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Abstract An integrated approach of pollution evaluation

indices and statistical techniques was employed to assess

the intensity and sources of pollution in Curtin Lake water,

Miri City, East Malaysia. Fe, Pb and Se concentrations in

most of the water samples exceed the maximum admissible

concentration. The heavy metal evaluation index (HEI)

shows strong correlations with heavy metal pollution index

(HPI) and degree of contamination (Cd), and gives a better

assessment of pollution levels. Samples from all the 25

locations in the lake were classified as high in Cd and low

in HPI compared with the respective critical values. The

modified schemes of HPI and Cd show comparable results

with HEI and indicate that about 48 % of the samples with

values lower than mean were classed as low contamination

and the remaining samples (52 %) with values greater than

the mean were classed as medium contamination. Cluster

analysis, principal component analysis and pollution indi-

ces reveal that the quality of water is mainly controlled by

natural/geogenic processes with minor anthropogenic

input. US Salinity Laboratory plot and EC classification

were also been used to assess the suitability of lake water

for agricultural purpose. The current distribution level of

heavy metal in the lake water is of environmental and

health concerns and needs attention.

Keywords Heavy metal pollution index �
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Introduction

There is worldwide water quality deterioration primarily

contributable to growing human populations and econom-

ical development, particularly elevating nutrients leading

to eutrophication and heavy metal pollution in the aquatic

environment (Krishna et al. 2009; Nriagu and Pacyna 1988;

Peierls et al. 1998; Holloway et al. 1998; Li et al. 2008;

Pekey et al. 2004). The natural sources of the metals

include volcanism, bedrock erosion, atmospheric transport

and the release from plants (Krishna et al. 2009; Pekey

et al. 2004) and anthropogenic activities; particularly,

mining and mineral processing have dominant influences

on the biogeochemical cycles of trace metals (Krishna et al.

2009; Nriagu and Pacyna 1988; Nriagu 1989, 1996). Heavy

metal pollution leads to serious human health hazards

through the food chain and the loss of biodiversity and

harms the environmental quality. Recent researches into

trace elements and heavy metals show highly interesting

records (Zhang et al. 2009). Of which, their spatial vari-

ability reflects geological parent materials and anthropo-

genic sources in geographic heterogeneity (Imperato et al.

2003).

A number of significant studies are available in the lit-

erature on heavy metal pollution in water sources. Such
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works include Brown-Adiuku and Ogezi (1991), Edet and

Ntekim (1996), Xibao et al. (1996), Yang et al. (1996),

Yiping and Min (1996), Zhongyi (1996). All these studies

concluded that there was a need to monitor and assess the

water quality on a regular basis. This is due to the increase

in concentration of heavy metals in potable water, which

increase the threat to health and environment. Also, few

methods exist in literature on the development and appli-

cation of index methods for water quality assessment

(Venkata Mohan et al. 1996; Prasad and Jaiprakas 1999;

Edet and Offiong 2002; Bhuiyan et al. 2010).

The groundwater potential is limited to some pockets of

the coastal region in Malaysia and is generally exploited by

rural people to supplement their piped water supply. In

Miri City, the surface water is readily available throughout

the year and mainly utilized for irrigation and domestic

uses. Surface water represents 97 % of the total water use,

while groundwater represents 3 %. The proposed study

area (Miri) is surrounded by the coastal region, industrial

and agricultural areas, squatted colonies and commercial

areas. The increase in human population and economic

activities in this region has grown in scale; the demand for

large-scale supplies of freshwater from various competing

end users has increased. Declining quality and quantity of

water supply of the area can be attributed to the water

pollution and improper management of the existing

resource.

A comparative assessment of toxic heavy metals is

important for determining the degree of pollution in the

environment. However, interpretation of data sets com-

prising analyses of numerous metals is complicated. One

approach of simplifying multivariate data is to generate and

use a single value, which may subsequently be used for

comparative purposes (Miyai et al. 1985; Nimic and Moore

1991). Methods of integrating numerous variables associ-

ated with water quality in a specific index are increasingly

desired in national and international scenarios. Therefore,

several researchers have developed various indices, tech-

nically referred to as water quality indices (WQIs)

(Lermontov et al. 2009). Usually, water quality index

(WQI) is a practical and comparatively simple approach of

evaluating the composite influence of overall pollution and

hardly provides evidences of the pollution sources. The

pollution indices are proposed to provide a useful and

comprehensible guiding tool for water quality executives,

environmental managers, decision makers and potential

users of a given water system. The WQI was initially

developed in the USA by Horton (1965) and has been

widely used in Africa and Asia (Shoji et al. 1966; Handa

1981; Erondu and Nduka 1993; Palupi et al. 1995; Li et al.

2009). Statistical approaches, particularly multivariate

techniques, are competent for resolving this deficit of WQI

and are useful for environmental data reduction and

interpretation of multiple elements. Principal components

analysis (PCA) and cluster analysis (CA) have been con-

sidered as a more trustworthy approach for data mining of

matrices from environmental quality assessment (Astel

et al. 2007, 2008; Simeonova and Simeonov 2007). How-

ever, PCA and CA are widely used in water quality

assessment.

