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Abstract Spatial variations of the water quality in the

Haicheng River during April and October 2009 were

evaluated for the national monitoring program on water

pollution control and treatment in China. The spatial

autocorrelation analysis with lower Moran’s I values dis-

played the spatial heterogeneity of the 12 physicochemical

parameters among all the sampling sites of the river. The

one-way ANOVA showed that all variables at differ-

ent sampling sites had significant spatial differences

(p \ 0.01). Based on the similarity of water quality char-

acteristics, cluster analysis grouped the 20 sampling sites

into three clusters, related with less polluted, moderately

polluted and highly polluted sites. The factor analysis

extracted three major factors explaining 76.4 % of the total

variance in the water quality data set, i.e., integrated pol-

lution factor, nitrogen pollution factor and physical factor.

The results revealed that the river has been severely pol-

luted by organic matter and nitrogen. The major sources

leading to water quality deterioration are complex and

ascribed to anthropogenic activities, e.g., domestic and

industrial wastewater discharges, agricultural runoff, and

animal rearing practices.

Keywords Haicheng River � Water quality � Spatial

variations � One-way ANOVA � Cluster analysis � Factor

analysis

Introduction

China has been increasingly facing severe water deficiency,

especially in the northern part of the country (Bu et al.

2010). China’s water scarcity is attributed to insufficient

local water resources as well as reduced water quality due

to increasing pollution (Jiang 2009), especially agricultural

non-point source pollution (Ongley 2004; Wang 2006).

Meanwhile, poor water quality further exacerbates the

shortage of water availability in water-scarce areas (Zhu

et al. 2001; Liu and Diamond 2005). The water shortage in

northeastern China has caused serious adverse impacts on

society, economics and environment. Therefore, it is an

urgent need for water quality protection to alleviate the

pressure on water shortage. Accordingly, a national mon-

itoring program on water pollution control and treatment in

China has been carried out since 2008.

Characterization of the spatial variation of water quality

variables can provide useful information of the environ-

mental conditions (Huang et al. 2009) and help researchers

identify the pollution sources for available water manage-

ment (Chang 2008). Such researches on spatial variation of

river water quality have been reported around the world in

recent years. Perona et al. (1999) analyzed the environ-

mental factors associated with the physicochemical vari-

ability in a Spanish River. Chang (2008) determined the
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significant spatial trends for water quality data at different

scales in the Han River basin, South Korea. In other studies

for spatial variations on water quality, the pollution sources

and potential influences by natural and anthropogenic

inputs were also identified (Pillsbury and Byrne 2007;

Kannel et al. 2007; Mendiguchı́a et al. 2007).

In this study, the Haicheng River, as a tributary of the

lower Liao River in Northeast China was selected to

examine the water quality for its representativeness in

water quality deterioration due to agricultural and indus-

trial development in Northeast China. The pollution sour-

ces of the river water are mainly generated from

agricultural fertilizers, animal wastes, domestic sewage and

industrial wastewater from textile printing and dyeing, and

paper industry. The objectives of the study are to (1) reveal

spatial variations in water quality characteristics, (2)

identify the major pollution factors and sources influencing

the river water quality, and (3) determine the physico-

chemical variables affecting spatial variations of water

quality in the Haicheng River. The results obtained from

this research could provide useful information for water

quality control in the Liao River basin.

Materials and methods

Study area

The Haicheng River (40.488–41.018 N, 122.488–123.148 E)

is one of the largest tributaries of the Taizi River in the

lower reaches of the Liao River basin, located in Haicheng

City, Liaoning Province of China (Fig. 1). It drains a total

length of 87.5 km and covers a total area of 1,249.3 km2.

The river stems from the Mt. Xiongdi in the southeast of

Gushan Town, and then flows into Chagou Town, Ximu

Town, Haicheng City, Dongsi Town, Zhongxiao Town and

Niuzhuang Town, finally discharges into the Taizi River

(Fig. 1).

The Haicheng River basin is in a warm temperate

monsoon climate zone. The annual average temperature is

approximately 10.4 �C, with the highest in summer and the

lowest in winter. The annual average rainfall is 701.7 mm,

most of which occurs in the summer season (from June to

September). The multi-annual average discharge measured

in the whole river is 2.17 m3/s. Due to the seasonality of

the river, the changes of the river discharges are consistent

with the variation of rainfall, with the maximum discharge

occurring during the rainy season. Vegetation coverage in

the river basin reaches to 52.9 % of the drainage area,

including forest land (51.5 %) and grass land (1.4 %).

