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Abstract In many rural communities, groundwater is

used to meet the water demand of the community and for

the irrigation of cultivating areas. The quality of ground-

water can be adversely affected by agricultural activities

and finally groundwater quality may become unsuitable for

human consumption and irrigation, as in the Harran Plain.

Hence, monitoring groundwater quality by cost-effective

techniques is necessary, as especially unconfined aquifers

are vulnerable to contamination. This study presents an

artificial neural network model predicting sodium adsorp-

tion ratio (SAR) and sulfate concentration in the unconfined

aquifer of the Harran Plain. Samples from 24 observation

wells were analyzed monthly for 1 year. Electrical con-

ductivity, pH, groundwater level, temperature, total hard-

ness and chloride were used as input parameters in the

predictions. The best back-propagation (BP) algorithm and

neuron numbers were determined for the optimization of

the model architecture. The Levenberg–Marquardt algo-

rithm was selected as the best of 12 BP algorithms and

optimal neuron number was determined as 20 for both

parameters. The model tracked the experimental data very

closely both for SAR (R = 0.96) and sulfate (R = 0.98).

Hence, it is possible to manage groundwater resources

in a more cost-effective and easier way with the proposed

model application.
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Introduction

The Harran Plain has been undergoing large land use

changes due to population growth and the accompanying

industrial, commercial and agricultural development. These

activities have produced multiple potential sources of con-

taminants from manure and artificial fertilizers, landfills,

accidental spills, and domestic or industrial effluent dis-

charges. Among these sources, agriculture-related activities

are well-known non-point source pollution. Agricultural

activities may deteriorate the groundwater quality in small

to large watersheds, especially due to uncontrolled use of

fertilizer and various carcinogenic pesticides (Almasri and

Kaluarachchi 2005). Variation in groundwater quality is a

function of physical and chemical parameters that are

greatly influenced by geological formations and anthropo-

genic activities as well (Subramani et al. 2005).

Turkey is currently engaged in a large integrated water

resources development project in its semi-arid southeastern

region. Commonly referred to by its Turkish acronym GAP,

the Southeastern Anatolia Project includes 22 dams in the

upper Euphrates–Tigris Basin, and aims to provide irriga-

tion for 1.7 million hectares of land by 2015 (Yesilnacar and

Gulluoglu 2008). As in other semi-arid and arid parts of the

world, water is a valuable resource in the GAP region.

Despite large quantities of water currently available from

the Euphrates and Tigris rivers, it has become increasingly

important to improve management of these resources

(Ozdogan et al. 2006) as the GAP region, and in particular

in the Harran Plain, faces problems of salinity, excessive

and uncontrolled irrigation, an insufficient drainage system
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and an increased groundwater level caused by irrigation

(Kendirli et al. 2005). An unconfined aquifer lacks a low-

permeability confining layer overlaying the aquifer. This

makes unconfined aquifers susceptible to contamination

from various human activities. Hence, unconfined aquifers,

like in the Harran Plain, should be monitored to protect

these vulnerable water resources from contamination.

Electrical conductivity (EC) and sodium adsorption ratio

(SAR) are two significant parameters to be considered

when assessing the irrigation water quality for potential

water infiltration problem. Waters containing high Na? and

low Ca2? and Mg2? have high SAR value and may destroy

the soil structure because of dispersion of clay particles.

Dispersion of clay particles in turn reduces the amount of

large pores, which are responsible for aeration and drain-

age, in the soil. SAR can be computed using the equation

(Eq. 1) below (Devadas et al. 2007):

SAR ¼ ½Naþ�=ðð½Ca2þ� þ ½Mg2þ�Þ=2Þ1=2 ð1Þ

where the ion concentrations are in meq/L.

According to regulations in Turkey (Turkish Ministry of

Environment and Forestry 2004), waters having SAR value

below 18 can be classified as ‘‘good’’ for irrigation pur-

poses and waters with SAR value higher than 26 cannot be

used for irrigation. Hence, the quality of groundwater

should be monitored as the aquifers are vulnerable to

pollution by various sources.