Hence, the present study evaluates the heavy metal

concentration in the surface water of Curtin Lake, Miri,

East Malaysia. Pollution indices and multivariate approa-

ches (PCA and CA) are used to identify the pollution status

and probable sources of pollutants in the lake. The present

study has been conducted by comparative evaluations of

heavy metal pollution index (HPI), heavy metal evaluation

index (HEI) and degree of contamination (Cd), which have

been successfully used by many researchers (Mohan et al.

1996; Prasad and Jaiprakas 1999; Prasad and Bose 2001;

Teng et al. 2004; Prasad and Mondal 2008; Offiong and

Edet 1998a, b; Edet and Offiong 2002; Rapant et al. 1999).

Study area

The proposed study area (Fig. 1), Curtin Lake, is located in

Curtin University, Sarawak Campus of Miri City, Sarawak

State in the east, on the island of Borneo, Malaysia. Sar-

awak is generally mountainous with the highest range

forming the border with Indonesia. The areas of Miri are

characterized by a plateau, where young alluvial sediments

overlay the folded and monoclinally dipping Late Miocene

to Pliocene Lambir and Tukau clastics. The rocks exposed

around the Miri City belong to the Middle Miocene Miri

formation. Stratigraphically, the rocks belong to the Miri

formation; a stack of deltaic cycles forming a layered clay-

sand sequence (85 % sand and 15 % clay) with laterally

discontinuous sand bodies. The Miri formation [divided as

Upper (mostly sand) and Lower part (well-defined beds of

shale inter-bedded with sandstones)] is predominantly

arenaceous with clay and shale restricted mainly to the

lower part. The base of the formation is a gradual transition

from the argillaceous Setap shale to the sandy Miri for-

mation (Hutchison 2005). The climate is governed by the

regime of the northeast and southwest monsoons. The

northeast monsoon blows from October to March, and is

responsible for the heavy rains which hit the east coast of

the peninsula and frequently cause widespread floods. It

also causes the wettest season in the Sarawak State. The

southwest monsoon period occurs between May and Sep-

tember and is a drier period. The period between these two

monsoons is marked by heavy rainfall. The average tem-

perature throughout the year is very stable (26 �C). In

general, Sarawak State experiences more rainfall

(3,000–4,000 mm) than the Peninsula. The humidity is
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high (80 %) due to the high evaporation rate. Out of an

annual rainfall volume of 990, 360 km3 is lost to evapo-

transpiration. The total surface runoff is 566 km3, and

about 64 km3 (7 % of the total annual rainfall) contributes

to groundwater recharge. However, about 80 % of the

groundwater flow returns to the rivers and is therefore not

considered an additional resource.

Methodology

Sample collection, and physicochemical

and elemental analyses

A total of 25 surface water samples were collected (Fig. 1)

in Curtin Lake. The water samples collected below the

water surface using 200 ml polyethylene bottles. Prior to

sampling, the bottles were rinsed with the water to be

sampled and the samples were preserved by acidifying to

pH * 2 with HNO3 and kept at a temperature of 4 �C until

analysis. pH and electrical conductivity measurements were

performed in situ with a portable meter. The collected water

samples were filtered using a pre-conditioned plastic Mil-

lipore filter unit equipped with a 0.45-lm filter membrane

for further elemental analysis. The elements (Ca, Mg, Na,

K, Al, Ba, Cu, Fe, Ga, In, Li, Mn, Ni, Pb, Rb, Se, Sr, V, U

and Zn) were analyzed using inductively coupled plasma-

optical emission spectrometer (ICP-OES) Optima 5000 DV

Series (Perkin Elmer). It comes with WinLab32 Software

which optimizes the work flow and accuracy. Appropriate

quality control/quality assurance samples were collected to

provide confidence in the data regarding bias and variabil-

ity. No replicates were analyzed for these samples. Equip-

ment blank was used to test for bias from possible

contamination of blank water, which consists of distilled

water. This is to verify that decontamination procedures and

laboratory protocols are adequate (Koterba et al. 1995).

Pollution evaluation indices

Generally, pollution indices are estimated for a specific use

of the water under consideration. The indices used in this

study, namely heavy metal pollution index (HPI), heavy

metal evaluation index (HEI) and degree of contamination

Fig. 1 Study area and sample location map
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(Cd), are determined for the purpose of evaluating drinking

and agriculture water quality. The HPI and HEI methods

provide an overall quality of the water with regard to heavy

metals. These methods are evaluated using the ratios of

monitored values of the desired number of parameters and

the maximum admissible concentrations of the respective

parameters. In the Cd method, the quality of water is

evaluated by computation of the extent of contamination.

The Cd is calculated independently for every sample of

water analyzed, and is computed as the sum of the con-

tamination factors of each component exceeding the upper

permissible limit. Therefore, the Cd summarizes the com-

bined effects of a number of quality parameters regarded as

unsafe to household water.

