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Abstract The aim of this study is to analyze the sus-

ceptibility conditions to gully erosion phenomena in the

Magazzolo River basin and to test a method that allows for

driving the factors selection. The study area is one of the

largest (225 km2) watershed of southern Sicily and it is

mostly characterized by gentle slopes carved into clayey

and evaporitic sediments, except for the northern sector

where carbonatic rocks give rise to steep slopes. In order to

obtain a quantitative evaluation of gully erosion suscepti-

bility, statistical relationships between the spatial distri-

butions of gullies affecting the area and a set of twelve

environmental variables were analyzed. Stereoscopic

analysis of aerial photographs dated 2000, and field surveys

carried out in 2006, allowed us to map about a thousand

landforms produced by linear water erosion processes,

classifiable as ephemeral and permanent gullies. The linear

density of the gullies, computed on each of the factors

classes, was assumed as the function expressing the sus-

ceptibility level of the latter. A 40-m digital elevation

model (DEM) prepared from 1:10,000-scale topographic

maps was used to compute the values of nine topographic

attributes (primary: slope, aspect, plan curvature, profile

curvature, general curvature, tangential curvature; sec-

ondary: stream power index; topographic wetness index;

LS-USLE factor); from available thematic maps and field

checks three other physical attributes (lithology, soil tex-

ture, land use) were derived. For each of these variables, a

40-m grid layer was generated, reclassifying the topo-

graphic variables according to their standard deviation

values. In order to evaluate the controlling role of the

selected predictive variables, one-variable susceptibility

models, based on the spatial relationships between each

single factor and gullies, were produced and submitted to a

validation procedure. The latter was carried out by evalu-

ating the predictive performance of models trained on one

half of the landform archive and tested on the other. Large

differences of accuracy were verified by computing geo-

metric indexes of the validation curves (prediction and

success rate curves; ROC curves) drawn for each one-

variable model; in particular, soil texture, general curvature

and aspect demonstrated a weak or a null influence on the

spatial distribution of gullies within the studied area, while,

on the contrary, tangential curvature, stream power index

and plan curvature showed high predictive skills. Hence,

predictive models were produced on a multi-variable basis,

by variously combining the one-variable models. The

validation of the multi-variables models, which generally

indicated quite satisfactory results, were used as a sensi-

tivity analysis tool to evaluate differences in the prediction

results produced by changing the set of combined physical

attributes. The sensitivity analysis pointed out that by

increasing the number of combined environmental vari-

ables, an improvement of the susceptibility assessment is

produced; this is true with the exception of adding to the

multi-variables models a variable, as slope aspect, not

correlated to the target variable. The addition of this

attribute produces effects on the validation curves that are

not distinguishable from noise and, as a consequence, the

slope aspect was excluded from the final multi-variables
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model used to draw the gully erosion susceptibility map of

the Magazzolo River basin. In conclusion, the research

showed that the validation of one-variable models can be

used as a tool for selecting factors to be combined to

prepare the best performing multi-variables gully erosion

susceptibility model.

Keywords Gully erosion � Susceptibility models �
Validation test � GIS � Sicily

Introduction

Erosion by water constitutes a relevant and worldwide

problem that causes severe land degradation phenomena in

semi-humid to arid areas (Bou Kheir et al. 2007; Butt-

afuoco et al. 2012). Climate changes leading to long dry

periods followed by extreme rainstorm events, as well as

the recent intensification of human activities and agricul-

tural practices, make the Mediterranean region particularly

susceptible to water erosion.

In the last decades a number of studies have been carried

out with the aim of developing and applying models for the

assessment of soil loss rates and water erosion risk.

Methods allowing us to quantify the volumes of eroded soil

are typically grouped into empirical and physically-based

models; the popular universal soil loss equation (USLE;

Wischmeier and Smith 1965) and the WEPP model (water

erosion prediction project; Nearing et al. 1989) are good

example of the first and the second group, respectively.

Most of the erosion models focus on the quantification

of soil eroded by sheet and rill erosion at hillslope and test

plot scale. Nevertheless, recent researches have shown the

importance of gully erosion, revealing that the contribution

of this phenomenon increases with the extension of the

basin, ranging from 10 % up to 94 % of the total sediment

yield caused by water erosion; moreover, it is through

gullies that a large part of the soil eroded from slopes

reaches the river networks (Poesen et al. 2003). These

considerations suggest that ephemeral and permanent gully

erosion phenomena need to be addressed for the evaluation

of soil loss rates, especially at watershed scale; at present,

there are few models capable of predicting soil loss pro-

duced by gully erosion, among which are Chemicals,

Runoff and Erosion from Agricultural Management Sys-

tems (CREAMS; Knisel 1980), Ephemeral Gully Erosion

Model (EGEM; Capra et al. 2005; Merkel et al. 1988;

Woodward 1999), the method proposed by Sidorchuk

(1999) and the channel erosion routine of the WEPP

watershed model.

There are also methods that allow an investigator to

assess soil erosion risk or produce erosion susceptibility

maps, at various scales, by defining statistical relationships

between a set of physical attributes and the spatial distri-

bution of the landforms related to water erosion processes.