Sources of sulfate may be point and non-point sources.

According to Turkish regulations (TS 266 2005), sulfate

concentration should be below 250 mg/L in drinking

water. Also, high sulfate concentration affects the taste of

the water. Furthermore, sulfate concentrations above

500 mg/L may have a laxative effect on humans (Yes-

ilnacar and Gulluoglu 2008; Hudak 2000). Generally,

sulfate is beneficial in irrigation water, especially in the

presence of calcium. However, high concentration may be

unsuitable and with calcium sulfate may form a hard scale

in steam boilers (Hudak 2000). Sulfate in groundwater can

be used by sulfate-reducing bacteria, as electron acceptor

in the presence of organic carbon source and sulfide,

which causes precipitation of metals, is produced (Sahin-

kaya et al. 2007). Consequently, it is very important to

monitor or predict the SAR and sulfate concentration in

groundwater by means of cost-effective technologies. In

this context, black-box models like artificial neural net-

work (ANN) are very attractive, as these do not require

prior knowledge of the structure and relationships that

exist between important variables. Moreover, their learn-

ing abilities make them adaptive to system changes (Strik

et al. 2005). ANNs have already been used to simulate the

effect of climate change on discharge and the export of

dissolved organic carbon and nitrogen from river basins

(Clair and Ehrman 1996), forecast salinity (Maier and

Dandy 1996), simulate and forecast residual chlorine

concentrations within urban water systems (Rodriguez and

Sérodes 1998), determine the relationship between sewage

odor and BOD (Onkal-Engin et al. 2005), determine the

performance of sulfidogenic bioreactor (Sahinkaya et al.

2007) and determine the leachate amount from municipal

solid waste landfill (Karaca and Özkaya 2006). There are

also other similar applications of ANN in the field of

environmental engineering and geosciences.

In the literature, there are also some ANN studies

aiming to predict the conditions in soil and quality of

groundwater. Yesilnacar et al. (2008) developed an ANN

model predicting concentration of nitrate, the most com-

mon pollutant in shallow aquifers, in groundwater of the

Harran Plain. Das et al. (2010) used computational intel-

ligence techniques ANN and support vector machine to

develop models to predict swelling pressure from the

inputs: natural moisture content, dry density, liquid limit,

plasticity index and clay fraction. In another study,

Benerjee et al. (2009) used ANN feed-forward network-

based ANN model as a method to predict the groundwater

levels. Due to the complexity of hydrogeologic conditions

in fractured rock and the scale of interest of the study

domain, Mohammed et al. (2010) used a gray model that

combines the finite element method (FEM) and ANN for

more precise prediction of pore pressure changes.

As both sulfate and SAR are significant parameters for

assessing groundwater quality, they should be monitored

regularly by cost-effective and easy methods. To our

knowledge, few studies (Lischeid 2001) have been con-

ducted on ANN-based prediction of SAR and sulfate in

groundwater. In this sense, this study aimed at ANN pre-

diction of SAR values and sulfate concentrations in 24

representative observation wells in the Harran Plain.

Materials and methods

Description of the study area

The Harran Plain is located in the south-central part of the

GAP Project within the Sanliurfa–Harran Irrigation Dis-

trict (Fig. 1), which is 30 9 50 km and located in a region

of rolling hills and a broad plateau that extends south into

Syria. The plain, the largest in the GAP region, has

141,500 ha of irrigable land, 3,700 km2 of drainage area

and 1,500 km2 of plain area. Groundwater samples were

taken monthly for 1 year from 24 representative obser-

vation wells (Fig. 1), which were drilled on the Pleisto-

cene aged unit during the 2006-water year. The detailed

information on geology and hydrogeology of the study
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area can be found elsewhere (Yesilnacar and Gulluoglu

2008).

