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Abstract An improved three-band semi-analytical algo-

rithm was developed for improving the performance of the

three- and four-band algorithms, for chlorophyll-a concen-

tration retrievals in the highly turbid waters of the Yellow

River estuary. In this special case study of the Yellow

River estuary, the optimal wavelengths of the improved

three-band semi-analytical algorithm must meet the fol-

lowing requirements: the k1 and k2 must be restricted to

within the range 660–690 nm, and the k3 must be longer

than 750 nm. The algorithm calibration and validation

results indicate that the improved three-band algorithm

indeed produces superior performance in comparison to

both the three- and four-band algorithms in retrieving

chlorophyll-a concentration from the extremely coastal

waters of the Yellow River estuary. Comparing the

improved three-band algorithm to the original three- and

four-band algorithm, the former minimizes the influence of

backscattering by suspended solids in near-infrared

regions, while the three-band algorithm has a much

stronger error tolerance ability than the four-band algo-

rithm. These findings imply that if an atmospheric cor-

rection scheme for visible and near-infrared bands is

available, the improved three-band algorithm may be used

for quantitative monitoring of chlorophyll-a concentration

in turbid coastal waters with similar bio-optical properties,

although some local bio-optical information or improved

models may be required to reposition the optimal band

positions of the algorithm.

Keywords Remote sensing � Semi-analytical algorithm �
Chlorophyll-a concentration � Yellow River estuary

Introduction

According to the optical classification standard given by

Morel and Prieur (1977), oceanic waters may be charac-

terized as either Case I, the optical properties of which are

dominated by chlorophyll and covarying detrital pigments;

or as Case II, in which other substances, which are not only

covaried with chlorophyll-a (chla), but are also affected by

other optical properties. Such substances include gelbstoff,

suspended sediments, coccolithophores, detritus, and bac-

teria. As a result, pigments retrieved from remote sensing

imageries in Case I waters have achieved reasonable results

[±20 % for the local best cases (Gordon 1990)], but more

research is still required for Case II waters (Moore et al.

2009).

In order to quantify chla in productive turbid waters, a

variety of algorithms have been developed, and all were

based on the properties of the reflectance peak near 675 nm

(Gitelson 1992), including the ratio of the reflectance peak
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at the NIR (near-infrared) to the reflectance at 670 nm.

Gons et al. (2000) used the reflectance ratio at 704 and

672 nm and absorption and backscattering coefficients at

these wavelengths to assess chla concentrations ranging

from 3 to 185 mg/m3. Ruddick et al. (2000) analyzed the

manner in which errors in reflectance measurements affect

chla retrievals for an NIR to red reflectance ratio algorithm

with a general choice of wavelengths. The authors of the

said study found that the effects on chla retrieval depend

strongly on the choice of the NIR wavelength if the error is

spectrally neutral, suggesting a new type of algorithm,

where the NIR wavelength used for retrieval is chosen

dynamically for each spectrum to be processed. These

approaches rely on a specific spectral feature to biophysical

measurements using statistical regression. This type of

model is simple and easily implemented (Matthews 2011).

However, the method lacks a physical foundation and the

relationships within are quite geographically specific and

cannot be applied in other areas.

Recently, Dall’Olmo et al. (2003) provided evidence

that a three-band reflectance model, originally developed

for estimating pigment contents in terrestrial vegetation,

could also be used to assess chla concentration in turbid

waters (Gitelson et al. 2008, 2007). This semi-analytical

algorithm involved three underlying assumptions (Gitelson

et al. 2008; Le et al. 2009): (1) the absorption by suspended

solids and CDOM (colored dissolved organic matters) at k2

was close to that at k1; (2) reflectance at k3 is minimally

affected by the absorption by optically active constituents

and could only account for the variability in scattering

between samples; and (3) the total backscattering curve is

‘‘spectrally flat’’ in the red and NIR regions. However, the

three assumptions for the three-band semi-analytical algo-

rithm may be violated in highly turbid waters, due to the

fact that the absorption and scattering of particulate matter

at the NIR cannot be ignored in turbid waters (Tassan and

Ferrari 2003; Tzitzuiou et al. 2006). Recently, Le et al.

(2009) developed a four-band semi-analytical algorithm to

improve the performance of the three-band algorithm in

turbid waters. The improvement was achieved by sub-

tracting the effects of suspended solids, as well as mini-

mizing the effects of pure water absorption and

backscattering in the NIR region using the fourth band.

