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Abstract Mining and related industries are widely con-

sidered as having unfavorable effects on environment in

terms of magnitude and diversity. As a matter of fact,

groundwater and soil pollution are noted to be the worst

environmental problems related to the mining industry

because of the pyrite oxidation, acid mine drainage gen-

eration, release and transport of the heavy metals. Acid

mine drainage (AMD) containing heavy metals including

Manganese (Mn), Copper (Cu), Lead (Pb), and Iron (Fe), is

harmful for the human and aquatic environment. Metal

pollution assessment using cost-effective methods, will be

a crucial task in designing a remediation strategy. The aim

of this paper is to predict the heavy metals included in the

AMD using support vector machine (SVM). In addition,

the obtained results are compared with those of the general

regression neural network (GRNN). Results indicated that

the SVM approach is faster and is more precise than the

GRNN method in prediction of heavy metals. The results

obtained from this paper can be considered as an easy and

cost-effective method to monitor groundwater and surface

water affected by AMD.

Keywords Sarcheshmeh copper mine � Acid mine

drainage � Heavy metals � Support vector machine �
General regression neural network

Introduction

Mining and related industries are widely considered as

having unfavorable effects on environment in terms of

magnitude and diversity. Among them, heavy metals are

often present as a result of mining, milling and industrial

manufacturing. Sulphide mines extraction is a major

water quality problem due to acid mine drainage (AMD)

generation in most of source of them. The oxidation of

sulphide minerals in particular pyrite exposed to atmo-

spheric oxygen during or after mining activities gener-

ates acidic waters with low pH values (as low as 2) and

high concentrations of dissolved iron (Fe), sulphate

(SO4) and heavy metal and toxic materials like lead,

copper, zinc, aluminum, mercury, marcasite and pyrite

(FeS2), which are harmful for the human and aquatic

environment (Williams 1975; Daskalakis and Helz 1999;

Moncur et al. 2005; Balistrieri et al. 2007; Zhao et al.

2007).

The Sarcheshmeh copper deposit is recognised as the

fourth largest mine in the world containing 1 billion tonnes

averaging 0.9% copper and 0.03% molybdenum (Banisi

and Finch 2001). This ore body is located at southeast of

Iran, Kerman province. Mining operation has disposed

many low grade waste dumps and has raised many envi-

ronmental problems. Environmental problems of sulphide

minerals oxidation and AMD generation in the Sar-

cheshmeh copper mine and their impacts on the Shur River

have been investigated in the past (Marandi et al. 2007;

Shahabpour and Doorandish 2008; Doulati Ardejani et al.

A. Aryafar (&)

Department of Mining Engineering, Faculty of Engineering,

Birjand University, Birjand, Iran

e-mail: ahariafar@yahoo.com

R. Gholami � R. Rooki

Faculty of Mining, Petroleum and Geophysics,

Shahrood University of Technology, Shahrood, Iran

F. Doulati Ardejani

School of Mining Engineering, College of Engineering,

University of Tehran, Tehran, Iran

123

Environ Earth Sci (2012) 67:1191–1199

DOI 10.1007/s12665-012-1565-7



2008; Bani Assadi et al. 2008; Derakhshandeh and Alipour

2010).

Shur River in the Sarcheshmeh copper mine has been

polluted by AMD with pH values ranging between 2 and

4.5 and high concentrations of heavy metals. The predic-

tion of heavy metals in in Shur River using cost-effective

and quick methods such as artificial neural network (ANN)

and support vector machine (SVM), are valuable in

developing appropriate remediation and monitoring

methods.

In addition, several investigations have been done using

artificial neural networks (ANN) and multiple linear

regression (MLR) in different fields of environmental

engineering in the recent decades (Karunanithi et al. 1994;

Lek and Guegan 1999; Govindaraju 2000; Karul et al.