Analytical methods

Electrical conductivity (EC), temperature, pH and

groundwater level were measured with a SevenGo pro-SG7

conductivity meter, YSI 6600 sonde, a portable pH meter

and an electric contact meter immediately after sampling in

the field.

Concentrations of Ca?2, Mg?2 and Na? were deter-

mined by Varian Flame Atomic Absorption Spectrometer.

The concentration of sulfate (SO4
-2) and chloride (CI-) was

determined using Merck Spectroquant� test kits and a

Merck Nova 60 photometer.

Total hardness (TH) of groundwater was calculated

using the formula given below:

TH (as mg CaCO3=L) ¼ ðCaþ2 þMgþ2Þ meq=L� 50:

ð2Þ

Modeling

A neural network is defined as a system of simple pro-

cessing elements, called neurons, which are connected to a

network by a set of weights (Fig. 2). The network is

determined by the architecture of the network, the magni-

tude of the weights and the processing element’s mode of

operation. The neuron is a processing element that takes a

number of inputs, weights them, sums them up, adds a bias

and uses the result as the argument for a singular valued

function, the transfer function, which results in the neu-

ron’s output (Strik et al. 2005). At the start of training, the

output of each node tends to be small. Consequently, the

derivatives of the transfer function and changes in

the connection weights are large with respect to the input.

As learning progresses and the network reaches a local

minimum in error surface, the node outputs approach

stable values. Consequently the derivatives of the transfer

Fig. 1 Location map of the study area (a) and the location of the sampling wells (b). Blue lines show the roads in the study area

Fig. 2 The neural network structure for the prediction of SAR and

sulfate concentration in monitoring wells
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function with respect to input, as well as changes in the

connection weights, are small (Maier and Dandy 1996).

Back-propagation (BP) algorithms use input vectors and

corresponding target vectors to train ANN. The standard

BP algorithm is a gradient descent algorithm, in which the

network weights are changed along the negative of the

gradient of the performance function (Abdi et al. 1996;

Nguyen and Widrow 1990). There are a number of varia-

tions in the basic BP algorithm that are based on other

optimization techniques such as conjugate gradient and

Newton methods. For properly trained BP networks, a new

input leads to an output similar to the correct output. This

ANN property enables training of a network on a repre-

sentative set of input/target pairs and achieves sound

forecasting results.

Although some researchers suggest that one hidden

layer is usually sufficient (El-Din and Smith 2002), the

introduction of additional hidden layers allows the fit of a

larger variety of target functions and enables approxima-

tions of complex functions with fewer connection weights

(Toth et al. 2000). In this study, a two-layer ANN with a

tan-sigmoid transfer function for the hidden layer and a

linear transfer function for the output layer were used.

Figure 2 shows the ANN structure used in the study. The

input and output parameters used in the ANN modeling are

shown in Table 1. The data were divided into training,

validation and test subsets. Half of the data were used for

training and one-forth of the data was used for validation

and tests, respectively.

As a preliminary statistical analysis before ANN study,

the correlation matrix was used to explore the degree of

linear correlation between the input and output variables

(Table 1).

