

2. The high correlation between Mg–Na and Mg–Cl

(r = 0.936, r = 0.927) may be related to ionic

exchange by interaction with clay level. This interre-

lationship indicates that the water hardness is perma-

nent in nature (Hamzaoui et al. 2009);

3. The high correlation Mg–SO4 (r = 0.959) may be

derived by the weathering of a magnesium sulphate

mineral.

4. The high correlation between Na–Cl and K–Cl

(r = 0.972 and r = 0.835 respectively) may be derived

by the simultaneous Halite and Sylvite dissolution.

5. The calcium and magnesium sulphated type is pro-

duced by the presence of evaporitic formations in J.

Hamra.

6. The calcium and magnesium bicarbonate type due to

the scrubbing and dissolution of dolomitic limestone

(J. Roua) and sandstone in the alimentation area.

Following precedent, two main processes control the

chemical composition of groundwater: (1) dissolution of

saline materials; and (2) contamination of water by organic

fertilizers and also (3) the transfer of pollution by domestic

septic tanks.

Components selected: definitions of the new variables

Based on the two components (PCI, PC2), two new vari-

ables (VI, V2) were established using the values of prin-

cipal component scores of the samples, which project the

n = 22 observations into the two principal components

(Table S1 ESM only). These new variables were used for

the geostatistical study, and this enabled an analysis in an

orthogonal multivariate space, which is more reduced than

the ten original variables.

Mapping groundwater quality

The geostatistical study is performed by GS? software.

The principal aim of this step is to establish the spatial

distribution of the two new variables V1 and V2 in the

studied zone. For this, the spatial variability of VI and V2

over the aquifer was defined by calculating their experi-

mental isotropic variograms (Figs. 5, 6). Variograms

parameters are showed in Table 6: these parameters are

used to classify spatial dependence (sill and range) and to

estimate recording errors (nugget effect) (Ta’any et al.

2009; Cambardella et al. 1994). In fact, the range values

(A) indicate that the spacing between wells was suitable

(Ta’any et al. 2009). The presence of nugget effect

(Co = variance at zero distance) implies inherited vari-

ability shorter than the spacing between observation wells.

0,000

0,219

0,439

0,658

0,878

0,00 426,22 852,43 1278,65

S
em

iv
ar

ia
nc

e

Separation Distance (h)

Isotropic Variogram

Gaussian model (Co = 0,001; Co + C = 0,404; 

Ao = 380,00; r2 = 0,422; RSS = 0,841)

Fig. 5 Experimental isotropic variogram of V1

0.00

0.35

0.71

1.06

1.41

0.00 166.67 333.33 500.00

S
em

iv
ar

ia
nc

e

Separation Distance (h)

Isotropic Variogram

Exponential model (Co = 0.14828; Co + C = 1.36235;

 Ao = 124.01; r2 = 0.836; RSS = 0.151)

Fig. 6 Experimental isotropic variogram of V2

Environ Earth Sci (2013) 70:2215–2224 2221

123



For further study, the anisotropy of the aquifer was

checked using omnidirectional experimental semivario-

grams. They were constructed in the four main directions

E–W, NE–SW, N–S, and NW–SE for V1 and V2. There is

a minor degree of anisotropy. Therefore, the detected an-

isotropies were disregarded, and, accordingly the isotropic

models were adopted.

Then, cross-validation test is done. It refers to the reli-

ability of the adopted models and accordingly to the reli-

ability of the kriging estimates. Regression coefficient

obtained after cross-validation must be near to 1 reflecting

uncertainty by doing kriging interpolation (Ta’any et al.

2009). Regression coefficients Rc1 = 0.95 and Rc2 = 0.62

are respectively obtained for V1 and V2 (Table 6). The two

regression coefficients are above 0.5, besides Rc1 [ Rc2.

So variable V1 is more spatially significant than variable

V2. Subsequently, mapping of V1 and V2 was performed

by means of the point kriging method.

According to V1 map (Fig. 7) corresponding to disso-

lution of saline materials, the highest values are recorded in
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southeast zone of the catchment corresponding to dissolu-

tion of triassic evaporitic material in J. Hamra. Minerali-

sation is also mobilized by groundwater flow from the

North and the Northwest to the South of HJ Aquifer.

The region characterised by lower values is corre-

sponding to J. labeidh situated in aquifer upstream.

Mapping of variable V2 (Fig. 8) shows highest values in

Jelma and Mghilla. These are characterised by agriculture

and also domestic activities. Moreover, high weight of V2

can be due to an intense exploitation from greater depth in

these regions.

Conclusions

The aim of this paper is to evaluate PCA and Geostatistics

techniques for improving assessment of detrital MMAGW

quality in HJ basin. First, based on PCA with variance of

85 %, two factors have been defined which are associated

with (1) natural processes (lithology, rock-water interactions)

leading to the enrichment mainly with Na, Cl, Ca and SO4;

(2) anthropogenic activities (agriculture, industry, urban

development): dissolution of the bicarbonates, contamination

of water by organic fertilizers and manure and the transfer of

pollution by domestic septic tanks. Second, these tow com-

ponents have enabled two new variables to be defined: VI

and V2 geostatistics techniques constitute a useful tool for

the study of spatial variability of these variables reflecting

hydrogeochemical processes in MMAGW of HJ basin—

since they enable the distribution of the variable throughout

the aquifer to be analysed via its estimation by experimental

isotropic variogram, then cross-validation test. Variogram’s

parameters indicate that the spacing between wells was

suitable. Regression coefficients from cross-validation are

above 0.5. Subsequent kriging interpolation technique

enables us the mapping of variables VI, and V2 associated

with the two principal processes implicated. Map1 (for V1)

shows that mineralisation in MMAGW is derived by saline

materials mainly by triassic evaporites sediments in J. Hamra

in the southern zone and also mobilized by groundwater low

from the North and the North-West to the South of HJ basin.

The Map2 (for V2) shows that contamination by agri-

culture and domestic activities is, locally, high in Jelma

and Mghilla zone.

Finally, results suggest that both natural and anthropo-

genic processes contribute to MMAGW quality. Moreover,

in terms of spatial distribution, natural impact is the most

significant.

It is worth noting that results are satisfactory and dem-

onstrate that combination PCA-Geostatistics can be applied

in cases where the aquifer is complex, database set is

limited and with unequal spatial distribution information in

the studied field.

However, it must be recognized that these methods may

not applied in every situation. A minimum number of

sample locations are required for any geostatistical analysis.
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