The statistical methods, in general, do not provide volumes

of soil loss due to water erosion, but allow for the pro-

duction of susceptibility maps showing the expected spatial

probability, defined in relative terms, of landform occur-

rence. These techniques often group the predicted land-

forms according to the type of process, or associate

different typologies of erosion features in terrain units

characterized by homogeneous erosion dynamics. The

latter approach is used at the basis of the concept of the

erosion response units (ERU), proposed by Märker et al.

(1999); such a method allows an investigator is able to

generate water erosion susceptibility maps, on a watershed

scale, in which the various levels express aggregation of

erosion features characterized by similar intensity (in terms

of eroded volumes). Two categories of erosion landforms,

which group features produced by diffused and linear

processes, are used in the method proposed and tested in a

Sicilian river basin by Conoscenti et al. (2008a), based on

multivariate statistical approach applied to spatial unique

conditions units (UCU; Carrara et al. 1995). A similar, but

implemented by means of a bivariate classification proce-

dure has been used in southern Italy by Conforti et al.

(2011) and by Magliulo (2012). Recently, gully erosion

susceptibility maps have been prepared also by exploiting

advanced data mining techniques (Bou Kheir et al. 2007;

Gutiérrez et al. 2009a, b; Lucà et al. 2011; Märker et al.

2011).

In the present paper, we investigate susceptibility con-

ditions to gully erosion in a watershed of southern Sicily,

the Magazzolo River basin, by following a statistical

approach aimed at mathematically defining spatial rela-

tionships between gully occurrence and variability of

twelve physical attributes. The main goal of the research is

to draw up a gully erosion susceptibility map able to well

reproduce the distribution of ephemeral and permanent

gullies and to indicate those portions of the basin, at

present not hosting erosion landforms, where new gullies

are more likely to occur in the future. The best performing

multi-variables susceptibility model, chosen after testing

various combinations of the twelve environmental vari-

ables, is used to prepare the susceptibility map. To

accomplish this task, one of the key points to be faced, is to

define a procedure to estimate the contribution in the pre-

dictive performance of multivariate models, which is pro-

vided by a single predictor variable. Another important

objective of this research is to verify whether the control-

ling role of each of the selected physical attributes can be

evaluated by assessing the predictive skill of susceptibility

models derived from each single variable. To this aim, the

accuracy of the latter is evaluated and compared to that of

multi-variables models prepared by differently combining

1180 Environ Earth Sci (2013) 70:1179–1195

123



the independent variables, so to assess how including a

variable affects or not the performance of the model.

Materials and methods

Study area

The Magazzolo River flows in the southern portion of

Sicily, draining a basin of 225 km2; the main fluvial axis

has a general NE-SW orientation and runs for about 36 km

from the southern slopes of the Sicani Mounts to the

Sicilian Channel (Fig. 1). The area experiences a Medi-

terranean climate, with mild wet winter periods and dry,

hot summer times; mean annual rainfall is about 700 mm

and concentrates in a few rainy days of the winter period,

while summers are almost dry.

The basin is located in the mildly folded foredeep—

foreland sector of the Sicilian collisional complex (Cata-

lano et al. 1993). The outcropping rocks are: limestones

(lower liassic-upper trias), dolomitic limestones (lower-

middle Jurassic), pelagic marly limestones and marls

(upper Cretaceous-Eocene) pertaining to the Sicanian

basinal succession; marls and limestones (Oligocene) of

the Trapanese Platform; conglomerates, clayey sandstones

and marls (upper Tortonian-lower Messinian) of the Ter-

ravecchia formation; carbonates, gypsum rocks and marls

of the Messinian evaporitic succession (upper Messinian);

pelagic marly calcilutites (lower Pliocene) of the Trubi

formation; present day beach, fluvial and slope deposits.

The watershed extends from NE to SW with an elon-

gated shape that narrows in the middle and in the coastal

sector. The northern portion, where carbonate rocks largely

outcrop, is the highest sector of the basin and is charac-

terized by steep slopes and scarps, affected by debris and

rock falls. A hilly area can be recognized in the central-

northern portion of the basin; this sector, characterized by

gentle slopes carved into evaporitic and clayey sediments

of the evaporitic succession, is affected by landslides and

severe water erosion phenomena. The coastal zone is

dominated by a wide alluvial plain and by the outcropping

of marls, calcarenites and clays.

Gully erosion landforms and variables

Remote and field surveys carried out in the Magazzolo

River basin allowed us to recognize about a thousand

ephemeral and permanent gullies (Agnesi et al. 2007). In

particular, by means of stereoscopic analysis of aerial

photographs (scale 1:10,000) taken in 2000, a map repre-

senting the spatial distribution of gullies was produced;

field surveys were carried out in 2006 in order to verify the

reliability of the remote analysis and to improve the gully

map in critical zones. This map, that was turned into a

Fig. 1 Magazzolo River basin

location and hillshaded DEM
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geo-referenced GIS vector layer (Fig. 2), shows all sites of

the investigated basin where gully erosion processes are

able to produce landforms, with the exception of mapping

errors and of those ephemeral gullies that were filled by

farmers at the time of the aerial and field surveys. These

obliterated gullies could be a source of error for the sus-

ceptibility models, especially considering that, in the

studied area, the use of this agricultural practice is quite

frequent even if new incisions tend to reappear soon where

ephemeral channels were filled.