Selection of back-propagation algorithm

BP neural networks have become a popular tool for mod-

eling environmental systems (Maier and Dandy 1996). In

this study, 12 BP algorithms were compared to select the

best fitting one. For all algorithms, we used a two-layer

network with a tan-sigmoid transfer function within the

hidden layer and a linear transfer function within the output

layer. In the selection of BP algorithm, the number of

neurons was kept constant at 20. The learning rate

parameter may also play an important role in the conver-

gence of the network, depending on the application and

network architecture. The learning rate can be used to

increase the chance of preventing the training process

being trapped in a local minimum instead of a global

minimum (Hamed et al. 2004). A larger learning rate

involves a bigger step. If the learning rate is too large, the

algorithm becomes unstable. If the learning rate is set too

small, the algorithm takes a long time to converge. In

addition, the momentum allows a network to respond not

only to the local gradient, but also to recent trends in the

error surface. Without momentum, a network may get

stuck in a shallow local minimum (Hagan et al. 1996). In

this study, the learning rate and the momentum constant

were 0.1 and 0.9, respectively. The performance results of

the model with each back-propagation algorithms are

provided in Table 2. The performance of the BP algorithms

was evaluated with the root-mean square error (MSE) and

determination coefficient (R) between the modeled output

and measured data set. The best BP algorithm with mini-

mum training error and maximum R was the Levenberg–

Marquardt (trainlm) algorithm both for SAR vales and

sulfate concentrations (Table 2).

Optimization of neuron number

After selecting the best BP algorithm, Levenberg–Marqu-

ardt (trainlm) algorithm, the number of neurons was opti-

mized keeping all other parameters constant (Table 3). For

the output variables (SAR and sulfate concentration), the

squared mean error decreased for the training set with

increasing neuron numbers (Table 3). However, after

optimum neuron number (20 in our case), the squared mean

errors did not change significantly. So, all the modeling

was carried out using Levenberg–Marquardt (trainlm)

algorithm with 20 neurons for both output parameters

(SAR and sulfate concentration).

Results and discussion

The linear correlation coefficients (Table 1) between sul-

fate and pH, and temperature and groundwater level were

Table 1 Input and output parameters in ANN modeling and linear

correlation coefficients (R2) between input and output variables

Linear correlation

coefficients (R2)

SAR Sulfate

Input parameters (P)

Electrical conductivity (lS/cm), P1 0.22 0.48

pH, P2 0.01 0.00

Groundwater level (m), P3 0.01 0.01

Temperature (�C), P4 0.00 0.00

Total hardness (mg CaCO3/L), P5 0.04 0.66

Chloride (mg/L), P6 0.28 0.37

Output parameters (T)

SAR, T1

Sulfate concentration (mg/L), T2

Bold values are the highest R2 values
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very small and sulfate exhibited the highest correlation

with total hardness (R2 = 0.66). Similar to sulfate, the

linear correlations between SAR and the input variables

were weak and the SAR exhibited the highest correlation

with chloride (R2 = 0.28). The correlation analyses indi-

cated the weakness of the linear relationship between input

and output (SAR and sulfate) variables. In addition to

standard linear regression, a multiple linear regression

analysis was performed using POLYMATH 6.10 taking

conductivity, pH, groundwater level, temperature, total

hardness and chloride as independent variables and SAR or

sulfate as the dependent variable. The R2 values of multiple

linear regression models were 0.75 and 0.46 for sulfate and

SAR predictions, respectively (data not shown). Hence, the

use of conventional regression techniques to predict the

sulfate and SAR variations using easily measurable

parameters (conductivity, pH, groundwater level, temper-

ature, total hardness and chloride) is irrelevant and more

powerful methods, such as ANN, is needed (Mjalli et al.

2007). In this context, the applicability of ANN was

investigated to predict SAR vales and sulfate concentra-

tions in 24 observation wells in the Harran Plain. The

groundwater quality in the observation wells was previ-

ously described in detail by Yesilnacar and Gulluoglu

(2008). In this study, we have used the aforementioned

water quality parameters (Table 1) in the predictions.

The variation of input parameters is provided in Fig. 3.