Heavy metal pollution index

HPI index was developed by assigning a rating or weigh-

tage (Wi) for each chosen parameter. The rating is an

arbitrary value between 0 and 1 and its selection reflects the

relative importance of individual quality considerations. It

can be defined as inversely proportional to the standard

permissible value (Si) for each parameter (Horton 1965;

Mohan et al. 1996; Reddy 1995). In this present study, the

concentration limits (i.e., the standard permissible value

(Si) and highest desirable value (Ii) for each parameter)

were taken from the WHO standard. The uppermost per-

missive value for drinking water (Si) refers to the maxi-

mum allowable concentration in drinking water in the

absence of any alternate water source. The desirable

maximum value (Ii) indicates the standard limits for the

same parameters in drinking water (Bhuiyan et al. 2010).

The HPI, assigning a rating or weightage (Wi) for each

selected parameter, is determined using the expression

below (Mohan et al. 1996):

HPI ¼
Pn

i¼1 Wi QiPn
i¼1 Wi

where Qi and Wi are the sub-index and unit weight of the

ith parameter, respectively, and n is the number of

parameters considered. The sub-index (Qi) is calculated by

Qi ¼
Xn

i¼1

Mið�Þ lif g
Si � li

� 100

where Mi, Ii and Si are the monitored heavy metal, ideal

and standard values of the ith parameter, respectively. The

sign (-) indicates numerical difference of the two values,

ignoring the algebraic sign.

Heavy metal evaluation index

HEI gives an overall quality of the water with respect to

heavy metals (Edet and Offiong 2002) and is expressed as:

HEI ¼
Xn

i¼1

Hc

Hmac

where Hc and Hmac are the monitored value and maximum

admissible concentration (MAC) of the ith parameter,

respectively.

Degree of contamination (Cd)

The contamination index (Cd) summarizes the combined

effects of several quality parameters considered harmful to

domestic water (Backman et al. 1997) and is calculated as

follows:

Cd ¼
Xn

i¼1

Cfi

where

Cfi
¼ CAi

CNi

� 1

where Cfi
; CAi

and CNi
represent contamination factor,

analytical value and upper permissible concentration of the

ith component, respectively. N denotes the ‘normative

value’ and CNi
is taken as MAC.

Statistical analysis

The analytical data were subjected to statistical analysis

using SPSS software (version 9.0 for Windows). Principal

component analysis was used to identify the possible

sources of heavy metals. Factor analysis was performed

by varimax rotation (Howitt and Cramer 2005), which

minimized the number of variables with a high loading on

each component, thus facilitating the interpretation of

PCA results. Cluster analysis was applied to identify

groups of samples with similar heavy metal contents

(Panda et al. 2006). CA was formulated according to the

Ward-algorithmic method, and the rescaled linkage dis-

tance was employed for measuring the distance between

clusters of similar metal contents. R-mode CA was used

to determine the association of different water quality

parameters and pollutant sources. Pearson’s correlation

matrix was also used to identify the elements’

relationship.
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Results and discussion

Water quality and classification

The physicochemical parameters and total metal concen-

trations of surface water are shown in Table 1. The elec-

trical conductivity (EC) varied from 330 to 470 lS/cm

with a mean of 378.80 lS/cm. The range, mean and stan-

dard deviation (SD) of pH are 6.46–8.27, 6.74 and 0.40.

The mean metal levels in surface water followed a

descending order as: Fe [ Al [ Ba [ Sr [ U [ Rb [ Mn

[ Se [ Li [ V [ Zn [ In [ Pb [ Cu [ Ni [ Ga. The

descriptive statistics including maximum admissible con-

centration (MAC) and world standards are given in

Table 2. The concentration of Cu, Mn, Ni and Zn are

below the MAC values. The concentration of Fe

(1607.8–1946.83 lg/l) in all the samples is higher than the

MAC of 200 lg/l, 40 % of the samples show Pb in excess

of 1.50 lg/l and 28 % of the samples show Se in excess of

10 lg/l. The method of Ficklin et al. (1992), modified by

Caboi et al. (1999), was employed for water classification.

Figure 2 shows the relationship between total metal con-

tents (mg/l) and pH for the samples. The metal load

was computed as Al ? Ba ? Cu ? Fe ? Ga ? In ? Li ?

Mn ? Ni ? Pb ? Rb ? Se ? Sr ? V ? U ? Zn (mg/l)

and all the samples plot in the field of near-neutral high

metal.

Shuhaimi-Othman et al. (2008) reported that the mean

metal concentration in surface water of Chini Lake, Pen-

insular Malaysia was low and within the range of natural

background values except for Fe and Al. Aqeel Ashraf

et al. (2010) also reported that high nutrient load and

concentration of metals, especially mercury in Varsity

Lake, West Malaysia. Results from this study indicate that

the mean metal concentration of Curtin Lake was high as

compared to Chini Lake except for Pb and Zn (Table 3).

The concentration of Se is also higher in Curtin Lake as

compared to other lakes worldwide (e.g., Masresha Ale-

mayehu et al. 2011; Markert et al. 1997; Singanan et al.

2008) except for Manchar Lake, Pakistan (Kazi et al.

2009).

Pollution evaluation indices

The results of pollution evaluation indices are presented in

Table 4. The heavy metal pollution index of all the sam-

pling points have been calculated individually using the

international standards (Edet and Offiong 2002) and is

represented by HPI, respectively. The range and mean

values of HPI were 2.86–7.92 and 4.84. The results of

indices showed that the HPI for all the samples were below

the critical limit of 100 proposed for drinking water by

Prasad and Bose (2001). The heavy metal pollution index

calculated with mean concentration values of all metals,

including all sampling points is 4.84, which is also well

below the critical limit of 100.