According to the study results carried out by Le et al.

(2009), the four-band algorithm showed optimal accuracy

in the cases of k1 = 663 nm, k2 = 693 nm, k3 = 705 nm,

and k4 = 740 nm. However, the reflectance near 704 nm

generally corresponded to the reflectance peak owing to the

chla scattering, whereas the reflectance near 740 nm was

indistinctively influenced by the chla (Gons et al. 2000). As

a result, it was difficult for the selected bands of the four-

band algorithm to meet the underlying assumption that

both (assc ? aCDOM ? achla) and bb were spectrally flat in

the red-NIR band (Gitelson et al. 2008). Furthermore, the

four-band algorithm used the difference Rrs
-1(k3) - Rrs

-1(k4)

as the denominator to eliminate the influence of backscat-

tering by all particulate matter bb in the numerator. The four-

band algorithm suggested that the k3 should be quite close to

k4 in order to meet the requirement of achla k3ð Þ½ þassc k3ð Þ þ
aCDOM k3ð Þ� � achla k4ð Þ þ assc k4ð Þ þ aCDOM k4ð Þ½ �:Thus, the

difference Rrs
-1(k3) - Rrs

-1(k4) must be a small value vari-

able, which is many times lower than the difference

Rrs
-1(k1) - Rrs

-1(k2). The uncertainty in the numerator,

Rrs
-1(k1) - Rrs

-1(k2), would be enlarged if a small number

was used as the denominator to divide that numerator (Chen

et al. 2010a). As a result, the four-band algorithm may

possess poor noise tolerance ability in chla concentration

estimation in turbid waters, which is another limitation of the

four-band algorithm.

The main objective of this study is to validate the per-

formance of the three- and four-band algorithms, and to

further improve it for use in the Yellow River estuary,

China. The specific goals of this study are as follows: (1) to

locate the optimal spectral positions of the three- and four-

band algorithms; (2) to evaluate the accuracy and stability

of the three- and four-band algorithms in predicting chla in

the turbid waters of the Yellow River estuary; (3) to

improve the performance of the three-band semi-analytical

algorithm by developing an improved semi-analytical

algorithm; and (4) to compare the performances of the

three- and four-band algorithms with the improved three-

band algorithm in terms of estimating chla concentration in

the turbid waters of the Yellow River estuary.

Data, methods and techniques

Study area

The Yellow River estuary is a typical turbid water body,

located between 117.58�E and 122.25�E and between

37.10�N N and 41.00�N, semi-enclosed by the Bohai Bay

and Laizhou Bay of the Bohai Sea, China (Fig. 1). The

Yellow River, the second longest river in China, flows into

the Yellow River estuary, and is known around the world

for its high concentration of sediments. The average run-off

is 5.80 9 1010 m3 per year and sediment transport to Bohai

Sea is 1.10 9 109 tons per year (Chen et al. 2010b).

Consequently, the water column in the Yellow River

Estuary is quite turbid, which interferes with the bio-optical

properties of the chla signs and creates a challenge for

estimating the chla concentration from remote sensing

data. The Yellow River estuary represents typical turbid

coastal waters which are influenced by river and anthro-

pogenic inputs. Chla concentrations in this area are difficult

to estimate accurately as the bio-optical properties of the

2710 Environ Earth Sci (2013) 69:2709–2719

123



water bodies are quite complex (Zhang et al. 2010). The

signal of the phytoplankton is partially interfered with by

the bio-optical properties of SSC and CDOM. As a result, it

is challenging to estimate the chla concentration in the

Yellow River estuary due to the high level of SSC. This is

the reason why the Yellow River estuary was selected as

the study area for use in this paper.

Datasets used

In this study, in order to evaluate the accuracy of the

algorithm for estimating chla concentration, two indepen-

dent data sets, including the spectral optical properties and

chla concentration of the water column, were collected

from the Yellow River estuary. The first data set was used

for model calibration, while the second was used for model

performance evaluation. The calibration data set containing

24 samples was collected from the Yellow River estuary on

1 and 4 September, 2009. The validation data set con-

taining eight samples was collected from the Yellow River

estuary on 10 September, 2009.