The development of gully erosion susceptibility models

requires the selection of environmental variables able to

reproduce the geographical variability of the main factors

potentially controlling the phenomenon; for this research,

the selection was based on geomorphological knowledge of

gully erosion phenomena and on the availability, for the

area, of environmental data related to erosion processes.

The occurrence of this phenomenon depends on climate,

topography, lithology, soil characteristics and land use

(Poesen et al. 2003; Gutiérrez et al. 2009a); thus, suscep-

tibility to gully erosion is a function of erodibility of out-

cropping materials and erosivity of runoff waters

(Conoscenti et al. 2008a). To the aim of reproducing

proneness to erosion of rocks/soils and erosive power of

runoff, three erodibility and nine erosivity variables were

selected: bedrock lithology (LTL), soil texture (TXT) and

land use (USE), as erodibility variables; slope angle (SLO)

and aspect (ASP), plan curvature (PLC), profile curvature

(PRC), general curvature (CRV), tangential curvature

(TNC), stream power index (SPI), topographic wetness

index (TWI) and length-slope USLE factor (LSF), as ero-

sivity variables. All the physical attributes were spatially

defined as 40-m square grids, by combining information

derived from available thematic maps and field surveys

(erodibility variables) and by processing a digital elevation

model (erosivity variables).

The bedrock lithology grid (Fig. 3a) was prepared in

accordance with the expected erodibility of outcropping

materials. The limits of nine LTL classes were derived

from existing geological maps and field surveys; the most

diffused lithological types are clays (37.3 %), evaporitic

rocks (24.5 %) and marls (13.5 %).

Soil information was obtained from the soil map of

Sicily (Fierotti 1988); among the five classes of soil texture

defined in the studied area (Fig. 3b), the fine-medium

(61.2 %) and the medium (22.2 %) classes are the most

frequent. A regional soil use map (ARTA Sicilia 1994a)

was used to derive the grid of land use (Fig. 3c), which

shows the spatial pattern of sixteen Corine legend classes

of land cover.

The frequency distributions of the classes of the three

erodibility variables are plotted as bar diagrams in Fig. 4.

According to Bou Kheir et al. (2007), i.e., the occur-

rence of gullies is primary controlled by the topographic

Fig. 2 Gully erosion landforms map and examples of ephemeral and permanent gullies affecting the area
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features, six primary and three secondary topographic

attributes (Wilson and Gallant 2000) were selected as

predictive variables to generate gully erosion susceptibility

maps. Since climatic variables can be considered as being

fairly homogeneous in the studied area (Ferro et al. 1991),

the spatial variability of runoff erosive power is here

assumed to be expressed simply by means of topographic

attributes.

The nine topographic attributes were extracted by pro-

cessing a 40-m grid digital elevation model (DEM), using

freeware ArcView GIS 3.2 (ESRI 1999) spatial analysis

tools (Sinmap, Demat and Topocrop). The DEM was

obtained by digitizing contour lines and elevation points

from 1:10,000 scale topographic maps, with 10-m contour

interval (ARTA Sicilia 1994b), and by interpolating ele-

vation data by means of the Topo to Raster tool of ArcGIS

9.3 (ESRI 2008). Although a better resolution would have

been possible, we chose a pixel of 40-m in order to avoid

that the topographic variables were altered by the presence

of the incisions, the latter of a width largely smaller than

the size of a cell; in fact, we felt it was more useful to

assign high susceptibility to the general topography of the

slopes where gullies occur, rather than identify as highly

susceptible values of topographic attributes calculated on

cells with a size comparable to that of the hosted erosional

landforms. Moreover, this selection agrees with the opti-

mum cell size computed by following the theory that

information content grows with entropy of data (Shannon

and Weaver 1949). According to Sharma et al. (2011), the

spatial variability of elevation, measured by calculating the

entropy of a DEM, is low both for oversampled and for

undersampled DEMs; in fact, redundant elevation values or

loss of micro relief information could be responsible for

low entropy values. In order to calculate the optimum cell

size, DEMs of four different resolution (10, 20, 30, 40-m)

were interpolated; for each of them, entropy (H) was

computed using the following equation:

H ¼ �
Xn

i¼1

Pi � log2 Pið Þ

where Pi is the probability of a cell being classified as class

i and n is the number of classes. Since entropy of a grid is

influenced by its number of pixels (N), the entropy values

were normalized by dividing them with 2ln (N) (Sharma

et al. 2011). According to the normalized entropy values,

showed in Table 1, the relative information content of the

Fig. 3 Spatial variability of the erodibility variables: LTL (a), TEX (b), USE (c)
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interpolated DEMs increases when increasing the size of the

cells, with a variation that gradually reduces from 20 to

40-m pixels. These results support the selection of the DEM

with a pixel 40-m, being the latter adequately representative

of the topographic heterogeneity of the studied area.

The primary topographic attributes—slope, aspect and

plan curvature—are directly derived by investigating, using

the D8 algorithm (O’Callaghan and Mark 1984), the rela-

tionships among cells, within a neighbourhood in the DEM.