The degree of contamination (Cd) was used as reference

of estimating the extent of metal pollution (Al-Ami et al.

1987). The range and mean values of Cd were 2.57–6.11

and 4.01. Cd may be classified into three categories (Edet

and Offiong 2002; Backman et al. 1997) as follows: low

(Cd \ 1), medium (Cd = 1–3) and high (Cd [ 3). All the

samples exceed 3, suggesting that they are highly polluted.

On the contrary, the HPI values for all the locations are

lower than 100, the critical value (Prasad and Bose 2001)

for drinking water.

The heavy metal evaluation index (Edet and Offiong

2002) was used for a better understanding of the pollution

indices. The HEI values ranged from 8.57 to 12.11 with a

mean value of 10.01. The mean deviations and percentage

deviation for all the indices were computed for each sam-

pling point (Table 4); 48 % of the samples (S6, S8–S15,

S21, S24 and S25) fell below the respective mean values of

HEI. Interestingly, Cd, and HPI values of these same

samples were below the respective mean value of the

indices. These values of Cd and HPI which fall below their

respective mean values and their corresponding negative

percent deviations suggest relatively better quality as

observed by Prasad and Bose (2001), Edet and Offiong

(2002).

Cd, HPI and HEI values show similar trends at various

sampling points (Fig. 3) and also significant correlations

are observed among the values (Table 5). However, there

are some differences between the results of Cd and HPI

regarding the water quality of the analyzed samples.

Therefore, HEI has been used to synchronize the criteria

for various pollution indices. By following the approach

of Edet and Offiong (2002), the calculated HEI values

have been classified in terms of pollution levels as low,

medium and high. Different HEI criteria values have

been developed for the samples, guided by their respec-

tive mean values, and the different levels of contamina-

tion are demarcated by a multiple of the mean values.

Therefore, the proposed HEI criteria for the samples are

as follows: low (HEI \ 10), medium (HEI = 10–20) and

high ([20). The present level shows that 48 % of sam-

ples are within the low zone, while 52 % fall within the

medium zone.

The existing water quality schemes for HPI and Cd have

also been modified following the mean approach of HEI,

and the results are presented in Table 6. Thus for the Cd, 48

and 52 % of the samples, respectively, are classed as low

and medium zones. For the HPI, 56 and 44 % are classified

as low and medium contamination.

For examine the contribution of the key metals to the

computed indices, correlation was performed between the

Environ Earth Sci (2012) 67:1987–2001 1991
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indices (Cd, HPI and HEI) and heavy metal concentrations.

From the analysis, Fe, Pb, Li and U show significant cor-

relations with all the indices, suggesting that these metals

are the major contributory parameters (Table 5), where Li

and U are not considered in the indices calculation due to

lack of standard values. Significant correlations are also

observed among the values of HPI, HEI and Cd.

The HEI and reclassification schemes of HPI and Cd

show comparable results, and the HEI method may be used

as the simple criteria of assessing the quality of water in the

lake. Thus, samples S6, S8–S15, S21, S24 and S25 may be

considered as less contaminated, whereas S1–S5, S7, S16–

S20, S22 and S23 are moderately contaminated by metal

pollutants.

Pollution source identification

The principal component analysis was used to further

explore the extent of metal pollution and for source iden-

tification (Dragovı́c et al. 2008; Franco-Urı́a et al. 2009).

Varimax rotation method (Gotelli and Ellison 2004) was

used to maximize the sum of the variance of the factor

coefficients, which better explained the possible groups/

sources that influenced the water system.

Five factors were extracted for surface water data set

with eigenvalues [1. The calculated factor loadings,

together with cumulative percentage and percentages of

variance explained by each factor, are listed in Table 7.

The factors in samples led to reductions of the initial

dimensions of the data set, which explained about 76 % of

the total variance. The calculated factor scores for all the

samples are presented in Table 7. Positive scores in PCA

indicate that water samples are affected by the presence of

the parameters that are significantly loaded on a specific

factor, whereas negative scores suggest that water quality is

essentially unaffected by those parameters (Prasanna et al.

2010)

PC1, PC2, PC3, PC4 and PC5 explain about 21, 18, 17,

10 and 8 % of the total variance, respectively. PC1 is

highly loaded on EC, pH, Ba, Ga, In and Li, which are

mostly distributed in S1, S2, S4, S8, S9 and S12. PC1

explains leaching of materials from the soil surfaces or in

the sediment of water soils. PC2 is loaded on Al, Fe, Mn,

Li and U and could represent a geogenic source compo-

nent. Fe and Mn could be released by leaching of parent

Table 2 Descriptive statistics

for elements

MAC maximum admissible

concentration (adapted from

Siegel 2002)
a WHO (2004)
b WHO (1993)