Field measurements

The field measurements were conducted from 10:00 to

14:00 local time in the Yellow River estuary. At each

station (Fig. 1), water-leaving reflectance measurements

were taken from aboard a boat. The reflectance was mea-

sured with a spectroradiometer with 25� fiberoptic, cover-

ing the spectral range 350–2,500 nm (Spectral Devices,

Boulder, CO, ASD). Although data in the range

350–2500 nm, with a spectral resolution of 3 nm (full-

width at half-maximum, FWHM) and a 1.4 nm sampling

interval for the 350–1050 nm spectral range (ASD 1999)

were collected as well, the data mainly used in this study

were those in the range 400–900 nm, which is the most

commonly used wavelength for water color remote sensing

(Deng and Li 2003; Gons et al. 2008; Ouaidrari and Ver-

mote 1999; Tachiiri 2005; Wang et al. 2009). Following

the ocean optics protocols for satellite ocean color sensor

validation (Mueller et al. 2003), various measurements

were repeated at each station in order to estimate the

uncertainty associated with each measurement, and the

measurements with \5 % uncertainty were selected for

model calibration and validation.

While the measurements were being taken, the tip of the

optical fiber was kept *1 m above the water surface by

means of a 3 m long, hand-held black pole. The radiance of

both the water surface (Lsw(k)) and a standard gray board

(Lp(k)) was measured. Ten curves were acquired for each

target. In order to effectively avoid the interference of the

ship with the water surface and the influence of direct solar

radiation, the instrument was positioned at an angle b of

90–135� with the plane of the incident radiation pointed

away from the sun (Le et al. 2009). The view of the water

surface, a, was controlled between 30 and 45� with the

aplomb direction. In this way, most of the direct sunlight was

eliminated while the impact of the ship’s shadow was min-

imized (Le et al. 2009). Immediately after measuring the

water radiance, the spectroradiometer was rotated upwards

by 90–120� to measure the skylight. The view azimuth angle

in this measurement was kept the same as that when mea-

suring the water radiance (Mueller and Fargion 2002).

Remote sensing reflectance, Rrs(k) was calculated as

follows:

Rrs kð Þ ¼ Lw kð Þ
Ed 0þ; kð Þ ð1Þ

where Lw(k)is the water-leaving radiance, and Ed(0?,k) is

the total incident radiant flux of the water surface. Lw(k)

and Ed(0?,k) in Eq. (1) are further calculated as follows:

Lw kð Þ ¼ Lsw kð Þ � rLsky kð Þ ð2Þ

Ed 0þ; kð Þ ¼ pLp kð Þ
qp kð Þ ð3Þ

where Lsky(k) represents the diffused radiation of the sky,

which contains no information of water properties and

therefore must be eliminated; r refers to the reflectance of

the skylight at the air–water interface, the value of which

depends upon the solar azimuth, measurement geometry,

wind speed, and surface roughness; and qp(k) is the

reflectance of the gray plate. In this study, r is calculated

with assumption of the black water body at wavelengths

from 1,000 to 1,020 nm (Hale and Querry 1973) and

Fig. 1 Yellow River estuary and sample stations.
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wavelength-independent (Doxaran et al. 2002). The remote

sensing reflectance calculated by Eq. (1) is shown in Fig. 2.

Laboratory measurements

Water samples were collected immediately after the radi-

ance measurements were taken. At each station a standard

set of water quality parameters was measured, including

chla concentration and transparency. The surface water

samples were collected at a depth of 0.5 m below the

water–air surface. After sampling, water samples were

conserved in bottles at a low temperature and sent for

laboratory analysis in the afternoon of the same day.

The laboratory analyses were carried out within 24 h

following sample collection. The chla concentrations were

extracted and measured with 90 % acetone in accordance

with the Ocean Optical Protocols of NASA (Mueller and

Fargion 2002), a generally accepted method of quantifying

chla concentration in the fields of chemistry and biology

(Gilpin and Tett 2001).

Improved semi-analytical algorithm

The Rrs(k) model was given according to the following

general equation (Morel and Prieur 1977), which was

adapted from Lee et al. (1994):

Rrs kð Þ ¼ ft2

Q kð Þn2

bb kð Þ
a kð Þ þ bb kð Þ ð4Þ

where f is an empirical factor averaging approximately

0.32–0.33; t is the transmittance of the air–water interface;

Q(k) is the upwelling irradiance-to-radiance ratio Eu(k)/

Lu(k); and n is the real part of the index of refraction of

water. By making the following two approximations,

Eq. (4) may be greatly simplified (Carder et al. 2003):

1. In general, f is a function of the solar zenith angle, h0.

However, Morel and Gentili (1993) have shown that

the ratio f/Q is relatively independent of the h0 for sun

and satellite viewing angles.