The slope angle is the maximum first derivative of the

altitude, whose compass direction represents the slope

aspect. Plan and profile curvature are the second derivative

of elevation measured orthogonal and parallel to the aspect

direction, respectively; the difference between the latter

gives the value of the general curvature while tangential

curvature is calculated along the line orthogonal to the line

of steepest gradient. The second topographic attributes

used in the present research are derived from slope angle

Fig. 4 Relative frequency distributions of the erodibility variables classes (grey bars) and linear density of gullies computed on each class

(empty bars): LTL (a), TEX (b), USE (c). Bottom X axis: relative frequency (%); top X axis: gully linear density (km/km2)

Table 1 Entropy and normalized entropy of DEMs at different resolution

Cell size (m) Number of cells Entropy Normalized entropy Change Change (% )

10 2,207,360 10.028 0.343

20 551,823 10.018 0.379 0.036 10.4 %

30 245,277 10.016 0.404 0.025 6.5 %

40 137,961 10.010 0.423 0.019 4.8 %
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and specific catchment area, the latter corresponding to the

upslope area per unit width of contour lines (Wilson and

Gallant 2000). In particular, the stream power index is

calculated as SPI ¼ ln½As tanðSLOÞ�, where As is the

specific catchment area; the topographic wetness index is

computed as TWI ¼ ln½As=tanðSLOÞ�; while the length-

slope USLE factor as LSF ¼ ðððAs=22:13Þ^0:4Þ �
1:4ððsinðSLOÞ=0:0896Þ^1:3ÞÞ: All the topographic attri-

butes, except for slope aspect, were reclassified in quarter

standard deviation intervals, in order to give weight to their

relative variability rather than to their absolute values.

Figure 5 shows the frequency distributions of the classes of

the nine topographic attributes.

The morphodynamic significance of the selected topo-

graphic attributes, in terms of runoff erosive power, can be

resumed by the following considerations: SLO can control

the overland and subsurface flow velocity and runoff rate;

ASP influences solar insolation and vegetation distribution

on slopes and, also, could indirectly express (proxy role)

the influence of the structural setting; the four computed

curvature attributes measure the convergence or divergence

of runoff water; moreover, if we assume that discharge is

proportional to As and that overland flow velocity is pro-

portional to SLO, then SPI increases as a function of the

runoff erosive power, TWI is proportional to soil saturation

and LSF can be considered a measure of sediment transport

capacity.

Erosion model and validation procedure

In this research, gully erosion susceptibility is assessed by

adopting the conditional analysis (Davis 1973; Carrara and

Guzzetti 1995) according to which the susceptibility level

of a homogenous domain corresponds to the density of

water erosion landform computed. Homogenous units are

here spatially defined by grouping cells pertaining to a

single variable class, in univariate analysis, or by identi-

fying sets of cells characterized by unique combinations of

a set variable classes, in the multivariable analysis. The

homogenous domains, prepared by applying this proce-

dure, correspond to the concept of UCU, which is widely

adopted in landslide hazard studies (Carrara et al. 1995;

Clerici et al. 2002; Conoscenti et al. 2008b) and more

recently in water erosion assessment (Conoscenti et al.

2008a).

The linear density of ephemeral and permanent gullies is

so here exploited as the gully erosion susceptibility func-

tion; the density values, computed for each class of the

selected conditioning factors, were considered as express-

ing the susceptibility levels and were used to prepare gully

erosion susceptibility models both from single variables

and combinations of them.

According to the Bayes’ Theorem, the conditional

probability for a mapping unit to host a gully, under the

condition that its physical attributes would be those rep-

resented by the value assumed by the independent variable

or variables, can be expressed by adapting from Davis

(1973), as

P gully UCU�jð Þ ¼ P UCU� gullyjð Þ � P gullyð Þ
P UCU�ð Þ

The probabilities can be computed in terms of count of

cells, so that

P gully UCU�jð Þ ¼
UCU�gully

UCUgully

� �
� UCUgully

UCUALL

� �

UCU�

UCUALL

� � ¼
UCU�gully

UCU�

� �

¼ dUCU� :

The density function (dUCU*) is, for the cells having a

UCU* value, the ratio between eroded (gully) and total

(ALL) counts of cells. GRID layers for single or multiple

variables and gullies are spatially intersected, so that for

each of the UCUs, the area hosting gullies is obtained. The

susceptibility value for each UCUs is finally obtained by

dividing the extension of the intersection and the total area.

Twelve one-variable models (OVM) were derived

directly by computing the gully density values for each of

the factor classes. The OVMs were then submitted to a

validation procedure in order to test and quantify their

predictive skill; the results of the validation were assumed

as a quantitative assessment of the spatial correlation

between the environmental variables and the distribution of

gullies within the studied area. To the aim of verifying the

relationships, in terms of predictive performance, between

individual variables and combinations of them, the same

validation procedure was applied to multi-variable models

(MVM); the comparison of the validation results indicate

how including a single variable affects the performance of

the MVMs. A number of MVM were prepared by differ-

ently combining the physical attribute grids; the suscepti-

bility level of each individual combination was then

defined by computing the arithmetic mean of the density

values of the combined factors classes and by reclassifying

the average values into ten intervals according to an equal

area criterion.