Parameter Units Max Min Mean Median Std. Dev. MAC %[MAC

EC lS/cm 470.00 330.00 378.80 380.00 24.89 1,400b

pH 8.27 6.46 6.74 6.62 0.40 6.5–8.5a

Al lg/l 151.97 109.54 124.07 120.74 9.35 200a

Ba lg/l 197.87 30.23 63.23 52.86 37.16 700a

Cu lg/l 6.95 0.04 1.51 0.83 1.69 1,000 0

Fe lg/l 1,946.83 1,607.78 1,742.06 1,751.20 92.51 200 100

Ga lg/l 1.43 0.02 0.61 0.55 0.35 n.a

In lg/l 4.83 0.16 1.76 1.28 1.25 n.a

Li lg/l 6.64 4.62 4.99 4.88 0.38 n.a

Mn lg/l 13.59 8.14 9.66 9.58 1.33 50 0

Ni lg/l 3.57 0.05 1.05 0.77 0.86 20 0

Pb lg/l 4.00 0.08 1.58 1.38 1.05 1.50 40

Rb lg/l 15.57 6.71 11.01 11.13 2.18 n.a

Se lg/l 16.15 0.13 6.44 5.19 4.65 10 28

Sr lg/l 54.10 47.91 50.57 49.98 1.72 n.a

V lg/l 6.85 2.20 4.72 5.02 1.23 n.a

U lg/l 25.10 14.37 18.74 18.55 2.77 2a

Zn lg/l 9.55 1.49 4.31 3.60 2.27 5,000 0

Fig. 2 Classification of water samples based on the plot of metal load

and pH

Environ Earth Sci (2012) 67:1987–2001 1993

123



T
a

b
le

3
C

o
m

p
ar

is
o

n
o

f
p

h
y

si
co

-c
h

em
ic

al
p

ar
am

et
er

s
an

d
h

ea
v

y
m

et
al

s
in

la
k

e
w

at
er

sa
m

p
le

s
o

f
th

e
p

re
se

n
t

st
u

d
y

w
it

h
o

th
er

ar
ea

s
ar

o
u

n
d

th
e

w
o

rl
d

an
d

th
e

M
al

ay
si

an
re

g
io

n

S
tu

d
y

ar
ea

s
E

C
p

H
A

l
B

a
C

u
F

e
M

n
N

i
P

b
S

e
S

r
Z

n

K
o

k
a

L
ak

e,

E
th

io
p

ia
(J

an
/

F
eb

2
0

0
8

;

n
=

1
)c

4
5

8
8

–
–

1
5

.5
6

.8
a

3
0

3
2

2
.4

4
9

0
.6

3
–

4
8

.0

Z
iw

ay
L

ak
e,

E
th

io
p

ia
(J

an
/

F
eb

2
0

0
8

;

n
=

1
)c

4
7

9
8

.4
–

–
4

.7
2

.6
a

1
1

7
7

.8
2

.2
0

.8
3

–
2

5
.1

A
w

as
sa

L
ak

e,

E
th

io
p

ia
(J

an
/

F
eb

2
0

0
8

;

n
=

1
)c

7
9

1
8

.9
–

–
3

.0
4

.3
a

1
8

.1
0

.7
1

0
.2

0
0

.7
4

–
2

.5

P
at

ag
o

n
ia

la
k

es
,

A
rg

en
ti

an
a

(N
o

v
1

9
9

3
;

n
=

4
)d

4
0

.5
7

.3
1

–
–

\
0

.5
to

2
.6

1
8

.8
\

1
to

\
4

\
0

.5
to

\
1

n
d

to
\

2
.2

–
1

8
2

9

W
en

ch
i

C
ra

te
r

L
ak

e,

E
th

io
p

ia

(2
0

0
7

;

n
=

8
)b

,e

1
,1

8
1

.2
5

7
.5

4
–

–
0

.8
3

a
–

0
.3

a
0

.6
4

a
0

.4
2

a
–

0
.9

3
a

L
ak

e
M

an
ch

ar
,

P
ak

is
ta

n

(2
0

0
5

–
2

0
0

6
;

n
=

5
)b

,f

–
–

1
.9

8
a

–
1

8
.9

2
.9

6
a

7
2

.5
6

3
4

.9
6

8
2

.4
2

5
2

.7
6

7
3

0
.4

M
al

ay
si

an
re

g
io

n

C
h

in
i

L
ak

e

(M
ay

2
0

0
5

;

n
=

1
5

)b
,g

3
1

.9
6

.6
1

8
6

.7
9

1
.1

9
3

2
5

.4
7

–
–

3
.4

3
–

–
6

.5
5

V
ar

si
ty

L
ak

e,

U
n

iv
er

si
ty

M
al

ay
a

(O
ct

2
0

0
9

;

n
=

1
0

)b
,h

–
7

.5
–

0
.2

4
a

–
0

.2
9

a
0

.1
2

a
–

0
.0

8
a

–
–

–

C
u

rt
in

L
ak

e

(P
re

se
n

t

st
u

d
y

)
(J

u
n

e

2
0

1
0

;

n
=

2
5

)b

3
7

8
.8

0

(3
3

0
–

4
7

0
)

6
.7

4 (6
.4

6
–

8
.2

7
)

1
2

4
.0

7

(1
0

9
.5

4
–

1
5

1
.9

7
)

6
3

.2
3

(3
0

.2
3

–
1

9
7

.8
7

)