2. t2/n2 is approximately equal to 0.54, and although it is

capable of changing with sea-state, it is relatively

independent of wavelength.

These two approximations lead to a simplified version of

Eq. (4):

Rrs kð Þ ¼ h
bb kð Þ

a kð Þ þ bb kð Þ ð5aÞ

where h is unchanging with respect to k and h0. The total

absorption coefficient may be expanded as follows:

a kð Þ ¼ aw kð Þ þ achla kð Þ þ aCDOM kð Þ þ assc kð Þ ð5bÞ

where the subscripts ‘‘w’’, ‘‘chla’’, ‘‘CDOM’’, and ‘‘ssc’’

refer to water, chla, CDOM, and suspended sediment,

respectively. According to the underlying assumption of

three- and four-band algorithms that the (assc ? aCDOM)

and bb are spectrally flat in the red-NIR region, the

Rrs
-1(k1) - Rrs

-1(k2) may be approximated to the following

equation:

R�1
rs k1ð Þ � R�1

rs k2ð Þ � h
achla k1ð Þ þ aw k1ð Þ � aw k2ð Þ

bb

ð6Þ

Equation (6) is still affected by bb. If backscattering

varies between samples, the model output would be

different for the same chla. To account for this, the

Rrs
-1(k3) is used in the three-band algorithm, and

Rrs
-1(k3) - Rrs

-1(k4) is used in the four-band algorithm.

Hence, the three- and four-band algorithms may be denoted

as follows:

chla½ � / R�1
rs k1ð Þ � R�1

rs k2ð Þ
� �

Rrs k3ð Þ ð7aÞ

chla½ � / R�1
rs k1ð Þ � R�1

rs k2ð Þ
R�1

rs k3ð Þ � R�1
rs k4ð Þ

ð7bÞ

where [chla] is the chla concentration. The structure of Eq.

(5a) originates from Morel and Prieur (1977); when they

developed a reflectance model, h was given the mean value

of 0.33. As shown in Morel and Gentili (1996), the

coefficient h is not constant and does vary in an orderly
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Fig. 2 Field measurement datasets a Calibration datasets collected in

the Yellow River estuary, China, on 1 and 4 September, 2009.

b Validation datasets collected in the Yellow River estuary, China, on

10 September, 2009
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manner with the water optical properties. Thus, it is much

more challenging to separate achla(k1) from the remote

sensing reflectance using the three-band algorithm

provided by Gitelson et al. (2008) or the four-band

algorithm developed by Lee et al. (2002), due to the poor

approximation of Eq. (5a). If considering the water optical

properties dependent c in Eq. (5a), the three- and four-band

algorithms should be written as follows:

R�1
rs k1ð Þ � R�1

rs k2ð Þ
� �

Rrs k3ð Þ

� h k3ð Þ
h k1ð Þ

achla k1ð Þ þ aw k1ð Þ � aw k2ð Þ
aw k3ð Þ

ð8aÞ

R�1
rs k1ð Þ � R�1

rs k2ð Þ
R�1

rs k3ð Þ � R�1
rs k4ð Þ

� h k3ð Þ
h k1ð Þ

achla k1ð Þ þ aw k1ð Þ � aw k2ð Þ
aw k3ð Þ � aw k4ð Þ

ð8bÞ

Due to the fact that h varies in an orderly manner with

the water optical properties, the outputs of the three- and

four-band algorithms would be different for the same chla

concentration. To account for this, Gordon et al. (1988)

have carried out extensive computations of Rrs(k) as a

function of the optical properties of the water and solar

zenith angle h0, and have concluded that for h0 C 20�,

Rrs(k) may be directly related to the inherent optical

properties of the water through the following:

rrs kð Þ ¼ Rrs

0:52þ1:7Rrs

ð9aÞ

rrs kð Þ ¼ s kð Þ
s kð Þ þ 1

g0 þ
g1s kð Þ

s kð Þ þ 1

� �
ð9bÞ

s kð Þ ¼ �g0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

0 þ 4g1rrs kð Þ
p

2g1 þ g0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

0 þ 4g1rrs kð Þ
p ð9cÞ

where s(k) is the ratio of total backscattering to total

absorption; and rrs is remote sensing reflectance spectral

measured just below water surface. For nadir-viewed rrs,

Gordon et al. (1988) found that g0 & 0.0949 and

g1 & 0.0794 for oceanic Case I waters. Recently, Lee et al.