The groundwater of the study area is mainly alkaline in

nature, as the pH values of groundwater ranged from 7.0 to

7.5. The average temperature of the wells was around

20�C. The electrical conductivity value in the wells varied

between 400 and 8,235 lS/cm, with the average of

1,526 lS/cm. The maximum allowable conductivity value

is 2,500 lS/cm in TS266 and the European Union (EU)

directives (Yesilnacar and Gulluoglu 2008). Hence, the

groundwater conductivity in most of the observation wells

exceeds the maximum allowable value. Previous studies

have reported soil salinity of this area to be fairly high as

well. Excessive amounts of dissolved ions in irrigation

water affect plants and agricultural soil physically and

Table 2 Comparison of back-propagation algorithms for predicting SAR and sulfate concentration in monitoring wells (neuron number was 20)

Back-propagation algorithms SAR Sulfate

R value MSE Iteration number R value MSE Iteration number

Trainlm (Levenberg–Marquardt) 0.956 0.0266 12 0.98 0.0031 14

Traincgp (Polak–Ribiére conjugate gradient) 0.96 0.05507 73 0.958 0.0457 38

Traingd (gradient descent) 0.586 0.5802 100 0.813 0.3491 100

Traingda (adaptive learning rate back-propagation) 0.879 0.2480 87 0.928 0.1015 97

Traingdx (variable learning rate gradient descent) 0.85 0.2311 100 0.903 0.1461 53

Trainrp (resilient back-propagation) 0.922 0.0964 33 0.959 0.0517 22

Trainscg (scaled conjugate gradient) 0.904 0.1267 38 0.969 0.0319 59

Trainoss (one step secant) 0.934 0.0905 44 0.943 0.0798 21

Traincgf (Fletcher–Powell conjugate gradient) 0.935 0.0675 54 0.927 0.0896 15

Trainbfg (BFGS quasi-Newton) 0.955 0.0502 37 0.932 0.0363 27

Traingdm (gradient descent with momentum) 0.515 3.828 11 0.66 14.037 10

Traincgb (conjugate gradient with Powell/Beale restarts) 0.924 0.0836 33 0.947 0.0528 17

The italicized algorithm was selected for further analysis

Table 3 R values, mean square

errors and iteration numbers at

different neuron numbers for

predicting SAR and sulfate

concentration in monitoring

wells (Levenberg–Marquardt

BP algorithm was used)

The best neuron number is

italicized

Neuron number SAR Sulfate

R value MSE Iteration number R value MSE Iteration number

3 0.94 0.0774 19 0.951 0.0504 17

5 0.916 0.1079 17 0.963 0.0324 22

10 0.959 0.03977 14 0.971 0.0090 22

15 0.933 0.0220 13 0.975 0.0103 18

20 0.956 0.0266 12 0.98 0.0031 14

25 0.951 0.0085 13 0.968 0.0011 15

30 0.936 0.0017 10 0.963 0.0038 10

40 0.864 0.0024 11 0.955 0.0013 11
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chemically, thus reducing the productivity (Şahinci 1991).

The groundwater levels (depth below surface) in the wells

were between 0.6 and 15 m except for well 4, in which

groundwater level was around 50 m (Fig. 3). The total

hardness in the wells was between 107 and 1,612 mg

CaCO3/L and averaged 450 mg CaCO3/L. Similarly,

chloride concentrations showed significant variation

between 9 and 760 mg/L with an average of 112 mg/L.

The maximum allowable concentration of sulfate in

drinking water is 250 mg/L according to the TS 266

(Yesilnacar and Gulluoglu 2008). Sulfate concentrations in

24 observation wells ranged from 3 to 1,330 mg/L, with an

average value of 183 mg/L. Except for well nos. 22, 21, 17,

18 and 23, the average sulfate concentrations were found to

be below the maximum allowable value of 250 mg/L

designated by the TS 266 standard, the WHO guidelines

and the EU directive. The natural source of sulfate in the

study area is the thin gypsiferous layers within the Pliocene

aged deposits. In particular, gypsum and anhydrite appear

in evaporate deposits in the center of Anatolia and in

southeast Anatolia (Erguvanli and Yüzer 1987). The

anthropogenic sources of sulfate are the excessive use of

artificial fertilizers in intensive agricultural activities,

especially in the southeast part of Şanlıurfa and in the

vicinity of Harran, and household sewage.