1
.5

1 (0
.0

4
–

6
.9

5
)

1
7

4
2

.0
6

(1
,6

0
7

.7
8

–
1

,9
4

6
.8

3
)

9
.6

6 (8
.1

4
–

1
3

.5
9

)

1
.0

5 (0
.0

5
–

3
.5

7
)

1
.5

8 (0
.0

8
–

4
)

6
.4

4 (0
.1

3
–

1
6

.1
5

)

5
0

.5
7

(4
7

.9
1

–
5

4
.1

0
)

4
.3

1 (1
.4

9
–

9
.5

5
)

E
C

v
al

u
es

in
l

S
/c

m
;

al
l

h
ea

v
y

m
et

al
s

v
al

u
e

in
lg

/l

a
m

g
/L

;
(n

=
to

ta
l

n
u

m
b

er
o

f
sa

m
p

le
s)

b
M

ea
n

ca
lc

u
la

te
d

v
al

u
es

c
M

as
re

sh
a

A
le

m
ay

eh
u

et
al

.
(2

0
1

1
)

d
M

ar
k

er
t

et
al

.
(1

9
9

7
)

e
S

in
g

an
an

et
al

.
(2

0
0

8
)

f
K

az
i

et
al

.
(2

0
0

9
)

g
S

h
u

h
ai

m
i-

O
th

m
an

et
al

.
(2

0
0

8
)

h
A

q
ee

l
A

sh
ra

f
et

al
.

(2
0

1
0

)

1994 Environ Earth Sci (2012) 67:1987–2001

123



materials from the soil horizon to the water. The solubility

of Fe and Mn minerals is strongly redox controlled, par-

ticularly at near-neutral pH (Lorite-Herrera et al. 2008).

The dissolved Al concentration in surface water is con-

trolled by the solubility of primary silicate weathering

products such as kaolinite or illite (Prasanna et al. 2010).

These parameters are importantly distributed in S1, S5,

S15, S16, S18, S20 and S21, since these samples retain

high scores for PC2 (Table 6). PC3 is mostly contributed

by Cu, Ni, Se and Zn, representing atmospheric input in the

lake water originating from the surrounding industrialized

regions (Steinnes and Henriksen 1993; Hanssen et al.

1980), which are significantly distributed in S1, S3, S13

and S14. PC4 is loaded on Pb only, which occurs as an

important parameter in S2–S6, S16 and S23. Pb occurs

naturally in the environment as geochemical alteration of

sulfide minerals. However, most of the Pb concentrations

are also found as a result of anthropogenic activities such

as automobile exhaust (Bhuiyan et al. 2010). PC5 is loaded

on Sr and could be ascribed to geochemical alteration/

weathering of sulfate minerals present in the sediment

horizon. PC5 shows high scores for S4, S5, S7, S9, S20 and

Table 4 Water pollution indices

Sample no. Cd Mean deviation % deviation HPI Mean deviation % deviation HEI Mean deviation % deviation

S1 5.24 1.23 30.63 6.15 1.31 27.09 11.24 1.23 12.27

S2 4.22 0.21 5.16 5.03 0.19 3.98 10.22 0.21 2.07

S3 4.84 0.83 20.79 5.91 1.07 22.13 10.84 0.83 8.33

S4 5.15 1.14 28.35 6.60 1.76 36.33 11.15 1.14 11.36

S5 6.11 2.10 52.28 7.92 3.08 63.53 12.11 2.10 20.94

S6 3.89 -0.12 -3.03 4.67 -0.17 -3.54 9.89 -0.12 -1.21

S7 4.04 0.03 0.87 4.95 0.11 2.38 10.04 0.03 0.35

S8 2.62 -1.39 -34.63 2.86 -1.98 -40.93 8.62 -1.39 -13.87

S9 2.57 -1.44 -35.92 2.96 -1.88 -38.87 8.57 -1.44 -14.39

S10 3.00 -1.01 -25.18 3.61 -1.23 -25.36 9.00 -1.01 -10.09

S11 2.82 -1.19 -29.57 3.32 -1.52 -31.42 8.82 -1.19 -11.85

S12 3.38 -0.63 -15.65 3.94 -0.90 -18.51 9.38 -0.63 -6.27

S13 3.26 -0.75 -18.68 3.74 -1.10 -22.72 9.26 -0.75 -7.48

S14 3.30 -0.71 -17.63 3.79 -1.05 -21.60 9.30 -0.71 -7.06

S15 3.47 -0.54 -13.55 3.86 -0.98 -20.17 9.47 -0.54 -5.43

S16 5.46 1.45 36.17 7.11 2.27 46.89 11.46 1.45 14.49

S17 4.15 0.14 3.59 5.12 0.28 5.79 10.15 0.14 1.44

S18 4.67 0.66 16.51 5.51 0.67 13.86 10.67 0.66 6.61

S19 4.15 0.14 3.54 5.23 0.39 7.99 10.15 0.14 1.42

S20 4.16 0.15 3.77 4.88 0.04 0.92 10.16 0.15 1.51

S21 3.34 -0.67 -16.66 3.84 -1.00 -20.58 9.34 -0.67 -6.67

S22 4.63 0.62 15.49 5.72 0.88 18.20 10.63 0.62 6.20

S23 4.76 0.75 18.61 5.99 1.15 23.70 10.76 0.75 7.45

S24 3.23 -0.78 -19.49 3.70 -1.14 -23.48 9.23 -0.78 -7.81

S25 3.80 -0.21 -5.27 4.52 -0.32 -6.54 9.80 -0.21 -2.11

Minimum 2.57 2.86 8.57

Maximum 6.11 7.92 12.11

Mean 4.01 4.84 10.01

Fig. 3 Spatial distribution of pollution evaluation indices
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S21, which suggest that Sr is important indicator in these

samples.