(1999) suggested that g0 & 0.084 and g1 & 0.17 are more

ideal for higher-scattering coastal waters.

The first spectral band must be maximally sensitive to

chla. This means that k1 must be restricted to within the

range 660–690 nm (Gitelson et al. 2008). In order to

minimize the influences of absorption by CDOM and

suspended sediment at the k1, the second spectral band is

used. The second band must meet the requirements of

aCDOM(k1) * aCDOM(k2) and assc(k1) * assc(k2). The

underlying assumption within is that aCDOM(k) and assc(k)

are spectrally flat in the red-NIR region (Gitelson et al.

2008). It is worth noting that the improved three-band

algorithm does not require k2 to be minimum sensitive to

absorption by chla, because [achla(k1) - achla(k2)] is still

quite well related to chla concentration, provided that both

achla(k1) and achla(k2) are very well related to chla con-

centration. This means that the k2 should be set to from 660

to 730 nm, which is beyond the expected wavelength range

suggested by Dall’Olmo and Gitelson (2006). The differ-

ence s-1(k1) - s-1(k2) is still affected by bb(k1), i.e. if

backscattering varies between samples, the model output

would be different for the same chla concentration. To

account for this, a third spectral band, k3, has been adopted.

According to the study results carried out by Mobley

(1994), Babin and Stranski (2004), and Binding et al.

(2008), aw [ 2.8 m-1 and assc \ 0.052 m-1 in highly

turbid waters (based on assc(k) = 0.04 9 [SSC] 9 exp[-

0.011(k - 440)], where [SSC] refers to SSC concentra-

tion), while k[ 750 nm, and SSC concentration is\40 kg/

m3. This means that the k3 should be set to [750 nm in

order to minimize the absorption by suspended sediments

in highly turbid waters (aw � assc). Additionally, in order

to minimize the influences of absorption by chla at the k3 in

the samples with high chla concentration (Lee and Carder

2004), the achla(k3) in made non-negligible at the NIR

bands in the improved three-band algorithm. Thus, the

three-band algorithm may be improved as follows:

s�1 k1ð Þ � s�1 k2ð Þ
� �

s k3ð Þ

� achla k1ð Þ � achla k2ð Þ þ aw k1ð Þ � aw k2ð Þ
achla k3ð Þ þ aw k3ð Þ

ð10Þ

Linear regression of achla(k) versus chla concentration,

[chla], yielded an equation of this form (Carder et al. 2003;

Dall’Olmo and Gitelson 2006; Gitelson et al. 2008):

achla kð Þ ¼ K0 kð Þ chla½ � þ K1 kð Þ ð11Þ

Substituting Eq. (11) into Eq. (10) and performing

simplification then yielded the following improved three-

band algorithm:

½chla� ¼ 1

P0 s�1 k1ð Þ � s�1 k2ð Þ½ �s k3ð Þ þ P1

þ P2 ð12Þ

In a similar way, the linear regression of the three- and

four-band algorithms may be written as follows:

chla½ � ¼ x0 R�1
rs k1ð Þ � R�1

rs k2ð Þ
� �

Rrs k3ð Þ þ x1 ð13aÞ

chla½ � ¼ y0

R�1
rs k1ð Þ � R�1

rs k2ð Þ
R�1

rs k3ð Þ � R�1
rs k4ð Þ

þ y1 ð13bÞ

where x0, x1, y0, y1, P0, P1, and P2 are the empirical

coefficients determined by the non-linear iterative method

suggested by Chen and Quan (2012).

Noise tolerance ability of the chla estimation algorithm

In this study, the three-band, four-band, and improved

three-band algorithms were calibrated and validated
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against bio-optical datasets collected from in situ mea-

surements. It may be considered reasonable to ignore the

noise of field measurements provided that the bio-optical

measurements strictly follow the standards of bio-optical

experiments (Mueller and Fargion 2002). However, the

final goal of oceanic remote sensing is not only to deter-

mine the optimal estimation algorithms from field mea-

surements, but also to accurately estimate the spatial

distribution of the chla concentration from satellite images.

