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Abstract Environmental problems caused by extraction

of minerals have long been a focus on environmental earth

sciences. Vegetation growing conditions are an indirect

indicator of the environmental problem in mining areas. A

growing number of studies in recent years made substantial

efforts to better utilize remote sensing for dynamic moni-

toring of vegetation growth conditions and the environment

in mining areas. In this article, airborne and satellite

hypersectral remote sensing data—HyMap and Hyperion

images are used in the Mount Lyell mining area in

Australia and Dexing copper mining area in China,

respectively. Based on the analyses of biogeochemical

effect of dominant minerals, the vegetation spectrum and

vegetation indices, two hyperspectral indices: vegetation

inferiority index (VII) and water absorption disrelated

index (WDI) are employed to monitor the environment in

the mining area. Experimental results indicate that VII can

effectively distinguish the stressed and unstressed vegeta-

tion growth situation in mining areas. The sensitivity of VII

to the vegetation growth condition is shown to be superior

to the traditional vegetation index—NDVI. The other

index, WDI, is capable of informing whether the target

vegetation is affected by a certain mineral. It is an

important index that can effectively distinguish the

hematite areas that are covered with sparse vegetation. The

successful applications of VII and WDI show that hyper-

spectral remote sensing provides a good method to effec-

tively monitor and evaluate the vegetation and its

ecological environment in mining areas.

Keywords Environment monitoring � Spectral analysis �
Vegetation index � Hyperspectral remote sensing � Mining

Introduction

Mining activities usually cause serious heavy metal pol-

lution in soil and water. The weathering of mullock and

mining tailings helps transportation of the heavy metal in

polluted areas into soil, rivers, and groundwater, resulting

in damage to the ecosystem in surrounding areas (Shi et al.

2002). The presence of heavy metal elements in minerals

can lead to vegetation variety and impact vegetation

growth. Monitoring vegetation growth is important, espe-

cially, in mining areas because vegetation indirectly

reflects its growing environment. The traditional method of

vegetation growth monitoring, field investigation has the

disadvantage of cost-consuming, time-consuming, and

labor-consuming, and cannot provide accurate information

for large spatial area. The application of remote sensing

data in monitoring and effective evaluation of vegetation

and its growing environment in mining areas can provide

prompt information about vegetation growth and solid

scientific background for policy makers in environmental

control in those areas.

The pollution in the ecosystem and the damage to

vegetation can be effectively diagnosed and monitored by

remote sensing technology (Xu et al. 2003). The hyper-

spectral data provides us an effective tool for monitoring
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plant species (Davison et al. 1999), vegetation growth

condition (Noland et al. 2003; Lévesque and King 2003; Li

et al. 2008), bio-chemical information (Asner et al. 1998;

Curran 1994; Lewis et al. 2001; Sampson et al. 2003;

Zarco-Tejada et al. 2004a and b), and mining environments

(Gan et al. 2004). Various technologies based on airborne

and satellite imagery have been used to monitor vegetation

growth conditions, including the vegetation indices (VI),

red edge effect, spectral absorption feature analysis, spec-

tral blended analysis, wavelet transformation, and neural

networks (Ustin et al. 1999; Li et al. 2005). The hyper-

spectral vegetation indices are widely used in analyses of

lignin and nitrogen element content (Serrano et al. 2002),

water content (Sims and Gamon 2003), leaf area index

(Haboudane et al. 2004; Ludwig et al. 2007; Houborg et al.

2007), chlorophyll content (Hu et al. 2004; Zhang et al.

2008; Darvishzadeh et al. 2008), and have also been fre-

quently used in monitoring vegetation and the environment

(Broge and Mortensen 2002). In recent years, many efforts

have been devoted to the biogeochemical effects moni-

toring and vegetation growing environment evaluation via

remote sensing: Garty et al. (2001) explored the connection

between wave spectrum of fruticose lichen and the degree

of air pollution; Schuerger et al. (2003) detected the zinc

effect on grass and chlorophyll concentrations by hyper-

spectral and fluorescence data; Kooistra et al. (2004)

attempted to determine the relationship between reflectivity

feature of field vegetation and heavy metal pollution in

flood plains; Rosso et al. (2005) and Li et al. (2005)

investigated the heavy metal pollution in soil and biolog-

ical effect and wave spectral features of Virginia Salicornia

europaea coerced by heavy metal and oil–gas pollution, as

well as the investigation and application of heavy metal

pollution in soil; Dunagan et al. (2007) studied the effect of

Hg polluted soil onto visible infrared spectrum of spinach

that grows in the soil and Gallagher et al. (2008) investi-

gated the effect of enriched heavy metal in soil onto gray

birch productivity.