R-mode cluster analysis was also performed to under-

stand the physicochemical and elemental groupings in the

data set and the results are presented in Fig. 4. Parameters

belonging to the same cluster are likely to have originated

from a common source. The R-mode CA performed on the

samples produced four clusters. Cluster 1 includes pH, EC,

Ba, Li, Ga and In; cluster 2 consists of Cu, Zn, Ni and Se;

cluster 3 contains Fe, Mn and U; cluster 4 includes Pb, Sr,

Al, V and Rb. It reflects the influence of natural hydrog-

eochemical processes (leaching of materials from the soils)

and minor anthropogenic input. Even though there are

some differences between the CA and PCA results, a good

agreement between the two statistical techniques is evident

in all the data sets analyzed.

Correlation matrix (CM)

The Pearson’s correlation coefficient matrices for the

analyzed parameters are presented in Table 8. The inter-

parameters relationships support the results obtained from

PCA, and the CM has also been useful in revealing some

new association of metals that have not been properly

stated in the PCA analysis. A significant correlation has

been observed in the samples. pH significantly correlates

with Ba (r = 0.94), Cu (r = 0.70), Ga (r = 0.63), Li

(r = 0.81) and Ni (r = 0.60). EC also shows significant

correlations with Ba (r = 0.52) and Li (r = 0.66). These

results are similar to that of PC1 in the previous section.

Metal pairs Ba–Li, Ba–Cu, Ba–Ga and Ba–Ni correlate

significantly with respective correlation coefficient (r) val-

ues of 0.74, 0.60, 0.54 and 0.50, respectively, indicating a

similar source of PC1. Fe correlates with Li (r = 0.62) and

Mn (r = 0.69) similar to sources reported for PC2 in the

PCA analysis of the samples. A significant correlation

exists between Cu and Ni (r = 0.60), Zn (r = 0.76) and Se

(0.51), matching with PC3 described in the previous

section.

Irrigation water quality

The suitability of water for irrigation is conditional on the

effects of mineral constituents of water on both the plant

and soil. Excess amount of dissolved ions in irrigation

water affects plants and agricultural soil physically and

chemically, thus reducing the productivity (Bahar and Reza

2010). Electrical conductivity is a good measure of salinity

hazard and it reflects the TDS in water. According to the

irrigation-based EC classification by Ragunath (1987), all

the samples fall in the range of 250–750 ls/cm, indicating

good category and that the water can be used for irriga-

tion purpose. The US Salinity Laboratory (USSL) also

Table 5 Correlation coefficients for metal concentrations and indices

values

Cd HPI HEI

Al 0.05 0.02 0.05

Ba 0.12 0.06 0.12

Cu 0.24 0.18 0.24

Fe 0.68 0.61 0.68

Ga 0.25 0.22 0.25

In 0.11 0.09 0.11

Li 0.49 0.42 0.49

Mn 0.25 0.17 0.25

Ni 0.19 0.11 0.19

Pb 0.85 0.90 0.85

Rb -0.07 -0.05 -0.07

Se -0.20 -0.24 -0.20

Sr 0.33 0.35 0.33

V -0.29 -0.27 -0.29

U 0.59 0.53 0.59

Zn -0.17 -0.21 -0.17

Cd 1.00 0.99 1.00

HPI 0.99 1.00 0.99

HEI 1.00 0.99 1.00

Bold values denote significant correlations

Table 6 Classification of

surface water quality of the lake

on modified categories of

pollution indices

Index method Category Degree of pollution No. of samples % Samples

Cd \4 Low 12 48 S6, S8–S15, S21, S24, S25

4–8 Medium 13 52 S1–S5, S7, S16–S20, S22, S23

[8 High 0 0 Nil

HPI \5 Low 14 56 S6–S15, S20, S21, S24, S25

5–10 Medium 11 44 S1–S5, S17–S19, S22, S23

[10 High 0 0 Nil

HEI \10 Low 12 48 S6, S8–S15, S21, S24, S25

10–20 Medium 13 52 S1–S5, S7, S16–S20, S22, S23

[20 High 0 0 Nil
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suggested a plot for ranking the irrigation water, wherein

sodium absorption ratio (SAR) was plotted against specific

conductance. SAR was calculated from the relation,

SAR = [Na/(Ca?? ? Mg??)1/2]. Sodium and salinity are

the two important parameters, which can indicate the

suitability of water for irrigation purposes. In the USSL

plot (Fig. 5), all the samples fall in the C2S1 zone, indi-

cating medium salinity and low sodium hazard. Therefore,

these lake waters can be used for irrigation on almost all

soils, with little hazards in the development of harmful

level of exchangeable sodium (Hem 1985).