In fact, the satellite images are contaminated by atmo-

spheric path scattering and absorption, resulting in a

residual uncertainty of 5–9 %, even with an accurate

atmospheric correction (Chen et al. 2011a; Gordon and

Voss 1999; Hu and Carder 2002). Thus, it is necessary to

consider the noise tolerance ability of the remote sensing

algorithm while applying it to estimating the chla concen-

tration from satellite data.

According to Chen et al. (2010a), the uncertainty caused

by a small data noise may be expressed as follows:

D chla½ �D¼

Pn

i¼1

o chla½ �
oRrs kið ÞDRrs kið Þ

chla½ � ð14Þ

where DRrs(ki) is a data noise at ki, D[chla]D is the

uncertainty in chla estimation caused by DRrs(ki), and n is

the number of bands. The principle of Cauchy–

Buniakowsky–Schwarz (Chen et al. 2003) suggested that

Eq. (14) must meet the following requirement:

D chla½ �D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pn

i¼1

o chla½ �DRrs kið Þ
oRrs kið Þ

� �2

s

chla½ � ð15aÞ

A small noise is generally defined as the ratio of the

noise to the measurement value. For the sake of simplicity,

in this study it is assumed that the remote sensing

reflectance at all bands contains the same residual

uncertainty, e.g. the 5 % residual uncertainty in the

atmospheric correction of the MODIS and SeaWiFS data

obtained during NASA’s mission. This assumption may be

unrealistic, but it avoids controversy concerning the exact

definition of uncertainty in remote sensing reflectance at

each band and its respective method of measurement:

D chla½ �D� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pn

i¼1

o chla½ �
oRrs kið Þ

� �2

Rrs kið Þ½ �2
s

chla½ � ð15bÞ

where k, in this study, is defined as a small data noise. In

brief, only the case associated with k = 1 % is discussed

here, since any other cases may be linearly denoted using

this one. In order to compare different models, noise

tolerance ability was normalized by k, denoted as follows:

D chla½ �N¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Pn

i¼1

o chla½ �
oRrs kið Þ

� �2

Rrs kið Þ½ �2
s

chla½ � ð16Þ

where D[chla]N refers to the normalized D[chla]D, that is,

the noise tolerance ability defined as the uncertainty in

chla estimation caused by 1 % data noise.

Statistical criteria

In order to evaluate algorithm performance, the RMS (root-

mean-square) statistic was used in this study. The RMS

statistic described here was based on the ratio of root-

mean-square error to measured values (O’Reilly et al.

1998). This statistic was described by (Carder et al. 2003):

RE ¼ chla½ �obs� chla½ �mod

chla½ �obs

				

					 100% ð17aÞ

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i¼1

RE2
i

m

vuuut
ð17bÞ

where, [chla]mod,i is the modeled value of the ith element,

RE is the relative error, REi is the relative error of the ith

element, [chla]obs,i is the observed (or in situ measured)

value of the ith element, and m is the number of elements.

Results

Chla concentration

The data sets used to calibrate and validate the perfor-

mance of the three-band, four-band, and improved three-

band algorithms contained 32 samples of chla concentra-

tion. The chla concentration ranged from 1.57 to 13.64 lg/l

for the calibration data set, and varied from 2.35 to

6.76 lg/l for the validation dataset (Table 1), indicating

that the Yellow River estuary has been slightly eutrophied.

The poor correlation (Fig. 3) between chla concentration

and transparency emphasizes the fact that chla and the

covarying pigment are not the only contributors of water

optical properties. Qiao et al. (2009) indicated that the

average SSC in the Yellow River estuary may reach as high

as [10 kg/m3, showing that water of the Yellow River

estuary is SSC-rich. Thus, the water of the Yellow River

estuary is categorized as extremely turbid Case II.

‘‘Spectrally flat’’ characteristics at red-NIR regions

According to the results of the study performed by Gitelson

et al. (2008), the underlying assumption of the three-band
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algorithm was that aCDOM(k1) * aCDOM(k2), assc(k1) *
assc(k2), and bb(k1) * bb(k2) at the red-NIR regions, which

also causes the remote sensing reflectance to be ‘‘spectrally

flat’’ within those ranges. Thus, the spectral characteristic

of the remote sensing reflectance may be used to check the

validity of the underlying assumption of the three-band,

four-band, and improved three-band algorithms at red-NIR

regions. Figure 4 shows the spectral characteristics within

the ranges 660–690 nm and 710–730 nm, revealing that the

remote sensing reflectance was spectrally flat within the

ranges 660–690 nm, but linearly decreased in the range

710–730 nm. Therefore, at least for this data set, the wave-

length range 660–690 nm for improved three-band algo-

rithm may be more reasonable than that of 710–730 nm;

therefore in this study, the k2 of the improved three-band

algorithm should be set to the range 660–690 nm.