2000; Bowers and Shedrow 2000; Kemper and Sommer

2002; Dedecker et al. 2004; Kuo et al. 2004; Khandelwal

and Singh 2005 Almasri and Kaluarachchi 2005; Kurunc

et al. 2005; Sengorur et al. 2006; Kuo et al. 2007; Messikh

et al. 2007; Palani et al. 2008; Hanbay et al. 2008; Chenard

and Caissie 2008; Dogan et al. 2009; Singh et al. 2009;

Rooki et al. 2011). However, recent works on the artificial

intelligence have resulted in finding a novel machine

learning theory called SVM. The SVM method relies on

the statistical learning theory, which enables learning

machines to generalise the unseen data. It was introduced

in the early 1990s as a non-linear solution for classification

and regression tasks (Vapnik 1995; Behzad et al. 2009).

This technique has been proven to have superior perfor-

mances in various problems due to its generalization abil-

ities and robustness against noise and interferences

(Steinwart 2008). Support vector machine (SVM) is a

device to find a solution which uses the minimum possible

energy of the data (Martinez-Ramon and Cristodoulou

2006; Bishop 2006; Cristianini and Shawe-Taylor 2000). In

general, there are at least three reasons for the success of

SVM: its ability to learn well with only a very small

number of parameters, their robustness against the error of

the model, and their computational efficiency compared

with several other methods such as neural network, fuzzy

network and, etc. (Martinez-Ramon and Cristodoulou

2006; Wang 2005). The literature review has shown that

although many research works have been conducted related

to the application of the ANN method in mining and rel-

evant environmental problems, the SVM method has not

been used in environmental assessment and even prediction

of heavy metals in AMD. In this paper, the heavy metals in

the Shur River impacted by AMD are predicted using

SVM. The results obtained from the predictions using

SVM are compared with the GRNN (Rooki et al. 2011) and

the concentrations of major heavy metals were sampled

and analysed in Shur River of Sarcheshmeh copper mine,

southeast Iran.

Site description

Sarcheshmeh copper mine is located at 160 km distance to

southwest of Kerman and at 50 km distance to southwest of

Rafsanjan in Kerman province, Iran. The main access road

to the study area is Kerman–Rafsanjan–Shahr Babak road.

This mine belongs to Band Mamazar–Pariz Mountains.

The average elevation of the mine is 1,600 m. The mean

annual precipitation of the site varies from 300 to 550 mm.

The temperature varies from ?35�C in summer to -20�C

in winter. The area is covered with snow about 3–4 months

per year. The wind speed sometimes exceeds to 100 km/h.

A rough topography is predominant at the mining area.

Figure 1 shows the geographical position of the Sar-

cheshmeh copper mine.

The ore body in Sarcheshmeh is oval shaped with a long

dimension of a length of about 2,300 m and a width of

about 1,200 m. This deposit is associated with the late

Tertiary Sarcheshmeh granodiorite porphyry stock. The

geology of Sarcheshmeh porphyry deposit is very com-

plicated and various rock types can be found there. Min-

eralization in this deposit is associated with the Late

Tertiary, with main minerals such as chalcocite, chalco-

pyrite, covellite, bornite, and molybdenite. However, other

minerals are also seen in the deposit, which includes

molybdenum, gold, and silver. The oxide zone of deposit

consists mainly of cuprite, tenorite, malachite, and azurite.

Pyrite is the gangue mineral, which causes acidity of mine

sewage (Monjezi et al. 2009). Open pit mining is used to

extract copper deposit in Sarcheshmeh. A total of 40,000

tons of ore (average grades 0.9% Cu and 0.03% molyb-

denum) is approximately extracted per day in Sarcheshmeh

mine (Banisi and Finch 2001). The catchment area of the

Shur River is approximately 200 km2 and the discharge is

about 0.53 m3/s (Monjezi et al. 2009).

Sampling and field methods

Sampling of waters in the Shur River downstream from the

Sarcheshmeh mine was carried out in February 2006.

Water samples consist of water from Shur River (Fig. 1)

originating from Sarcheshmeh mine, acidic leachates of

heap structure, run-off of leaching solution into the River

and samples affected by tailings along the Shur River. The

water samples were immediately acidified by adding HNO3

(10 cc acid/1,000 cc sample) and stored under cool con-

ditions. The equipments used in this study were sample

container, GPS, oven, autoclave, pH meter, atomic

adsorption, and ICP analysers. The pH of the water was

measured using a portable pH meter in the field. Other

physical parameters were total dissolved solids (TDS),

electric conductivity (EC) and temperature. Analyses for
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dissolved metals were performed using atomic adsorption

spectrometer (AA220) in water Lab of the National Ira-

nian Copper Industries Company (NICIC). In spite of not

being here, ICP (model 6000) was also used to analyse the

concentrations of those heavy metals, which are detected

in the range of ppb. Table 1 gives the minimum, maxi-

mum, and the mean values of the some physical and

chemical parameters. According to mean values of heavy

metals in Table 1, the aquatic life and the surrounding

environment at Shur River is a severe condition.