Conclusion

Pollution evaluation indices, principal component analysis,

cluster analysis and correlation matrix (CM) have been

used to assess the intensity and sources of pollution in the

Curtin Lake. The concentrations of Fe in all samples are

higher than the MAC, while 40 and 28 % of the samples

show Pb and Se concentrations above the MAC. The sur-

face water of this lake is characterized as near-neutral high

metal, respectively. Cd suggests that all samples are highly

polluted (Cd [ 3), whereas HPI indicates that all the

samples are within the critical limit (HPI [ 100). A better

water quality classification of the samples is attained by

using heavy metal evaluation index. The HEI criteria

assigned 52 % (HEI \ 10), 48 % (HEI = 10–20) and 0 %

(HEI [ 20) of the samples in the categories of low, med-

ium and high pollution, respectively. Comparable results to

Table 7 Varimax rotated principal component analysis for the

samples

Parameter PC1 PC2 PC3 PC4 PC5

EC 0.68 0.23 0.20 -0.22 0.22

pH 0.74 0.20 0.44 0.34 0.01

Al -0.39 0.61 -0.09 -0.35 0.23

Ba 0.85 0.12 0.34 0.13 0.07

Cu 0.33 0.06 0.84 0.21 0.12

Fe 0.18 0.82 0.05 0.21 0.26

Ga 0.56 0.07 0.16 0.47 -0.40

In 0.70 -0.12 -0.05 0.05 0.04

Li 0.66 0.60 0.26 0.15 0.04

Mn 0.11 0.82 -0.01 -0.21 -0.23

Ni 0.36 0.29 0.67 0.09 -0.19

Pb -0.07 0.12 -0.13 0.81 0.13

Rb -0.39 0.11 -0.30 -0.15 -0.58

Se 0.40 -0.17 0.57 -0.26 -0.08

Sr 0.01 0.23 -0.38 0.02 0.81

V -0.38 0.12 -0.23 -0.62 0.02

U 0.01 0.92 -0.06 0.16 0.04

Zn -0.06 -0.12 0.95 -0.06 -0.11

Eigenvalues 3.86 3.27 3.14 1.85 1.48

% of variance 21.44 18.15 17.46 10.26 8.21

Cumulative % 21.44 39.59 57.05 67.31 75.52

Q-mode

S1 3.57 1.69 1.91 0.00 0.06

S2 1.10 0.37 -0.19 1.22 -0.94

S3 -0.74 0.38 1.41 2.05 -0.83

S4 1.08 -1.20 -0.47 1.08 1.37

S5 -0.79 0.50 0.24 1.89 3.01

S6 -0.02 -0.36 -0.10 0.73 -0.16

S7 0.08 -0.68 -0.48 0.27 1.09

S8 0.70 -1.35 0.37 -1.37 0.44

S9 0.53 -1.24 -0.47 -0.67 1.08

S10 0.03 -1.23 -0.26 0.06 0.38

S11 0.24 -1.27 -0.22 -0.56 -0.91

S12 0.65 -0.81 -0.77 -0.01 -1.35

S13 -1.18 -0.82 2.39 -0.56 -0.35

S14 -1.29 -0.81 2.41 -0.46 -0.39

S15 0.25 0.61 -0.03 -0.68 -1.33

S16 -0.74 0.52 -1.26 1.21 -1.12

S17 -0.01 0.01 -0.84 0.45 -0.54

S18 -0.35 2.31 -0.66 -0.76 0.43

S19 -0.13 -0.20 -0.83 0.02 -0.26

S20 -0.96 1.63 0.14 -0.95 0.58

S21 -0.99 1.06 -0.02 -1.34 0.55

S22 -0.32 0.48 0.05 0.17 -0.11

S23 -0.81 0.22 -0.67 0.82 -1.22

S24 -0.02 0.20 -0.87 -1.62 0.38

S25 0.07 0.02 -0.76 -1.00 0.13

Significant values are in boldtype face
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Fig. 4 Dendrogram obtained by hierarchical clustering analysis for

parameters
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HEI are obtained when the existing HPI and Cd schemes

are reclassified using a multiple of the mean, as in the case

of HEI.

Principal component analysis with the support of cluster

analysis identified that natural/geogenic source (weathering

and leaching of parent materials) and anthropogenic impact

(from non-point sources) are responsible for controlling the

variability of physicochemical parameters and metal con-

tents in the lake water. That the CA and PCA results give a

good agreement between the two statistical tools is evident

in all the data sets analyzed.

Water quality analysis clearly shows that the elements

(e.g., Fe, Pb and Se) released from natural hydrogeo-

chemical processes with minor anthropogenic activities

have a high potential for contaminating the lake water.

Based on USSL plot and EC classification, the lake water is

suitable for irrigation purposes. The contamination of the

lake water by some heavy metals poses serious threat to

ecological habitat and needs attention. Hence, this work

gives background information on toxic metals and their

possible sources in the surface water of Curtin Lake. This

work has also highlighted the importance of an integrated

approach of pollution evaluation indices and multivariate

statistical methods in pollution studies of surface water

systems.
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