Vegetation indices, which are normally based on satel-

lite observation in the red and near-infrared wavebands, are

widely employed as measures of green vegetation density

and the absorption rate of photosynthetic solar radiation.

However, these vegetation indices have limitations. For

instance, the most widely used normalized difference

vegetation index (NDVI) is easy saturation over dense

vegetation areas and sensitive to the canopy backgrounds

of the vegetation (Huete and Liu 1994; Leprieur et al. 2000,

Jiang et al. 2006). In other words, NDVI is sensitive to the

fraction of vegetation coverage, as well as low chlorophyll

concentrations (Yoder and Waring 1994). However, it is

not sensitive to higher chlorophyll concentrations or to rate

of photosynthesis for large vegetation coverage (Gitelson

et al. 1996). While a number of alternative vegetation

indices based on the same two spectral bands has been

developed since NDVI, most indices have the aim of

reducing the sensitivity of the index to extraneous factors

such as soil background or the atmosphere (Steven et al.

2003). However, stressed vegetation, which indicates the

environment deterioration in the mining area, cannot be

distinguished from the environmental background with a

wide range of chlorophyll-a concentration.

This paper has two objectives: (1) how to use an

effective vegetation index, based on both airborne and

satellite hyperspectral images, to monitor the vegetation

growth condition which could indirectly reflect the vege-

tation growing environment in the mining environmental

stress area and (2) how to adopt a new hyperspectral index

that is suitable to directly monitor the poor vegetation

growth environments that are affected by a certain mineral

in the mining area. Based on an analysis of the geochem-

ical effects on vegetation in the mining area together with a

detailed analysis of vegetation spectrum and vegetation

indices, two spectral indices derived from hyperspectral

data that are applicable to the evaluation of vegetation

environment in the mining area were proposed. The

intention of this paper was to develop tools for fast and

quantitative monitoring of vegetation conditions in mining

areas and effective evaluation of vegetation growing

environment in mining areas.

Materials and theory

Study area and remote sensing data

The experiments were performed in the Mountain Lyell

mining area in Tasmania and Dexing copper mining area,

Jiangxi Province in China. Tasmania, located in the south of

Australia, is the only island of Australia and is abundant in

mineral resources. The largest reserve of mineral resources

is found in its rugged western region. Mountain Lyell is in

the Queenstown area in the west of Tasmania. It has abun-

dant minerals such as copper, silver, and gold, which have

been extracted since 1885, and produces large amounts of

copper pyrite, quartz, hematite, and dolomite (Raymond

1996; Corbett 2001). Intensive exploitation for more than

100 years has inevitably brought negative effects on the

ecosystem in this area, including a drop in the water level,

land subsidence, soil acidification, decreased vegetation

coverage, and a vulnerable ecological environment (Feath-

erstone and O’Grady 1997; Stauber et al. 2000; Gault et al.

2005). Dexing copper mine is the largest open-cast mine in

China and is the second largest in the world. It accounts for

about 20% of total Chinese production with daily output

capacity of more than 100,000 tons. The problems associ-

ated with mining are: the weathering of waste-rock piles
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which produces a large quantity of acidic drainage, and the

discharge from the ore-flotation plant, which produces large

amounts of alkaline effluent with a high content of fine ore-

tailing particles (Muller and Tang 1996).