According to the correlation matrix (Table 2), pH, SO4

and Mg have most correlation with heavy metals (Cu, Mn

and Zn) concentrations.

Support vector machine

In pattern recognition, the SVM algorithm constructs non-

linear decision functions by training a classifier to perform

a linear separation in some high dimensional space, which

is non-linearly related to input space.

To generalize the SVM algorithm for regression analy-

sis, an analogue of the margin is constructed in the space of

the target values (y) by using Vapnik’s e-insensitive loss

function. This function is shown in the Fig. 2.

y� f ðxÞj je:¼ max 0; y� f ðxÞj j � ef g ð1Þ
To estimate a linear regression

f ðxÞ ¼ ðw:xÞ þ b ð2Þ

With precision, one minimizes

1

2
wk k2þC

Xm

i¼1

y� f ðxÞj je ð3Þ

Lðw; n; n0Þ ¼ 1

2
wk k2þC

XN

i¼1

ðni þ n0iÞ ð4Þ

(8)

(7)

(6)

Fig. 1 Location of the

Sarcheshmeh mine and Shur

River (after Atapour and Aftabi

2007; Rooki et al. 2011)

Table 1 Maximum, minimum, and mean physical, and chemical constituents including heavy metals of the Shur River

pH SO4
-2 HCO3

- Mg2? Cu Fe Mn Zn TDS EC (lS/cm)

Min 3.3 27 0 13 0 0.01 0.04 0 446 870

Max 7.20 1,526 628 123 158 23 52 31.48 2,080.68 2,260

Mean 5.27 778.45 34.01 56.70 20.29 4.60 16.05 6.33 1,009.90 1,306.52

Concentrations of elements are given in ppm
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Written as a constrained optimization problem, this

reads.

For all i = 1,…, m. It should be noted that according to

(5) and (6), any error smaller than e does not require a

nonzero ni or n0i; and does not enter the objective function

(3).

Generalized kernel-based regression estimation is car-

ried out in a complete analogy in order to recognize pat-

tern. Introducing Lagrange multipliers, one thus arrives at

the following optimization problem: for C [ 0, e[ 0

chosen a priori, Maximize

Lða; a0Þ ¼ 1

2

XN

i¼1

XN

j¼1

ðai � a0iÞxT
i xjðai � a0jÞ

þ
XN

i¼1

ððai � a0iÞyi � ðai þ a0iÞeÞ ð8Þ

Subject to 0�ðai � a0iÞ�C ð9Þ

where, xi only appears inside an inner product. To get a

potentially better representation of the data, the data points

can be mapped into an alternative space, generally called

feature space (a pre-Hilbert or inner product space) through

a replacement:

xixj ! uðxiÞ:uðxjÞ ð10Þ

The functional form of the mapping u(xi) does not need to be

known since it is implicitly defined by the choice of kernel:

k(xi, xj) = u(xi).u(xj) or inner product in Hilbert space. With

a suitable choice of kernel the data can become separable in

feature space while the original input space is still non-linear.

Thus, whereas data for n-parity or the two spirals problem is

non-separable by a hyper plane in input space, it can be

separated in the feature space by RBF kernel:

kðxi; xjÞ ¼ e� xi�xjk k2
=2r2 ð11Þ

where r is the Gaussian parameter.

Several other choices for the kernel can be seen in the

Table 3.

Then, the regression estimate takes the form

yi ¼
XN

i¼1

XN

j¼1

ðai � a0iÞuðxiÞTuðxjÞ þ b

¼
XN

i¼1

XN

j¼1

ðai � a0iÞKðxi; xjÞ þ b ð12Þ

where b is computed using the fact that (5) becomes an

equality with ni = 0 if 0 \ ai \ C and (6) becomes an

equality with n�i = 0 if 0 \ ai \ C.