Algorithm calibration

The optimal positions of the three-band, four-band, and

improved three-band algorithms were calculated by the

band tuning method, e.g., the k1 of the three-band algo-

rithm must be restricted to within the range 660–690 nm;

the k2 of the three- and four-band algorithms must be

restricted to within the range 710–730 nm, while the k2 of

the improved three-band algorithm must be in the range

660–690 nm; the k3 of the three-band algorithm and the k3

and k4 of the four-band algorithm must be restricted to

within ranges from the red to NIR wavelengths, while the

k3 of the improved three-band algorithm must be larger

than 750 nm. The non-linear iterative method suggested by

Chen and Quan (2012) was used to determine the most

ideal functions of the three-band, four-band, and improved

three-band algorithms.

Figure 5 showed the optimal three-band, four-band, and

improved three-band algorithms, indicating that the three-

band algorithm possesses the optimal accuracy in the cases

of k1 = 668 nm, k2 = 726 nm, and k3 = 765 nm; the

four-band algorithm possesses the optimal accuracy in the

cases of k1 = 688 nm, k2 = 710 nm, k3 = 671 nm, and

k4 = 710 nm; and the improved three-band algorithm

Table 1 Descriptive statistics of the optical water quality parameters measured: chla concentration, and transparency (STD refers to standard

deviation)

Min Max Median Average STD

a. Calibration datasets measured in Yellow River Estuary, China, on 1st and 4th September, 2009, 24 samples

[chla], mg/m3 1.57 13.64 5.68 5.54 5.68

Transparency, 1/m 2.30 0.20 0.90 2.30 0.90

b. Validation datasets measured Yellow River Estuary, China, on 10th September, 2009, 8 samples

[chla], mg/m3 2.35 6.76 5.45 5.15 1.41

Transparency, 1/m 0.30 0.80 0.75 0.65 0.22
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Fig. 3 Chla concentration plotted against transparency.
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710–730 nm, respectively. a Spectral characteristics within the range

660–690 nm. b Spectral characteristics within the range 710–730 nm
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possesses the optimal accuracy in the cases of

k1 = 671 nm, k2 = 685 nm, and k3 = 917 nm. Therefore,

the improved three-band algorithm (R2 = 0.9168) pro-

duces superior performance in comparison to both the

three-band (R2 = 0.6963) and four-band algorithms

(R2 = 0.8325).

Algorithm validation

The accuracy and stability in the chla concentration pre-

dicted by the three-band, four-band, and improved three-

band algorithms were assessed by examining their

respective RMS against the validation dataset. Figure 6

shows the accuracy of the three-band, four-band, and

improved three-band algorithms assessed by the validation

data set, indicating that the improved three-band algorithm

produced a superior performance in comparison to both the

three- and four-band algorithms, which is consistent with

the algorithm calibration results shown in Sect. Algorithm

calibration. Using the improved three-band algorithm in

estimating the chla concentration in the Yellow River

estuary produced 23.86 % RMS, which decreased 24.93 %

RMS from the four-band algorithm and 38.62 % RMS

from the three-band algorithm, a significant improvement.

Discussion

Generally speaking, the stability of chla concentration

estimation algorithm is greatly dependent on the equivalent

degrees of freedom of the chla estimators (Walden 1990),

so that although the four-band algorithm produces a

superior performance in estimating chla concentration

from turbid waters in comparison to the three-band algo-

rithm, its stability may in fact be inferior to the three-band

algorithm, due to the fact that the addition of the fourth

band also increased the equivalent degrees of freedom of

model. In order to illuminate this problem, the calibration

data set was used for the noise tolerance ability analysis of

these three chla concentration estimation algorithms. Fig-

ure 7 shows the noise tolerance ability of three-band, four-

band, and improved band algorithms computed by Eq. (16),

indicating that the improved three-band algorithm pos-

sesses a superior noise tolerance ability in comparison to

both the three- and four-band algorithms. It is generally

considered reasonable to ignore the residual uncertainty of

field measurements provided that the bio-optical measure-

ments strictly follow the standards of bio-optical experi-

ments (Mueller and Fargion 2002). However, the final goal

of oceanic remote sensing is not only to construct optimal

estimation algorithms from field measurements, but also to

accurately estimate the chla concentration from satellite

images. Noise tolerance ability is of importance to algo-

rithms for estimating chla concentration in turbid waters

from satellite data. The results of this study suggest that an

optimal algorithm should not only have a good chla con-

centration prediction ability, but it should also have an

excellent noise tolerance ability for noise of remote sensing
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imagery. Accordingly, from the perspectives of both noise

tolerance ability and chla prediction ability, the improved

three-band algorithm is the most ideal of the three

algorithms.