Agricultural land covers 34.3 % of the total area along the

course of the river, while built-up land centralized in

downstream of the river covers 10.3 %.

Water sampling and analytical methods

Water samples were collected in April and October 2009,

and 20 sampling sites (H1–H20) in the mainstream of the

Haicheng River were selected (Fig. 1). The first site H1 is

near the headstream of the Haicheng River. Sites of H2–H9

are located in the upstream of the river. Sites H10–H14 are

distributed in the midstream of the river, where non-point

source pollutions (i.e., agricultural activities) also contrib-

ute to the river water pollution besides local domestic

wastewater. Sites of H15–H20 lie in the downstream of the

river, where municipal and industrial wastewater and par-

tial runoff from agricultural lands and livestock rearing

farms are mainly received.

Twelve water quality parameters are chosen for the

water chemistry data set obtained at the 20 sampling

sites in the Haicheng River basin. Water temperature

(temp), pH, dissolved oxygen (DO), electrical conduc-

tivity (EC) and total dissolved solids (TDS) were directly

determined in situ using multiparameter water quality

monitoring instrument (YSI Incorporated, Yellow Springs,

OH, USA). Calibration of sensors was performed before

measurement. The discharge (Q) values used in this

study were measured at the sampling sites by a current

meter.

Water samples at each site were collected in polyeth-

ylene plastic bottles rinsed three times prior to use with

distilled water and kept at 4 �C for laboratory analysis of

total suspended solids (TSS), chemical oxygen demand

(Cr) (CODCr), ammoniacal nitrogen (NH3–N), nitrate

nitrogen (NO3–N), total nitrogen (TN) and total dissolved

phosphorus (TP). Pretreatment and determination for these

parameters analyzed in the laboratory were all conducted

following the national standard methods (SEPA 2002).

Before analysis for NH3–N, NO3–N and TN, water samples

were acidified to pH \ 2 by sulfuric acid, while samples

for TP analysis were acidified to pH \ 2 with nitric acid.

TSS was determined gravimetrically at 103–105 �C by

filtration with 0.45 lm MF-Millipore membrane filters.

CODCr was measured by potassium dichromate method.

NH3–N was measured with Nessler’s reagent, NO3–N and

TN determined by UV spectrophotometric method,

respectively. TP was analyzed by digestion and a colori-

metric method (ammonium molybdenum blue method/

ascorbic acid method) after the digestion of samples with

concentrated nitric and sulfuric acid to convert all the

phosphates into the orthophosphate form (SEPA 2002;

Kannel et al. 2008).

Statistical analysis

In order to see if the values of observations in each

sample were independent of one another, the spatial
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autocorrelations were performed using the GeoDa 0.9.5-i

software (Anselin et al. 2006). One-way analysis of vari-

ance (ANOVA), cluster analysis (CA) and factor analysis

(FA) were performed to further explain the monitoring data

using SPSS 13.0 (Wunderlin et al. 2001; Simeonov et al.

2003; Bu et al. 2010). The one-way ANOVA with least

significant difference (LSD) method in post hoc tests and

the Levene statistic in homogeneity of variance test was

applied to estimate the spatial differences of the river water

quality among the 20 sampling sites (Mendiguchı́a et al.

2007). For abnormally distributed and unequal-variance

variables (Temp, pH, DO, EC and TDS), non-parametric

Dunnett’s test was used. The CA using the squared

Euclidean distance with Ward’s method was also applied to

assess the similarity among the sampling sites (Kazi et al.

2009). The FA was used to identify pollution factors

affecting water quality. Kaiser–Meyer–Olkin (KMO) and

Bartlett’s sphericity tests were also conducted to examine

the suitability of the data for FA (Helena et al. 2000). For

CA and FA, the water quality data had been initially

standardized by z-scale transformation in order to avoid

misclassification due to wide differences in data units and

dimensionality (Singh et al. 2005; Kannel et al. 2007).

A detailed description of the CA and FA can be found in a

recent paper (Bu et al. 2010).