Table 2 Correlation matrix between heavy metals concentrations and independent variables

pH SO4 Cl HCO3 Ca Mg Cu Fe Mn Zn TDS EC

pH 1

SO4 -0.713 1

Cl -0.046 -0.035 1.

HCO3 0.310 -0.507 0.534 1

Ca -0.308 0.645 0.088 -0.014 1

Mg -0.625 0.694 -0.004 -0.238 0.121 1

Cu -0.697 0.663 -0.101 -0.199 0.238 0.764 1

Fe 0.021 0.078 -0.195 -0.255 -0.164 -0.008 -0.022 1

Mn -0.758 0.668 -0.160 -0.305 0.173 0.709 0.809 0.068 1

Zn -0.710 0.624 -0.186 -0.306 0.204 0.659 0.720 0.156 0.910 1

TDS -0.407 0.649 -0.235 -0.334 0.509 0.366 0.390 0.099 0.563 0.613 1

EC -0.779 0.767 0.212 -0.096 0.475 0.727 0.757 -0.081 0.739 0.628 0.334 1

Fig. 2 Concept of e-insensitivity. Only the samples out of the ±e
margin will have a nonzero slack variable, so they will be the only

ones that will be part of the solution (Liu et al. 2009)

Table 3 Different common kernels

Kernel function Type of classifier

Kðxi; xjÞ ¼ ðxT
i xjÞq Linear

Kðxi; xjÞ ¼ ðxT
i xj þ 1Þq Complete polynomial of degree q

Kðxi; xjÞ ¼ sinððnþ1=2Þðxi�xjÞÞ
2 sinððxi�xjÞ=2Þ

Dirichlet
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Several extensions of this algorithm are possible. From

an abstract point of view, it is just needed target function,

which depends on the vector (w, n). There are multiple

degrees of freedom for constructing this function, including

some freedom how to penalize, or regularize, different

parts of the vector, and some freedom how to use the kernel

trick. (Agarwala et al. 2008; Quang-Anh et al. 2005;

Stefano and Giuseppe 2006; Lia et al. 2007; Hwei-Jen and

Jih Pin 2009; Eryarsoy et al. 2009; Chih-Hung et al. 2009;

Sanchez 2003).

Support vector machine implementation for prediction

of heavy metals

Similar with other multivariate statistical models, the per-

formances of SVM for regression depend on the combi-

nation of several parameters. They are capacity parameter

C, e of e-insensitive loss function, the kernel type K and its

corresponding parameters. C is a regularization parameter

that controls the trade-off between maximizing the margin

and minimizing the training error. If C is too small, then

insufficient stress will be placed on fitting the training data.

If C is too large, then the algorithm will overfit the training

data. But, Wang et al. (2003) indicated that prediction error

was scarcely influenced by C. In order to make the learning

process stable, a large value should be set up for C (e.g.,

C = 100).

The optimal value for e depends on the type of noise

present in the data, which is usually unknown. Even if

enough knowledge of the noise is available to select an

optimal value for e; there is the practical consideration of

the number of resulting support vectors. e-insensitivity

prevents the entire training set meeting boundary condi-

tions, and so allows for the possibility of sparsity in the

dual formulations solution. Therefore, choosing the

appropriate value of e is critical from theory.

Since in this study the non-linear SVM is applied, it would

be necessary to select a suitable kernel function. The

obtained result of previous published researches (Dibike

et al. 2001; Han and Cluckie 2004) indicates the Gaussian

radial basis function has superior efficiency than other Ker-

nel functions. The form of the Gaussian kernel is as follow:

kðxi; xjÞ ¼ e� xi�xjk k2
=2r2 ð13Þ

In addition, where r is a constant parameter of the

kernel and can control the amplitude of the Gaussian

function and the generalization ability of SVM. We have to

optimize r and find the optimal one.

In order to find the optimum values of two parameters (r
and e) and prohibit the overfitting of the model, the data set

was separated into a training set of 44 compounds and a

test set of 12 compounds randomly and the leave-one-out

cross-validation of the whole training set was performed.