Due to the poor approximation of Eq. (4) developed by

Morel and Prieur (1977), the absorption by chla cannot be

very well isolated by either the three- or four-band algo-

rithms. A more accurate remote sensing reflectance model

developed by Gordon et al. (1988) is used to construct the

improved three-band algorithm. Moreover, compared to

the three-band algorithm, the improved three-band algo-

rithm removes the backscattering of suspended solids over

the NIR region more effectively, and when compared to the

four-band algorithm, the improved three-band algorithm is

more capable of reducing the equivalent degrees of free-

dom. The calibration and validation results indicate that all

three of the algorithms produce good performance in terms

of estimating chla concentration in the Yellow River

estuary, but the improved three-band algorithm provides a

performance which is superior to both the three- and four-

band algorithm, not only in terms of chla prediction ability,

but also in terms of noise tolerance ability.

The improved three-band algorithm presented in this

study may be applied to NASA HYPERION and the

Compact High Resolution Imaging Spectrometer (CHRIS).

As an example, the HYPERION channels at 681 nm and

915 nm is closed to the position of k2 = 685 and

k3 = 917 nm, respectively, and the 32nd channel of

HYPERION is located at the position of k1 = 671 nm. A

comparison of the measured and predicted estimates of the

chla by using the improved three-band algorithm with

HYPERION spectral bands is presented in Fig. 8, and the

results indicate that the improved three-band algorithm

with HYPERION spectral bands produces good perfor-

mance in estimating the chla concentration in the Yellow

River estuary, the regression coefficient of which is 0.8997,

and the corresponding RMS is 27.23 %. These findings

imply that, provided that an atmospheric correction scheme

for visible and near-infrared bands is available, the

improved three-band algorithm may be used for the

quantitative monitoring of chlorophyll-a concentration

from the HYPERION sensor in the Yellow River estuary.

One limitation of this study is that the calibration and

validation datasets contained only a narrow range of optical

properties of natural turbid waters, being collected only

from the Yellow River estuary. The results are insufficient

to completely validate the accuracy of the algorithms in

other waters with different bio-optical properties. Thus, it

is concluded that the improved algorithm should be used

for estimating chla in highly turbid coastal waters, although

it may be necessary to accordingly reposition the wave-

lengths of the three bands for the given aquatic bio-optical

conditions. The researchers also suggest calibration and

validation of the algorithms based on more in situ mea-

surements of waters with different optical properties.

Summary

In this study, an improved three-band algorithm was

developed and constructed. The results suggest that the

optimal wavelengths of the improved three-band semi-

analytical algorithm must meet the requirements of the k1

and k2 being restricted to within the range 660–690 nm,

and the k3 must be longer than 750 nm. The respective

performances of the three-band, four-band, and improved

three-band algorithms were validated and assessed using

bio-optical datasets collected from the turbid waters of the

Yellow River estuary, China. By comparison, using the

improved three-band algorithm in estimating chla concen-

tration from the Yellow River estuary, uncertainty

decreased by 24.93 % compared to the four-band algo-

rithm, and 38.62 % compared to the three-band algorithm.

The noise tolerance ability is of importance to algorithms

for estimating chla concentration in turbid waters. The

researchers advise that an optimal algorithm must not only

have a good chla concentration prediction ability, but it

must also possess an excellent noise tolerance ability in
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order to decrease the impacts of residual data uncertainty of

satellite imagery when performing the chla concentration

estimation. Due to its good performance in noise tolerance

ability and chla concentration estimation accuracy, the

improved three-band algorithm is superior to both the

three- and four-band algorithms, and may be used for

retrieving chlorophyll-a concentration from extremely

turbid waters with similar bio-optical properties, although

it may be necessary to reposition the optimal band posi-

tions of the algorithm using local bio-optical information.
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