Both the one-variable and the multi-variables suscepti-

bility models were submitted to a validation procedure

based on a random partition of the erosion landforms in a

training and a test subset (Chung and Fabbri 2003); training

and test gullies were singled out by using a geostatistical

tool of ArcGIS 9.3 (ESRI 2008) that allowed us to ran-

domly split the gully database into two numerically and

spatially balanced subsets. In accordance with the adopted

validation strategy, the susceptibility models were derived
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from the training gullies and were compared with the

spatial distributions of both the subsets of landforms, in

order to draw prediction and success rate curves (Chung

and Fabbri 2003; Conoscenti et al. 2008a, b). These are

cumulative curves that plot the fraction of landforms

(y axis) against the fraction of the study area, measured

within the susceptibility classes, the latter arranged in

decreasing order along the x axis. Prediction rate curves,

which were drawn using the lengths of test gullies inter-

secting the susceptibility levels, quantify the prediction

skill of the models, while success rate curves assess the

models fit, since they are derived from the same landforms

used to train the models. The more accurate the model is,

the more the test landforms concentrate on the highest

susceptibility levels; hence, a good performance of the

model produces prediction curves with high steepness in

the first part and far from the diagonal trend, the latter

representing a model not correlated with the target pattern.

Also, a good model fit is testified by a prediction rate curve

very close to the success rate curve.

In order to quantitatively assess the prediction skill and

the fit of the models, three geometric indexes of the curves

were computed: ARPA, SHIFT and EFR. ARPA is the area

between the validation curves and the diagonal of the

graph, while SHIFT is the area between prediction and

success rate curves (Rotigliano et al. 2011; Costanzo et al.

2012; Rotigliano et al. 2012). Since the diagonal trend

attests for a not-effective prediction, a high performance

produces high values of ARPA; a good fit of the model is

testified by low SHIFT results. EFR stands for the effec-

tiveness ratio (Chung and Fabbri 2003; Guzzetti et al.

2006), i.e., the ratio between the fraction of landforms

intersected by each susceptibility class and the proportion

of the latter in the study area; an effective classification

should produce susceptibility levels with EFR values dis-

tant from 1 (i.e., same fraction of landforms and area for

each class), at least 1.5 for more susceptible classes and at

most 0.5 for less susceptible classes, according to Guzzetti

et al. (2006). By drawing a theoretical validation curve

respecting these threshold values, Rotigliano et al. (2012)

indicate 0.12 as the lower limit of ARPA for an effective

susceptibility model.

A more detailed discrimination of the curves was

achieved by calculating two other shape indexes: ARPA20

and EFR20; these correspond to the values of ARPA and

EFR computed for the 20 % more susceptible portion of

the basin and express the concentration of gullies in this

area. In accordance with the threshold values proposed by

Guzzetti et al. (2006) for a reliable prediction, and repro-

ducing the same curve used by Rotigliano et al. (2012),

EFR20 and ARPA20 should be at least equal to 1.5 and

0.01, respectively.

To further investigate the reliability of the one-variable

and multi-variable gully erosion susceptibility models, a

second procedure was adopted. This was performed by

comparing the spatial pattern of the susceptibility levels

with the presence/absence of test gullies, verified within

each cell. To this aim, the shapefile of the test gullies was

converted into a 40-m grid layer, where each cell indicates

the presence or absence of gullies; hence, a spatial analysis

tool of ArcView GIS 3.2 was used to count the number of

positive cases within each UCU. The frequency of cells

hosting gullies was compared with binary classifications of

the UCUs into units predicted as positive (susceptible) and

units predicted as negative (not-susceptible), obtained by

means of cut-off values that split the range of susceptibility

levels into two parts. For each of the classifications derived

from the susceptibility models, contingency tables count-

ing the number of true positives, true negative, false

positive and false negative, were produced over the whole

range of the possible cut-offs; these data, obtained by

means of the software TANAGRA (Rakotomalala 2005),

an open-source data mining tool, were used to compute

true positive (TP) and false positive (FP) rates for all the

gully erosion susceptibility models. TP and FP rates cor-

respond to ‘‘sensitivity’’ and 1-‘‘specificity’’, where sensi-

tivity refers to the fraction of cells containing test gullies

that were correctly classified as susceptible and specificity

is the fraction of cells free of gullies that were correctly

classified as not-susceptible. The predictive performance

of the models was assessed by drawing their receiver

operating characteristic (ROC) curves (Goodenough et al.

1974; Lasko et al. 2005) that plot TP rates against FP rates.

The ROC curves have been recently adopted to evaluate

model performances in landslide susceptibility researches

(Begueria 2006; Van Den Eeckhaut et al. 2009; Frattini

et al. 2010) and gully erosion susceptibility mapping

(Gutiérrez et al. 2009a, b). The shape of the ROC curves,

which can be quantitatively described by the area under a

ROC curve (AUC; Hanley and McNeil 1982), shows how

much a model correctly reproduce the occurrence of

positive and negative cases: the larger the area, the best the

predictive skill of the model. The AUC was exploited as a

further index to assess the predictive performance of the

one-variable and multi-variable susceptibility models; a

susceptibility model that respects the limits of EFR sug-

gested by Guzzetti et al. (2006) and adopted by Rotigliano

et al. (2012), produce a ROC curve with AUC at least

equal to 0.63.