The leave-one-out (LOO) procedure consists of removing

one example from the training set, constructing the deci-

sion function on the basis only of the remaining training

data and then testing on the removed example (Liu et al.

2006). In this fashion after one tests all examples of the

training data and measures the fraction of errors over the

total number of training examples. The root mean square

error (RMS) was used as an error function to evaluate the

quality of model.

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i�1 yi � byið Þ2

n

s

ð14Þ

where, yi is the measured value, ŷi denotes the predicted

value, and n stands for the number of samples. Detailed

process of selecting the parameters and the effects of every

parameter on generalization performance of the corre-

sponding model are shown in Fig. 3. To obtain the optimal

value of r, the SVM with different r were trained, the r
varying from 0.01 to 0.2, every 0.01. We calculated the

RMS on different r, according to the generalization ability

of the model based on the LOO cross-validation for

the training set in order to determine the optimal one. The

curve of RMS versus the sigma was shown in Fig. 3. The

optimal r was found as 0.13. In order to find an optimal e;
the RMS on different e was calculated. The curve of the

RMS versus the epsilon was shown in Fig. 3. From Fig. 3,

the optimal e was found as 0.08.

0.10 0.15 0.20
Sigma

0.30

0.35

0.40

0.45
RMSE

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Epsilon

0.35

0.40

RMSEFig. 3 Sigma versus RMS error

(left) and epsilon versus RMS

error (right) on LOO cross-

validation
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From the above discussion, the r, e and C were fixed to

0.13, 0.08 and 100, respectively, when the support vector

number of the SVM model was 45. Figure 4 shows the

schematic of SVM structure. The prediction correlation

coefficient (R) of the test set for Mn, Fe, Cu and Zn is 0.94,

0.88, 0.951 and 0.95, respectively (Fig. 5).

Prediction by general regression neural network

In order to check the accuracy of SVM in the prediction of

heavy metals included in the AMD, obtained results of

General Regression Neural Network (GRNN) has been

proposed by Specht (1991). GRNN is a type of supervised

network and also trains quickly on sparse data sets but,

rather than categorising it. GRNN applications are able to

produce continuous valued outputs. GRNN is a three-layer

network where there must be one hidden neuron for each

training pattern. GRNN is a modification to probabilistic

neural network, which has also been successfully used

pH

SO4

Mg

1ϕ

2ϕ

3ϕ

( , )i jK x x

( , )i jK x x

( , )i jK x x

Cu

Fe

Mn

Zn

Fig. 4 Schematic of SVM structure
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Fig. 5 Obtained results of SVM in the prediction process of Mn, Fe, Cu, and Zn in test data
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in many engineering applications. Huang and Williamson

(1994) described GRNN as an easy-to-implement tool,

which has efficient training capabilities, and the ability to

handle in complete patterns. GRNN is known to be

particularly useful in approximating continuous func-

tions. It may have multidimensional input, and it will fit

multidimensional surfaces through data (Huang et al.

1996).

Optimum structure of the GRNN was obtained using

trial and error method and the optimum smooth factor

(SF) was selected 0.10. This network has three layers;

input layer with 3 neurons (pH, SO4 and Mg), hidden

layer incorporating 44 neurons (number of training sam-

ples) with radial basic activation function in all neurons

and output layer with 4 neurons (Cu, Fe, Mn and Zn) with

linear activation function (Rooki et al. 2011). The pre-

diction correlation coefficient (R) of the test set for Mn,

Fe, Cu and Zn is 0.94, 0.88, 0.951 and 0.95, respectively

(Fig. 6).

Discussion

In this research work, we have demonstrated one of the

applications of support vector machine in the prediction of

heavy metals included in the acid mine drainage. In addi-

tion, for showing the better performance, we have com-

pared the obtained results of SVM with those of the

GRNN. Figures 5 and 6 represent the given results of the

two expressed methods. Table 4 compares the correlation

coefficient R and Root Mean Square error (RMS) associ-

ated with two methods for both training and test data. The

indices 1 and 2 for R and RMS in Table 4 are related to the

training and test data, respectively.