This paper uses hyperspectral remote sensing data for

the two test sites obtained in 2003 by the HyMap imaging

spectrometer developed by Australian Integrated Spec-

tronics and in 2009 by the Hyperion imaging spectrometer

developed by NASA, respectively. HyMap and Hyperion

both continuously cover the visible to short-wave infrared

spectral regions (400–2,500 nm). HyMap has 128 wave-

bands, while Hyperion has 242 bands. The spectral reso-

lution of HyMap is 10–20 nm with an instantaneous field

(IFOV) view of 1–3 mrad and with viewing angles from 30

to 65�. On the other hand, Hyperion has a spectral reso-

lution of 10 nm, IFOV of 0.043 mrad, crosstrack FOV of

0.63 mard (Cocks et al. 1998; Pearlman et al. 2003). The

airborne instrument of HyMap is equipped with navigation

and location system, positioning and attitude parameters

recording device, and a three-axis stabilized gyro platform.

The manufacturer also developed the 6S-based special

module for atmospheric correction of images. HyMap

features a high signal-to-noise ratio (500:1), high-ground

resolution (5–10 m), and fine spectral resolution, and has

great potential in ground-object identification and envi-

ronment monitoring. Hyperion, on the other hand, permits

global quantitative temporal hyperspectral monitoring of

earth surface processes, although its spatial resolution is

coarser (30 m) compared with that of HyMap.

Experiment and theory

According to field investigations, vegetation health is

negatively correlated with the distance of the vegetation

from its closest mine. Therefore, plants far away from the

mine grow better. Mismanagement of the mining area and

gangue leads to great content of heavy metal elements in

soil near the mine. After the infiltration enters into soil, the

heavy metal pollutants would have physical, chemical and

biological reactions with soil components, which lead to

soil acidification or basification, and the elution and seep-

age of soluble pollutants cause groundwater and surface

water contamination. These pollutants could be absorbed

by vegetation and engaged in a series of biogeochemical

reactions, which can result in poor growth conditions of

vegetation near the mine. The process of pollution changes

the vegetation biochemical parameters and the corre-

sponding spectrum, which enables us the extraction of

vegetation spectral curve and analyzes its pollution infor-

mation in the mining area. Li et al. (1996) measured the

reflection spectrum of paddy rice leaf in soil under different

acidification and suggested that the reflectance value at

different wavebands varies with acidity: where reflectance

at blue, green, and red wavebands increases as the pH value

decreases, while the reflectance of near infrared decreases

with decreased pH value (Fig. 1a). Similarly, the spectra

which are extracted from the regions of dense and sparse

vegetations in the HyMap imagery in the test site show that

the reflectance for the dense vegetation (better growth

conditions) is lower than that for sparse vegetation (poor

growth conditions) at blue, green, and red wavebands, but

higher in the near-infrared waveband (Fig. 1b).

Commonly, spectral indices of vegetation are established

with reflectance at NIR and RED wavebands. The nor-

malized difference vegetation index is originally defined as:

NDVI¼ qNIR � qREDð Þ= qNIR þ qREDð Þ � 100 ð1Þ

where, qNIR and qRED is the reflectance in near-infrared

waveband and red waveband, respectively. Based on the

spectral characteristics that were mentioned earlier as

shown in Fig. 1, the visible and near-infrared waveband

reflectance can be used to produce the effective index

that measures the vegetation growing conditions. NIR is

indicative wavebands that distinguish the different vegeta-

tion growing environments. The atmospheric effect in NIR

Fig. 1 a The spectral response of rice leaves in different soil acidity

(Li et al. 1996) and b the spectra for vegetation with different growth

condition extracted from HyMap image. a indicated that the

reflectance values at different wavebands (blue, green, red, and

near-infrared) varied with soil acidity, while the reflectance for the

thick vegetation and sparse vegetation in (b) have the same trend with

the reflectance as (a) shown
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is small due to aerosol scattering and absorption. Gitelson

et al. (1996) found that the bands of maximum sensitivity to

chlorophyll-a concentration were around 520–630 nm (the

green band) and also near 700 nm. The index GARI (using

green and NIR bands) proposed in Gitelson’s paper has

wider dynamic range and on average at least five times more

sensitive to chlorophyll-a concentration than NDVI (using

red and NIR bands). Therefore, GREEN bands rather than

RED bands (which are chosen by NDVI) are more suitable

for monitoring vegetation growth conditions.