Fig. 5 Relative frequency distributions of the erosivity variables

classes (grey bars) and linear density of gullies computed on each

class (empty bars): SLO (a), ASP (b), PLC (c), PRC (d), CRV (e),

TNC (f), SPI (g), TWI (h) and LSF (i). Bottom X axis: relative

frequency (%); top X axis: gully linear density (km/km2)

b
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Results and discussion

One-variable susceptibility models

The values of linear density of training gullies computed

for each class of the physical attributes are plotted in

Figs. 4 and 5, together with the frequency distributions of

the classes. The density values indicate which classes, and,

as a consequence, which portions of the basin, are more

frequently associated with the presence of ephemeral and

permanent gullies.

The graphs of the erodibility variables (Fig. 4a–c) show

that the most susceptible classes are: evaporitic rocks and

clays, among the bedrock lithology types; fine-medium and

medium soil texture classes; not-irrigated arable lands and

annual and permanent crops among land cover Corine

classes. As regards the primary topographic attributes

(Fig. 5a–f), gullies concentrate on slopes inclined between 5

and 15�, characterized by concave plan and tangential cur-

vature and convex profile curvature, while density values of

ASP classes seem poorly differentiated. The diagrams of

gully density values computed with respect to secondary

topographic attributes (Fig. 5g–i) indicate that ephemeral

and permanent gullies are to be more expected where cells

have medium–high SPI and medium TWI values, while LSF

intervals do not show very differentiated density values.

Prediction and success rate curves were produced for

each of the twelve OVM (Fig. 6); the shape of the curves

depends on the correlation degree between the geographic

variability of the susceptibility levels, which were derived

from the training gullies subset, and the spatial occurrence

of the test gullies. A visual comparison among the vali-

dation curves and between the curves and the random trend

(diagonal), provides a qualitative and relative assessment

of the models’ effectiveness: TNC, SPI and PLC models

show the best predictive skill since they produce curves

that are clearly above the others; ASP curves are not very

far away from the diagonal trend attesting for a very weak

correlation between the variable classes and the gullies

spatial distribution; the models of the other attributes draw

validation curves which stay in a middle zone, indicating

medium to weak (TEX) predictive skills.

In order to quantitatively discriminate between the one-

variable validation curves, ARPA, ARPA20, EFR20 and

SHIFT indexes were calculated (Table 2). With the

exception of profile curvature, soil texture and slope aspect,

all the factors are characterized by ARPA values that are

above the limit of effectiveness (0.12); ARPA20 and

EFR20 confirm, for the most susceptible zones, an unsat-

isfactory predictive skill for TEX and ASP, since their

values are quite below the thresholds (0.01 and 1.5). On the

other hand, the geometric indexes of the validation curves

attest for good performance and fit for TNC, SPI and PLC

models that correctly predict about 40 % of the landforms

within the 15 % most susceptible portion of the basin.

General curvature and length-slope USLE factor produce a

more powerful prediction respect to the susceptibility

models derived from SLO, USE, LTL and TWI; the latter

provide susceptibility classifications characterized by sim-

ilar predictive skill, even if all the geometric indexes show

that TWI validation curves have the weakest correlation

with gullies. The SHIFT index attests for moderate dif-

ferences of ARPA between prediction and success rate

curves (not more than 10 % of their average value of

ARPA) for all the environmental variables with the

exception of slope aspect whose validation curves have a

SHIFT value comparable with their ARPA values.

The comparison between susceptibility levels of each

cell of the basin, which were derived from the density of

training gullies, and the presence/absence of gully test,

allowed us to draw a ROC curve for each of the OVM

(Fig. 7). By computing AUC values, we are able to quan-

titatively characterize the shape of the curves and to

evaluate, in relative terms, the correlation degree between

the geographical variability of the variables and the spatial

distribution of ephemeral and permanent gullies on the

studied area.

ROC curves and values of AUC (Table 2) confirm the

assessment of the models predictive skill provided by the

Table 2 Geometric indexes of prediction (pred) and success (succ)

rate curves, and AUC values of the ROC curves, computed for all the

one-variable models

OVM ARPA ARPA20 ER20 SHIFT AUC

Pred Succ Pred Succ

LTL 0.124 0.129 0.012 0.011 1.580 0.005 0.623

TEX 0.095 0.097 0.006 0.006 1.302 0.002 0.588

USE 0.126 0.137 0.013 0.014 1.643 0.012 0.624

SLO 0.135 0.125 0.012 0.010 1.582 -0.010 0.630

ASP 0.010 0.036 0.001 0.003 1.029 0.026 0.512

PLC 0.205 0.197 0.031 0.033 2.359 -0.009 0.678

PRC 0.105 0.103 0.009 0.010 1.457 -0.002 0.592

CRV 0.183 0.174 0.024 0.024 2.069 -0.009 0.658

TNC 0.214 0.205 0.032 0.034 2.435 -0.009 0.691

SPI 0.206 0.193 0.038 0.032 2.522 -0.013 0.676

TWI 0.123 0.125 0.010 0.011 1.520 0.001 0.612

LSF 0.162 0.149 0.015 0.016 1.840 -0.013 0.640

Limit 0.120 0.120 0.010 0.010 1.500 – 0.630

Fig. 6 Prediction and success rate curves derived from the validation

of the one-variable models: LIT (a), TEX (b), USE (c), SLO (d),

ASP (e), PLC (f), PRC (g), CRV (h), TNC (i), SPI (j), TWI (k) and

LSF (l). X axis: fraction of the studied area; Y axis: fraction of gully

length

b
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quantitative analysis of the validation curves. TNC, SPI and