Results and discussion

Spatial heterogeneity of water quality

The results from the spatial autocorrelation analysis show

the Moran’s I values (Table 1) range from -0.122 (NO3–

N) to 0.575 (pH). There are weak to moderate positive and

negative spatial autocorrelations among all the sampling

sites. Therefore, it displays the spatial heterogeneity of

chemical parameters along the course of the river, and also

indicates there is no noise to interpret the spatial water

quality trends (Chang 2008). By the one-way ANOVA, all

variables show significant spatial differences (p \ 0.01) at

different sampling sites, which is consistent with the results

from the spatial autocorrelation analysis.

Cluster analysis and spatial similarity

Based on the 12 variables, the 20 sampling sites are clas-

sified into three distinct clusters at (Dlink/Dmax) 9 25 \ 10

by cluster analysis, illustrated as a dendrogram (Fig. 2).

Comparing the values of the 12 variables in different

clusters (Fig. 3), the water qualities are significantly dif-

ferent (p \ 0.001) by the one-way ANOVA except the

variables of pH and NH3–N. Thus, the three clusters

Fig. 1 Location of the Haicheng River (Northeast China) and the distribution of the 20 sampling sites
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correspond to relatively less polluted sites (LPS), moder-

ately polluted sites (MPS) and highly polluted sites (HPS),

respectively.

In cluster 1, four sampling sites (H3, H4, H7 and H8) are

included and situated at the upper reaches of the river, where

human activities are minimal and the water quality is less

influenced (Bu et al. 2010). The mean values of EC, TDS,

TSS, CODCr, NH3–N and TN in cluster 1 are all lowest

among the three clusters (Fig. 3), reaching to 444 lS/cm,

176.5, 8.8, 14.1, 0.36 and 1.24 mg/l, respectively.

While cluster 3, covering only two sampling sites of

H19 and H20 at the down reaches of the river, was

named HPS since its mean concentrations of EC, TDS,

TSS, NH3–N, CODCr and TP all reach to the largest

values of 1,083 lS/cm, 582, 95, 1.2, 151 and 0.4 mg/l

among the three clusters (Fig. 3). The water discharges

(Q) in cluster 3 are also distinctly higher (1.68 m3/s) than

other two clusters (Fig. 3), which may be receiving

wastewater and local pollutions mostly from industrial

effluents, agricultural runoff and partially domestic

wastewater in these river reaches. It was reported that

about 8.5 9 106 tons of industrial wastewater generated

from textile printing and dyeing, and paper industry was

discharged to the river in 2009 (EPAHCLPC 2010),

including 1.3 9 103 tons of CODCr and 22.0 tons of

NH3–N. The massive amounts of industrial wastewater

contribute to the organic and nitrogen pollution of the

river. In cluster 3, the mean concentrations of CODCr and

TN (151 and 2.4 mg/l, respectively; Fig. 3) far more

exceed their Class V guidelines of 40 and 2.0 mg/l,

respectively, according to the national quality standards

for surface waters, China (GB3838-2002).

The other 14 sampling sites (H1, H2, H5, H6 and H9–

H18) lie in the different reaches of the river are ascribed to

cluster 2 and called as MPS for their moderate values of

water quality variables (Fig. 3). Of these sampling sites,

H1, H2, H5, H6, H9–H14 and H17 are located in rural

areas, where pollutions are mostly derived from local

agricultural practices in the vicinity of the Haicheng River.

In 2009, about 5.6 9 104 tons of fertilizers were applied to

agricultural lands in the Haicheng River basin (Environ-

mental Protection Agency of the Haicheng City of Liaon-

ing Province, China (EPAHCLPC) 2010). However, only

30–35 % of fertilizers can be used by crops (Bu et al.

2011). Thus, the excessive fertilizers influenced the river

water quality through surface runoff and/or direct volatil-

ization. In addition, more than 95.7 9 104 tons of animal

wastes in livestock rearing farms were also produced and

contributed to river pollution during 2009 (EPAHCLPC

2010). Sites of H15, H16 and H18 are mainly polluted by

municipal wastewater of Haicheng City and Zhongxiao

Town. It was estimated that about 14.8 9 106 tons of

domestic wastewater directly discharged into the river

during 2009 (EPAHCLPC 2010), including 4.1 9 103 tons

of COD and 388 tons of NH3–N.