Of note, the Hymap and Hyperion images, which are

used to establish the two indices on, are already the surface

reflectance data (atmospheric correction implemented by

the radiometric correction module that is developed by the

manufacturer and integrated in the ENVI FLAASH mod-

ule). The depths of the two-water absorption bands (near

960 and 1,100 nm) of vegetation that change with its

growth conditions are highly related to each other. The

indices (VII and WDI) that are introduced in the following

sections are constructed utilizing the relationship men-

tioned earlier and the bands combination with the best

sensitivity of chlorophyll-a concentration.

Results and discussion

Using VII to monitor vegetation growth condition

Based on the aforementioned two theories, the integral of

reflectivity at green peak and near-infrared is adopted to

represent the growth condition of vegetation as hyper-

spectral images have relatively small spectral sample

intervals and continuous coverage of the two wavebands,

which is superior to other index with single green and near-

infrared wavebands. This algorithm keeps the absorptive

features at visible wavelength and the reflective charac-

teristics at near-infrared waveband while it increases the

contribution rate of growing environment to vegetation

spectra, which avoids the ineffective measurement due to

fast saturation of NDVI. The green bands from 497 to

635 nm and the near-infrared bands from 700 to 1,200 nm

are chosen as they are sensitive to the concentration of

chlorophyll-a for a wide range. The spectral integral

approach is presented as follows:

a ¼
Rk2

k1

q ðkÞ dk k 2 ½497; 635� ð2Þ

b ¼
Rk4

k3

q ðkÞ dk k 2 ½700; 1; 200� ð3Þ

D ¼ b� a ð4Þ

where, a stands for the integral of reflectivity at green peak,

b stands for the integral of reflectivity at near-infrared

portion, D is the difference between integral values at near-

infrared reflectivity and green peak reflectivity. Parameters

a and b in the formula are normalized respectively to make

them on the same level as shown below:

Na ¼ a
. XX

a x; yð Þ

.
m� nð Þ

� �
ð5Þ

Nb ¼ b
. XX

b x; yð Þ

.
m� nð Þ

� �
ð6Þ

ND ¼ D
. XX

D x; yð Þ

.
m� nð Þ

� �
ð7Þ

where, Na, Nb and ND stand for the normalized values of

the integral of reflectivity at the green peak, the near-

infrared portion, and the normalized difference value,

respectively. The subscript x and y identify the row and

column of each pixel in the hyperspectral image, while

m and n stand for the number of rows and columns of the

study area. In the areas with poor vegetation growth con-

dition or barren soil, Na will be higher, Nb will be lower, so

ND will be reduced (Fig. 1). Areas with vegetation cover

are masked by setting the threshold to the featured bands

(represent the best contrast between spectra of different

growth conditions, referred to the ‘‘continuum removal’’

algorithm (Clark and Roush 1984) of HyMap and Hyperion

reflectivity images.

Na, Nb, and ND were calculated for each pixel in the

vegetation area and generate a composite image (red band,

Na; blue band, Nb and green band, ND). Therefore, red

pixels are the areas where vegetation grows poorly and the

cyan pixels have better vegetation growth as shown in

Fig. 2. Figure 2 is part of the composite image in the

mining area (Gormanstion, east of Queenstown), where

there was great environmental pressure and serious pollu-

tion. While the vegetation in this area had poor growth

condition, this composite image can still highlight the

Fig. 2 The composite image of Na, Nb and ND in Gormanston (High:

Bad growth conditions, Low: good growth conditions)
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differences. Hence, it has a relatively high sensitivity to

vegetation growth condition.

Therefore, the vegetation inferiority index (VII) is

defined as follows:

VII ¼ Na � Nb

� ��
Na þ Nb

� �
� 100 ð8Þ

For the areas with poor vegetation growth, if Na is

relatively high and Nb is relatively low, then the VII index

becomes larger. Figure 3a shows the VII index derived

from the HyMap data over the study area. In the mining

area, northwest and southeast of the study area, the

vegetation obviously grew worse than in the north and

south of the study area. Furthermore, VII could reflect the

difference of the vegetation growth within the mining

area and also show the influence scope of the mineral

environment pollution. Figure 3b depicts the NDVI image

derived from the HyMap imagery over the study area.