PLC are the independent variables showing the best pre-

dictive results, as attested by values of AUC equal to 0.691,

0.676 and 0.678, respectively; also models of CRV

(AUC = 0.658), LSF (AUC = 0.640) and SLO (AUC =

0.630) produce ROC curves respecting the threshold of an

effective susceptibility model (AUC C 0.63). OVMs of

USE, LTL and TWI draw ROC curves just below the limit,

while PRC (AUC = 0.592) and TEX (AUC = 0.588) pre-

dictive performances are quite distant; finally, as attested

from prediction and success rate curves, slope aspect does

not demonstrate to be correlated with the spatial distribution

of gullies in the basin, since the ROC curve derived from

ASP model is very similar to the random trend.

The validation results of the OVM, which we assume

as expressing the spatial correlation between physical

attributes and gullies, are in general in accordance with the

geomorphological meaning of the selected environmental

variables and with the quality and resolution of the input

data. Stream power index, in addition to tangential and plan

curvatures constitute a measure of runoff convergence and,

as a consequence, of linear erosive power of flowing water;

hence, these environmental attributes were expected to be

strongly correlated with the spatial distribution of ephem-

eral and permanent gullies. Also the good predictive per-

formances of LSF and SLO models agree with the

geomorphological significance of these variables, since

they are related to flow velocity and volume, and, there-

fore, should express sediment transport capacity. The weak

spatial correlation between TWI susceptibility classifica-

tion and test gullies, could also be expected since the

wetness index is inversely related to slope steepness and its

spatial variability could be rather more related to the

position of gullies head-cuts; on the other hand, profile

curvature, which is supposed to control runoff erosivity,

does not contribute to explain the spatial occurrence of

gullies in the studied area. Moreover, ASP model valida-

tion results point out that factors connected to slope aspect

(i.e., solar insolation, vegetation distribution, structural

setting), which were defined on a single cell scale, do not

control gully erosion phenomena in the studied basin. In

general, the better performances of models derived from

erosivity attributes compared to those derived from erod-

ibility variables demonstrate a strong control of topo-

graphic setting on gully erosion phenomena, even though

the poor predictive skill of LTL, USE and TEX could also

be explained considering the low resolution of the input

layers. In particular, the five classes of TEX, which were

derived from a regional map at a scale of 1:250,000,

probably do not represent adequately the spatial heteroge-

neity of soil texture; furthermore, the discriminant ability

of this attribute is negatively affected by the high spatial

frequency of the most susceptible texture class (fine-med-

ium), covering more than 60 % of the entire basin. Finally,

Table 3 Environmental variables combined to prepare the tested multi-variables models (MVM)

MVM Environmental variables

LTL TEX USE SLO ASP PLC PRC CRV TNC SPI TWI LSF

HIGH X X X

MOD X X X

LOW X X X

HM X X X X X X

HML X X X X X X X X X

HMLV X X X X X X X X X X X

ALL X X X X X X X X X X X X

VLN X X X

Fig. 7 ROC curves derived from the validation of the one-variable

models
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considering the controlling role of soil texture on erosion

phenomena, a higher resolution of this attribute on the

investigated basin should be addressed in future studies to

improve the quality of susceptibility models.

Multi-variables susceptibility models

A great number of multi-variables susceptibility models

can be obtained by differently selecting and combining the

layers of the environmental attributes. Several different

combinations of the latter were exploited to prepare MVMs

that were, successively, tested in order to verify their

accuracy. In this paper we present the validation results of

some of the examined MVMs that are of particular interest

in light of the combined variables and the achieved results;

this choice was aimed at highlighting how the predictive

performance of the MVM is affected by the addition of the

physical attributes, which were classified according to the

efficiency of their OVMs in predicting the spatial distri-

bution of gullies. In light of the validation results of the

Fig. 8 Prediction and success rate curves derived from the validation of the multi-variable models: HIGH (a), MOD (b), LOW (c), HM (d),

HML (e), HMLV (f), ALL (g) and VLN (h). X axis: fraction of the studied area; Y axis: fraction of gully length
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OVM, the independent variables can be grouped in

accordance with their controlling role as follows:

• High: TNC, SPI, PLC

• Moderate: CRV, LSF, SLO

• Low: USE, LTL, TWI

• Very low: TEX, PRC

• None: ASP

Prediction and success rate curves of eight MVM

(Table 3) are plotted in Fig. 8; the values of the geometric

indexes (ARPA, ARPA20, EFR20 and SHIFT) of the

curves are reported in Table 4, together with the AUC

values computed on the ROC curves (Fig. 9) that were

prepared for each of the examined MVMs.

The validation results attest for predictive skills that are

above the threshold of an effective susceptibility model for

all the MVMs, except the model VLN, whose poor pre-

dictive performance was expected since it derives from the

combination of the two not-effective OVMs. The MVM

HIGH, MOD and LOW show better performances if

compared to the single source OVMs; even LOW, which is

derived from low performing OVMs, has a predictive

capability higher than the best one-variable model. The

validation results of the others MVM indicate that the

predictive skill increases together with the number of the

combined attributes, provided that any of the latter show a

slight correlation with the target variable; they could in fact

be ranked, starting from the best performing, as HMLV

(AUC = 0.742), HML (AUC = 0.739) and HM

(AUC = 0.711). ALL performance (AUC = 0.742) is not

distinguishable from the one of HMLV, indicating that

adding a not correlated variable (i.e., ASP) to the multi-

variable model does not affect (negatively or positively)

the predictive skill of the MVM. Finally, the very low

correlation of profile curvature and soil texture with the

target variable is also confirmed by the imperceptible

change of predictive performance produced when they are

aggregated to the multi-variable model.