As it is quite clear in Figs. 5 and 6 and Table 4, SVM

has a considerable better performance compare with the

GRNN and there are some proper representations in terms

of correlation coefficient (R) for those predicted by SVM.

Therefore, SVM has two reliable characteristics (i.e. good

prediction and appropriate running time).
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Conclusions

Support vector machine (SVM) is a novel machine learning

methodology based on statistical learning theory (SLT),

which has considerable features including the fact that

requirement on kernel and nature of the optimization

problem results in a uniquely global optimum, high gen-

eralization performance, and prevention from converging

to a local optimal solution. In this paper, a new method to

predict major heavy metals in Shur River impacted by

AMD has been presented using SVM method while GRNN

has also used for making a proper comparison. Although

both methods are data-driven models, it has been found

that SVM makes the running time considerably faster with

a higher accuracy. In terms of accuracy, the SVM tech-

nique resulted in a RMSE reduction relative to that of the

GRNN model (Table 4). Regarding the running time, SVM

requires a small fraction of the computational time used by

GRNN, and it is also an important factor to choose an

appropriate and high-performance data-driven model.

References

Agarwala S, Vijaya Saradhi V, Karnick H (2008) Kernel-based online

machine learning and support vector reduction. Neurocomputing

71:1230–1237

Almasri MN, Kaluarachchi JJ (2005) Modular neural networks to

predict the nitrate distribution in ground water using the on-

ground nitrogen loading and recharge data. Environ Model

Softw 20:851–871

Ardejani FD, Karami GH, Assadi AB, Dehghan RA (2008) Hydrog-

eochemical investigations of the Shour River and groundwater

affected by acid mine drainage in Sarcheshmeh porphyry copper

mine. 10th International Mine Water Association Congress, June

2–5, 2008, Karlovy Vary, Czech Republic, pp 235–238

Assadi AB, Ardejani FD, Karami GH, Azma BD, Dehghan RA,

Alipour M (2008) Heavy metal pollution problems in the vicinity

of heap leaching of Sarcheshmeh porphyry copper mine. 10th

International Mine Water Association Congress, June 2–5, 2008,

Karlovy Vary, Czech Republic: 355–358

Atapour H, Aftabi A (2007) The geochemistry of gossans associated

with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman,

Iran: implications for exploration and the environment. J Geo-

chem Explor 93:47–65

Balistrieri LS, Seal RR II, Piatak NM, Paul B (2007) Assessing the

concentration, speciation, and toxicity of dissolved metals during

mixing of acid-mine drainage and ambient river water down-

stream of the Elizabeth Copper Mine, Vermont, USA. Appl

Geochem 22:930–952

Banisi S, Finch JA (2001) Testing a floatation column at the

Sarcheshmeh copper mine. Miner Eng 14(7):785–789

Behzad M, Asghari K, Morteza E, Palhang M (2009) Generalization

performance of support vector machines and neural networks in

run off modeling. Expert Syst Appl 36:7624–7629

Bishop CM (2006) Pattern recognition and machine learning.

Springer, Berlin, p 749

Bowers JA, Shedrow CB (2000) Predicting stream water quality using

artificial neural networks. WSRC-MS-2000-00112

Chenard JF, Caissie D (2008) Stream temperature modelling using

neural networks: application on Catamaran Brook, New Bruns-

wick. Canada. Hydrol Process. doi:10.1002/hyp.6928

Chih-Hung W, Gwo-Hshiung T, Rong-Ho L (2009) A Novel hybrid

genetic algorithm for kernel function and parameter optimization

in support vector regression. Expert Syst Appl 36:4725–4735

Cristianini N, Shawe-Taylor J (2000) An introduction to support

vector machines (and other kernel-based learning methods).