SAR values in 24 observation wells were between

0.0048 and 10.94 with an average value of 1.37. The SAR

values were below the maximum allowable value of 26.
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Fig. 3 The variation of input parameters in ANN modeling

Fig. 4 Training, validation and test square mean errors for Leven-

berg–Marquardt algorithm with 20 neurons for SAR prediction
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As an example, training, validation and test mean-

squared error (MSE) for Levenberg–Marquardt algorithm

with 20 neurons in the prediction of SAR are illustrated in

Fig. 4. The training was stopped after 12 iterations as MSE

did not change significantly. We also performed a regres-

sion analysis between network output (A) and the corre-

sponding target (T) (Fig. 5). The R and MSE values were

observed as 0.956 and 0.0266 for SAR and 0.98 and 0.0031

for sulfate, respectively (Table 3). The variations of mea-

sured and predicted data are also presented in Fig. 6 and

the model data tracked the experimental data closely for

both output parameters. Hence, ANN is a powerful tool in

the prediction of SAR and sulfate in groundwater. Using

ANN predictions, the usage purposes of the wells can be

determined, which makes it easy to manage huge ground-

water resources.

Similarly, Yesilnacar et al. (2008) presented an ANN

model predicting the concentration of nitrate, the most

common pollutant in shallow aquifers, in the groundwater

of the Harran Plain. The samples from 24 observation wells

were analyzed monthly for 1 year. The Levenberg–

Marquardt algorithm was selected as the best of 12 BP

algorithms and optimal neuron number was determined as

25. The model tracked the experimental data very closely

(R = 0.93).

The effect of eliminating each input variable on the

ANN prediction performance was also analyzed based on

the correlation index (R) using the expression given below

(Eq. 3) (Gontarski et al. 2000).

ð%influence) ¼ 100ð1� Ri=RCBÞ ð3Þ

where RCB is the correlation index between predicted and

observed values for the base case. Ri is the correlation

index for the case in which one input variable is eliminated.

In the estimation of sulfate, total hardness is the most

important parameter and the elimination of total hardness

decreased R value by 12%. In the estimation of SAR,

chloride is the most important parameter among the used

input parameters as the elimination of chloride decreased

the R value by 14% (Table 4). Results in Table 4 also

support that acceptable predications may still be possible

even if any parameter, whose determination is relatively

costly or difficult (such as chloride), is eliminated from the

input data. In the linear regression analyses (Table 1), total

hardness and chloride exhibited highest correlation with

Fig. 5 Linear regression between the network outputs (A) and the

corresponding targets (T) using Levenberg–Marquardt algorithm with

20 neurons for SAR (a) and sulfate (b) predictions

Fig. 6 Measured and the neural network prediction of SAR (a) and

sulfate concentration (b) in groundwater of 24 observation wells

Environ Earth Sci (2012) 67:1111–1119 1117

123



sulfate and SAR, respectively. Hence, linear regression

analyses may be used as a preliminary study to select the

significant input parameters in ANN modeling. A similar

finding was also reported in the study of Moral et al. (2008)

for the prediction of a full-scale biological treatment plant

performance using ANN modeling.

Conclusions

This study demonstrates that ANN provides a robust tool for

predicting sulfate and SAR values in 24 observation wells of

the Harran Plain. To our knowledge, this is the first study

optimizing the architecture of ANN to predict sulfate and

SAR in groundwater. The sulfate concentration and SAR

value may increase due to the intensive agricultural practices

and the excessive use of artificial fertilizers. Both SAR and

sulfate can easily be predicted with the designed, trained,

validated neural network model. Although the model was

applied to a specific site, excellent fits to a wide range of data

claim that model can also be applied to other sites after

optimizing the model architecture. Chloride and total hard-

ness were found to be the most sensitive parameters for SAR

and sulfate prediction, respectively. With the proposed

model applications, it is possible to manage groundwater

resources in a more cost-effective and easier way.
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