Gully erosion susceptibility map

The validation procedures applied to both the one-variable

and MVM allowed us to identify the one more accurately

fitting the spatial distribution of actual gullies in the

investigated area. The HMLV model, trained using all the

mapped gullies, was so used to draw the gully erosion

susceptibility map of the Magazzolo River basin (Fig. 10).

The latter depicts how the proneness to gully erosion

phenomena spatially changes on the investigated area. Two

large susceptible zones are highlighted on the maps: a

northern and a central one, where high susceptibility con-

ditions are assigned also to slopes where linear erosion

landforms were not recognized on the field and remote

surveys; the central susceptible zone, where the two main

tributaries converge and give rise to the Magazzolo river, is

characterized by almost undifferentiated high susceptibility

conditions.

Concluding remarks

The spatial occurrence of erosional landforms and its

relationships with the variability of twelve physical attri-

butes were explored in the studied area in order to assess

gully erosion susceptibility. Linear density of gullies

computed on homogenous terrain units was selected as

susceptibility function to prepare twelve one-variable and a

Table 4 Geometric indexes of prediction (pred) and success (succ)

rate curves, and AUC values of the ROC curves, computed for all the

multi-variables models

MPM ARPA ARPA20 ER20 SHIFT AUC

Pred Succ Pred Succ

HIGH 0.225 0.214 0.041 0.038 2.617 -0.011 0.703

MOD 0.226 0.214 0.041 0.037 2.605 -0.012 0.703

LOW 0.184 0.196 0.027 0.028 2.120 0.012 0.679

HM 0.240 0.230 0.046 0.043 2.733 -0.010 0.711

HML 0.269 0.267 0.054 0.052 2.981 -0.002 0.739

HMLV 0.271 0.270 0.056 0.053 3.023 -0.001 0.742

ALL 0.270 0.271 0.056 0.054 3.011 0.001 0.742

VLN 0.094 0.111 0.006 0.008 1.350 0.017 0.642

Limit 0.120 0.120 0.010 0.010 1.500 – 0.630

Fig. 9 ROC curves derived from the validation of the multi-variable

models
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number of multi-variable gully erosion susceptibility

models. The validation results of these models allowed us

to achieve the main objectives of the research and provided

useful information on spatial relationships between gullies

and environmental attributes, when taken as an individual

predictive variable or combined to prepare MVM.

The gully density values demonstrated a general con-

gruence between the spatial distribution of landforms and

what was expected for linear water erosion phenomena.

This congruence is more evident for topographic attributes

that showed higher discriminant ability respect to the

erodibility variables; gullies are in fact more associated

with cells where topography favours linear erosive power

and sediment transport capacity of water flow. Moreover,

the accuracy statistics of the OVM generally agree with the

meaning of the attributes and with the quality and resolution

of the input layers; the better predictive skills of erosivity

variables in respect to erodibility variables, in fact, reflect a

strong control of topography on gully erosion phenomena

and a more detailed resolution of DEM-derived attributes.

The validation results of MVM indicate that: (i) predictive

skills of MVMs are in accordance with OVMs performances

of the combined variables (i.e., MVMs made up of ‘‘good’’

predictive variables are better than those made up of ‘‘bad’’

predictive variables); (ii) the accuracy of the susceptibility

models generally grows up when we increase the number of

combined variables with an acceptable predictive power.

The best performing MVM showed good predictive

skills, demonstrating that a statistical approach based on

the computation of linear density of gullies within attri-

butes classes could be used to prepare reliable gully erosion

susceptibility models and maps; as stated from the vali-

dation of the HMLV model, the final susceptibility map

(Fig. 10) well represents the spatial distribution of the

recognized gullies and individuates those portions of the

territory, at present not hosting erosion landforms, more

likely to be affected by gullies in the future.

In conclusion, the research carried out allowed us to

prepare a reliable gully erosion susceptibility map for the

Magazzolo River basin starting from data already available

and derived from field and remote surveys; moreover, the

general congruence of predictive skill between OVM and

MVM indicates that preparing and validating OVMs could

be used as a tool to relatively quantify the controlling role

of the predictive variables and select those that have to be

combined to prepare the best performing MVMs. In fact,

procedures of forward selection of variables have been

applied for logistic regression and discriminant analysis

models (e.g., Carrara et al. 2008; Van Den Eeckhaut et al.

2009). In the present paper a similar approach is proposed

for models based on conditional analysis, which is appli-

cable to unique condition units method. Finally, the accu-

racy and simplicity of the method encourage further

applications to other areas where the availability of detailed

Fig. 10 Gully erosion

susceptibility map of the

Magazzolo River basin derived

from the HMLV model
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thematic maps and DEMs allow for deriving good-quality

layers of the predictive variables.
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