Cambridge University Press, London

Daskalakis DK, Helz GR (1999) Solubility of CdS (Greenockite) in

sulphidic waters at 25�C. Environ Sci Technol 26:2462–2468

Dedecker AP, Goethals PLM, Gabriels W, De Pauw N (2004)

Optimization of artificial neural network (ANN) model design

for prediction of macro invertebrates in the Awalm river basin

(Flanders Belgium). Ecol Model 174:161–173

Derakhshandeh R, Alipour M (2010) Remediation of acid mine

drainage by using tailings decant water as a neutralization agent

in Sarcheshmeh copper mine. Res J Environ Sci 4(3):250–260

Dibike YB, Velickov S, Solomatine D, Abbott MB (2001) Model

Induction with support vector machines: Introduction and

Application. J Comput Civil Eng 15(3):208–216

Dogan E, Sengorur B, Koklu R (2009) Modeling biochemical oxygen

demand of the Melen River in Turkey using an artificial neural

network technique. J Environ Manag 90:1229–1235

Eryarsoy E, Koehler, Gary J, Aytug H (2009) Using domain-specific

knowledge in generalization error bounds for support vector

machine learning. Decis Support Syst 46:481–491

Govindaraju RS (2000) Artificial neural network in hydrology. II:

hydrologic application, ASCE task committee application of

artificial neural networks in hydrology. J Hydrol Eng 5:124–137

Han D, Cluckie I (2004) Support vector machines identification for

runoff modeling. In: Liong SY, Phoon KK, Babovic V (eds)

Proceedings of the sixth international conference on hydroin-

formatics, June, Singapore, pp 21–24

Hanbay D, Turkoglu I, Demir Y (2008) Prediction of wastewater

treatment plant performance based on wavelet packet decompo-

sition and neural networks. Expert Syst Appl 34(2):1038–1043

Huang Z, Williamson MA (1994) Geological pattern recognition and

modeling with a general regression neural network. Can J Explor

Geophys 30(1):60–68

Huang Z, Shimeld J, Williamson M, Katsube J (1996) Permeability

prediction with artificial neural network modeling in the Venture

gas field, offshore eastern Canada. Geophysics 61(2):422–436

Hwei-Jen L, Jih Pin Y (2009) Optimal reduction of solutions for

support vector machines. Appl Math Comput 214:329–335

Karul C, Soyupak S, Cilesiz AF, Akbay N, German E (2000) Case

studies on the use of neural networks in eutriphication modeling.

Ecol Model 134:145–152

Table 4 The comparison of the results (R, RMS) of two methods in train and test data

Method R1 R2 RMS1 RMS2 R1 R2 RMS1 RMS2 R1 R2 RMS1 RMS2 R1 R2 RMS1 RMS2

Cu Cu Cu Cu Fe Fe Fe Fe Mn Mn Mn Mn Zn Zn Zn Zn

SVM 0.99 0.95 3.21 5.34 0.96 0.86 1.98 2.26 0.99 0.94 1.9 5.48 0.99 0.93 1.22 1.25

GRNN 0.99 0.89 5.47 9.89 0.90 0.37 2.20 3.55 0.99 0.90 1.89 6.60 0.98 0.91 1.31 1.56

1198 Environ Earth Sci (2012) 67:1191–1199

123

http://dx.doi.org/10.1002/hyp.6928


Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural

networks for river flow prediction. ASCE J Comput Civil Eng

8:210–220

Kemper T, Sommer S (2002) Estimate of heavy metal contamination

in soils after a mining accident using reflectance spectroscopy.

Environ Sci Technol 36:2742–2747

Khandelwal M, Singh TN (2005) Prediction of mine water quality by

physical parameters. J Sci Ind Res 64:564–570

Kuo Y, Liu C, Lin KH (2004) Evaluation of the ability of an artificial

neural network model to assess the variation of groundwater

quality in an area of blackfoot disease in Taiwan. Water Res

38:148–158

Kuo J, Hsieh M, Lung W, She N (2007) Using artificial neural

network for reservoir eutriphication prediction. Ecol Model

200:171–177

Kurunc A, Yurekli K, Cevik O (2005) Performance of two stochastic

approaches for forecasting water quality and stream flow data

from Yesilirmak River, Turkey. Environ Model Soft 20:1195–

1200

Lek S, Guegan JF (1999) Artificial neural networks as a tool in

ecological modelling, an introduction. Ecol Model 120:65–73

Lia Q, Licheng J, Yingjuan H (2007) Adaptive simplification of

solution for support vector machine. Pattern Recogn 40:972–980

Liu H, Yao X, Zhang R, Liu M, Hu Z, Fan B (2006) The accurate

QSPR models to predict the bioconcentration factors of nonionic

organic compounds based on the heuristic method and support

vector machine. Chemosphere 63:722–733

Liu H, Wen S, Li W, Xu C, Hu C (2009) Study on identification of

oil/gas and water zones in geological logging base on support-

vector machine. Fuzzy Inf Eng 2(62):849–857

Marandi R, Doulati Ardejani F, Marandi A (2007) Biotreatment of

acid mine drainage using sequencing batch reactors (SBRs) in

the Sarcheshmeh porphyry copper mine. In: Cidu R, Frau F (eds)