The results of cluster analysis indicate that the CA

technique in the present study is very useful in offering

reliable classification of surface waters, and it can reduce

sampling sites for further study by designing a future

spatial sampling strategy in an optimal manner (Bu et al.

2010). Many successful applications of CA on water

quality studies have been introduced in recent years

(Simeonov et al. 2003; Singh et al. 2004, 2005; Shrestha

and Kazama 2007; Kazi et al. 2009), providing good

experience for similar researches.

Table 1 Moran’s I values of water quality data for all sampling sites

in the Haicheng River, China

Variables Moran’s I values

Temp 0.370

pH 0.575

DO 0.161

EC 0.378

TDS 0.129

Q 0.171

TSS 0.357

CODCr 0.091

NH3–N 0.121

NO3–N -0.122

TN -0.039

TP 0.020

Fig. 2 Dendrogram of the 20 sampling sites using hierarchical

cluster analysis based on the 12 water quality variables in the

Haicheng River, Northeast China
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Factor analysis and source identification

In factor analysis, the correlation matrix shows that most

variables are significantly correlated with each other

(p \ 0.01 or p \ 0.05; Table 2). Their correlations display

that the variance of each variable could be well explained

by others (Singh et al. 2005). The results from the KMO

and Bartlett’s sphericity test are 0.841 and 212.4 (df = 66,

Fig. 3 Variations of the 12

parameters in different clusters

(LPS, MPS and HPS) in the

Haicheng River, China (open

circle and asterisk denote

outliers with 1.5 9 interquartile

range (IQR) and 3 9 IQR,

respectively; (LPS, MPS and

HPS denote less polluted sites,

moderately polluted sites and

highly polluted sites,

respectively)

Table 2 Matrix of Pearson’s correlation coefficients for the 12 water quality variables in the Haicheng River, China

Q Temp pH DO EC TDS TSS CODCr NH3–N NO3–N TN TP

Q 1

Temp -0.415 1

pH 0.338 -0.643(**) 1

DO -0.326 0.059 0.004 1

EC 0.433 -0.114 0.183 -0.908(**) 1

TDS 0.452(*) -0.310 0.267 -0.668(**) 0.755(**) 1

TSS 0.317(*) -0.066 0.013 -0.712(**) 0.784(**) 0.489(*) 1

CODCr 0.418(**) -0.056 0.060 -0.895(**) 0.869(**) 0.641(**) 0.758(**) 1

NH3–N -0.127 -0.247 0.293 -0.121 0.204 0.104 0.178 0.114 1

NO3–N 0.067 -0.529(*) 0.124 -0.080 0.152 0.125 0.382(*) 0.173 0.335(*) 1

TN -0.010 -0.483(*) 0.184 -0.069 0.161 0.109 0.330(*) 0.160 0.634(**) 0.932(**) 1

TP 0.063 0.099 -0.207 -0.631(**) 0.644(**) 0.427 0.341(*) 0.637(**) 0.077 0.077 0.086 1

* Correlation is significant at the 0.05 level (2-tailed)

** Correlation is significant at the 0.01 level (2-tailed)
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p \ 0.001), respectively, suggesting that factor analysis is

effective to reduce the dimensionality of the data set.

Accordingly, the first three rotated factors with eigenvalues

C1 are extracted, explaining 76.4 % of the total variance in

water quality data set (Table 3).

Factor 1 explaining 37.5 % of the total variance has

strong negative loading on DO (-0.946), while strong

positive loadings on EC, TDS, TSS, CODCr and TP. These

variables in factor 1 represent the total pollutions and

chemical changes along the course of the river (Perona et al.