Compared with Fig. 3a, the vegetation growth condition is

not well reflected in NDVI image due to fast saturation

of NDVI in the dense vegetation area. However, for the

area with relatively poor growth, vegetation cannot be

distinguished from the environmental background.

To further compare VII and NDVI, the vegetation area

over the mining area was chosen to analyze the histograms.

Figure 4a shows that the VII histogram after linear contrast

stretch is extended fully between 0 and 255 and the images

present a good contrast ratio, whereas a large portion of the

NDVI values are clustered near the minimum and maxi-

mum values when the NDVI histogram is stretched

(Fig. 4b), which is not optimal for the classification of

vegetation growth condition.

In addition, Fig. 5 shows the VII and NDVI images

using two reverse color look-up tables. It is clear that

NDVI index indicates good growth conditions for most of

the vegetation in the mining area, whereas the VII index

clearly depicts the medium-to-poor gradient of vegetation

growth conditions, which is in accordance with the fact.

Compared with NDVI, VII index can better identify the

difference in vegetation growth conditions. Hence, VII will

have more advantages for indirectly reflecting vegetation

growing environment in mining area.

This index is also applied to satellite hyperspectral

images to test its applicability to satellite observation

system. The VII index is calculated from the Hyperion

images for the Dexing copper mining area in Jiangxi

Province of China to analyze the spatial distribution of

pollution in this area (Fig. 6). For vegetation areas sur-

rounded by rivers and gangue, VII showed gradual transi-

tion from red to blue, indicating the relatively poor growth

condition, which is consistent with the field investigation

and previous literatures (Gan et al. 2004; Liu et al. 2004;

Li 2006). This reinforces the conclusion showing that VII

can indirectly reflect, to some extent, the polluted envi-

ronment in mining areas through analyzing the vegetation

growth condition.

The application of WDI on environment monitoring

in mining areas

VII could only reflect whether the vegetation growing

environment is good or bad in the mining area; however, it

is not capable of identifying whether the vegetation

growing environment is abundant in certain kinds of metal

or heavy metal mineral. Therefore, it is necessary to

develop a method that able to identify the minerals covered

with vegetation to obtain accurate growth conditions of

Fig. 3 VII image (a) and NDVI

(b) image derived from HyMap

imagery over the study area in

Mount Lyell mining area. VII

effectively distinguish whether

the growth of vegetation is good

or bad in the mining area with

environmental pressure that

NDVI could not do

Fig. 4 A Comparison of the stretched histograms of VII (a) and

NDVI (b) over the vegetation areas
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vegetation in the mining area. WDI is an important index

that can effectively distinguish the exposed hematite area

from a large amount of vegetation coverage, especially the

hematite areas that are covered with sparse vegetation.

There are two weak water-vapor absorption belts for

healthy vegetation near the infrared spectral bands at 0.968

and 1.181 lm as shown in Fig. 7a. Two weak water-vapor

absorption belts are both mainly formed by water content

in green leaves; therefore, the changes of the two absorp-

tion valleys on vegetation spectra have similar trends.

Analysis of leaf water absorption index (LWAI) (Fig. 8)

derived from the two absorption valleys of green leaves on

HyMap images shows that there is a high correlation

between the two absorption valleys.

The spectrum (Fig. 7b) of iron ore shows that there is an

absorption valley near 0.96 lm on the spectrum of iron ore,

but no 1.1 lm absorption; thus the absorption valley depths

at these two places have no correlation. The spectrum

features of soil differ from those of iron ore and vegetation

because there is no strong absorption near 0.96 and 1.1 lm.

For the vegetation areas with iron ore as the underlying

surface, the difference of absorption occurs near 0.96 and

1.1 lm. Therefore, the iron ore region can be detected by

applying thresholds to uncorrelated wavelengths at water-

vapor absorption belts at pixel level. The water absorption

disrelated index (WDI) is designed as follows:

WDI ¼
P

LWAI1;181P
LWAI968

LWAI968 � LWAI1;181 ð9Þ

where,
P

LWAI1;181 is the accumulated value for

LWAI1;181 and
P

LWAI968 is the accumulated value for

LWAI968 of the whole study area. The absorption feature

was normalized based on the statistics on the two accu-

mulated absorption features for the entire map. Due to the

strong correlation of the two absorption features in the

vegetation areas, the WDI in the region with non-mineral

pollution should be close to zero. As the two absorption

features of soil is zero, the WDI value for bare soil is also

close to zero. However, the WDI value in bared iron ore

areas and the vegetation area contaminated by iron ore

is not zero. In this study, WDI is retrieved from the

Hymap image and the threshold of 0.4 for WDI is applied.