IMWA Symposium 2007: Water in mining environments 27–31

May 2007, Cagliari, Italy, pp 221–225

Martinez-Ramon M, Cristodoulou Ch (2006) Support vector

machines for antenna array processing and electromagnetic.

Universidad Carlos III de Madrid, Spain. Morgan & Claypool,

Seattle, p 120

Messikh N, Samar MH, Messikh L (2007) Neural network analysis of

liquid–liquid extraction of phenol from wastewater using TBP

solvent. Desalination 208:42–48

Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release,

transport and attenuation of metals from an old tailings

impoundment. Appl Geochem 20:639–659

Monjezi M, Shahriar K, Dehghani H, Samimi Namin F (2009)

Environmental impact assessment of open pit mining in Iran.

Environ Geol 58:205–216

Palani S, Liong S, Tkalich P (2008) An ANN application for water

quality forecasting. Mar Pollut Bull 56:1586–1597

Quang-Anh T, Xing L, Haixin D (2005) Efficient performance

estimate for one-class support vector machine. Pattern Recogn

Lett 26:1174–1182

Rooki R, Doulati Ardejani F, Aryafar A, Bani Asadi A (2011)

Prediction of heavy metals in acid mine drainage using artificial

neural network (ANN) from the Shur River of the Sarcheshmeh

porphyry copper mine, Southeast Iran. Environ Earth Sci (in

press)

Sanchez DV (2003) Advanced support vector machines and kernel

methods. Neurocomputing 55:5–20

Sengorur B, Dogan E, Koklu R, Samandar A (2006) Dissolved

oxygen estimation using artificial neural network for water

quality control. Fresen Environ Bull 15:1064–1067

Shahabpour J, Doorandish M (2008) Mine drainage water from the

Sarcheshmeh porphyry copper mine, Kerman, IR Iran. Environ

Monit Assess 141:105–120

Singh KP, Basant A, Malik A, Jain G (2009) Artificial neural network

modeling of the river water quality—a case study. Ecol Model

220:888–895

Specht DF (1991) A general regression neural network. IEEE Trans

Neural Netw 2(6):568–576

Stefano M, Giuseppe J (2006) Terminated ramp–support vector

machines: a nonparametric data dependent kernel. Neural Netw

19:1597–1611

Steinwart I (2008) Support vector machines. Los Alamos National

Laboratory, information Sciences Group (CCS-3), Springer

Vapnik V (1995) The nature of statistical learning theory. Springer-

Verlag, New York

Wang L (2005) Support vector machines: theory and applications,

Nanyang Technological University, School of Electrical &

Electronic Engineering. Springer, Berlin

Wang WJ, Xu ZB, Lu WZ, Zhang XY (2003) Determination of the

spread parameter in the Gaussian kernel for classification and

regression. Neurocomputing 55:643–663

Williams RE (1975) Waste production and disposal in mining,

milling, and Metallurgical industries. Miller-Freeman Publishing

Company, San Francisco

Zhao F, Cong Z, Sun H, Ren D (2007) The Geochemistry of rare earth

elements (REE) in acid mine drainage from the Sitai coal mine,

Shanxi Province, North China. Int J Coal Geol 70:184–192

Environ Earth Sci (2012) 67:1191–1199 1199

123


	Heavy metal pollution assessment using support vector machine in the Shur River, Sarcheshmeh copper mine, Iran
	Abstract
	Introduction
	Site description
	Sampling and field methods
	Support vector machine
	Support vector machine implementation for prediction of heavy metals
	Prediction by general regression neural network
	Discussion
	Conclusions
	References