1999). Thus, factor 1 can be named as integrated pollution

factor. Factor 2 explaining 21.3 % of the total variance

shows strong positive loadings on NH3–N, NO3–N and TN,

reflecting the nutrient enrichment for nitrogen in river

water. So, factor 2 is called nitrogen pollution factor. Factor

3 explaining about 17.6 % of the total variance is highly

negatively correlated with Temp and positively associated

with pH and Q. This factor reflects the physical character-

istic of the river water (Bu et al. 2010), named physical

factor since the three variables are the main reaction

conditions in chemical changes of water body in rivers

(Zilberbran et al. 2001). In aquatic environment, water

temperature will impact on the acceptability of a number of

other inorganic constituents and chemical contaminants

(WHO 2008), while pH can not only regulate redox process

but also control nitrification and denitrification of organic

Table 3 Factor loadings of the 12 variables on VARIMAX rotation

in the Haicheng River, China

Variable Factor

F1 F2 F3

Temp 0.013 -0.439 -0.787

pH -0.054 0.156 0.827

DO -0.946 -0.001 -0.040

EC 0.950 0.071 0.178

TDS 0.726 -0.008 0.412

Q 0.372 -0.159 0.706

TSS 0.785 0.273 0.039

CODCr 0.925 0.122 0.123

NH3–N 0.079 0.710 0.028

NO3–N 0.111 0.874 0.152

TN 0.091 0.973 0.105

TP 0.732 0.042 -0.242

Eigenvalue 4.501 2.554 2.115

% of variance 37.5 21.3 17.6

Cumulative (%) 37.5 58.8 76.4

Bold values are strong loadings ([0.700)

Fig. 4 The first two factor scores versus the 20 sampling sites in the

Haicheng River, Northeast China

Fig. 5 Percentage (%) of different nitrogen forms at sampling sites of

H2, H15 and H17

Fig. 6 Total factor scores versus the 20 sampling sites in the

Haicheng River, Northeast China
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matter (Jain 2002). The river discharges influence the self-

purified capacity by dilution effects due to variation in river

flow (Perona et al. 1999). Consequently, the factor 3, to

some degree, dominates the main pollutant concentrations

of dissolved matters in river water, such as CODCr, TDS and

nutrient elements.

The space distributions of the 20 sampling sites defined

by the first two factor scores (explaining 58.8 % of the total

variance, Table 3) are illustrated in Fig. 4, showing the

similar three clusters from CA (Fig. 2). The higher the

factor scores, the higher the factor’s influence (Felipe-

Sotelo et al. 2007). Cluster 3 (sampling sites of H19 and

H20) obtains the highest factor scores ([2.5; Fig. 4) in

factor 1, firmly corresponding to variables of DO, EC,

TDS, TSS, CODCr and TP since the two sampling sites

show greater values of EC, TDS, TSS, CODCr and TP and

lower concentrations of DO (Fig. 3). This result indicates

that anthropogenic pollution sources for the two sampling

sites are complicated, not only from domestic wastewater

and agricultural runoff but also from industrial wastewater

(Bu et al. 2011). The sampling sites of H2, H15 and H17 in

cluster 2 load with much higher factor scores in factor 2

([1.0; Fig. 4) associated with nitrogen variables of NH3–

N, NO3–N and TN, showing nitrogen pollution mainly

from agricultural runoff (H2 and H17) and domestic

wastewater (H15) without treatment since agricultural

lands are scattered in these areas and domestic wastewater

from the Haicheng City directly discharges downstream by

way of the sampling site H15 (Fig. 1). In addition, NO3–N

in these sampling sites is the main pollution form of

nitrogen and accounts for 58.2 (H15), 73.9 (H17) and

86.5 % (H2) of TN concentrations, respectively; while the

second largest portion is NH3–N with the proportions from

11.1 (H2) to 32.1 % (H15) in TN (Fig. 5). However, cluster

1 (sites H3, H4, H7 and H8) has the lowest factor scores in

the two factors (Fig. 4), displaying the much better water

quality there. Finally, the Haicheng River pollution is

centralized in lower reaches with higher total factor scores

(Fig. 6).

Conclusions

This monitoring in the Haicheng River (a tributary of the

Liao River) is an important part for the national monitoring

program on water pollution control and treatment in China.

The 12 studied variables show significant spatial variations.

Three clusters are classified in CA, representing LPS, MPS

and HPS, respectively. Three factors are extracted in FA,

regarded as integrated pollution factor, nitrogen pollution

factor and physical factor. The results indicate that the

Haicheng River, as a major tributary of the Liao River, is

subject to severe organic and nitrogen pollution due to

anthropogenic activities, such as industrial discharges,

agricultural activities, animal rearing practices, etc. How-

ever, the pollution sources are not individually distin-

guished from current conditions in this study. Further

studies for the river pollution are needed. This research

provides a basis for the knowledge of water quality char-

acteristics in the Haicheng River and a reference for pol-

lution control of the Liao River in the future.
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