The areas with the WDI higher than 0.4 suggest that the

depths of the two-water absorption valleys are not highly

Fig. 5 Comparison of the color

density slice images of VII (left)
and NDVI (right) using two

reverse color look-up tables

Fig. 6 The VII index image

(b) of the DEXING mining area

derived from Hyperion data (a)
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correlated. The bare iron ore areas or the vegetation areas

contaminated by iron ore are illustrated in the red portion

of Fig. 9.

The reflectivity curve (Fig. 9c, middle) for a pixel in red

is found to closely resemble the spectral feature of Fe2O3

ore measured in the laboratory. It is well known that Fe2O3

ore is stored at the bare surface of this mining area.

According to Fig. 9, areas abundant in iron ore are also

extracted in strip riverways on the right side of the iron ore

areas, which is possibly formed by deposition of iron ore

washed down by the stream. The bare areas around the

riverway are identified as areas that are not abundant in

iron minerals. There are large areas of bare rock-soil in the

central part of the study area. The spectrum of the bare

rock-soil area (Fig. 9c, upper) differs from the spectral

signature of the iron ore area. From the above analysis,

WDI can be used to distinguish bare iron ore areas from

bare non-iron ore areas.

Except for the bare areas, the vegetation areas (either

polluted or not polluted by iron ore) can also be identified

by the WDI index. The comparison between the spectrum

(Fig. 9c, lower) of the vegetation area containing iron ore

and the spectrum of normal vegetation (Fig. 7a) reveals

that the vegetation area with iron ore has two absorption

vallies at 0.96 and 1.1 lm wavebands, which is different

from the spectrum of normal vegetation. This is why WDI

can identify the vegetation area with iron ore underneath.

Conclusions

Based on the analysis of the spectral features of the veg-

etation spectrums in the mining areas, two vegetation

indices are introduced: VII and WDI. They are applied on

HyMap and Hyperion hyperspectral data to monitor the

vegetation growth condition and its growing environment

in the Mount Lyell mining area and Dexing copper mine.

Thus, the polluted environment caused by mining could be

analyzed. The results showed that VII can effectively

reflect the vegetation growth condition in mining areas and

more sensitive than NDVI to the vegetation growth con-

dition. Unlike other vegetation indices, VII mainly reflects

the inferiority or environment stress of plants. VII value is

high for vegetation growing on barren soil. Besides, VII

can indirectly reflect the polluted environment in the veg-

etation areas. WDI can effectively identify the bare iron ore

Fig. 7 a The water absorption

spectral feature of green leaves

and b the spectral signature of

Jarosite mineral

Fig. 8 Two-water absorption

spectral feature maps in non-

iron ore areas with vegetation

cover. It shows that there is high

correlation between the two

absorption valleys
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area and the vegetation area contaminated by iron ore,

which can be used for direct extraction of polluted regions

in mining areas. These two vegetation indices derived from

the hyperspectral remote sensing data can be used to

monitor the vegetation coerce effect and growing envi-

ronment. They are the effective indicators for a mining

environment and can provide a policy basis for mining

regulation. The successful use of these two indices proves

that hyperspectral remote sensing has a strong potential in

mining environment monitoring.

The VII index is not limited to any special type of mine.

It is an index for normal monitoring of vegetation growth.

In order to investigate vegetation growth status influenced

by some specific heavy metals, further studies of the

mineral spectral mechanism and vegetation physiological

characteristics were required. Factors such as topography,

moisture, fertilizer, and soil acidification in the mining

areas should also be considered. The WDI index is inten-

ded to monitor the vegetation growing environment in iron

ore areas, especially to identify the growing environment of

iron ore in bare areas and areas with sparse vegetation. The

WDI index is excellent to synchronously eliminate not only

all vegetation, but also other mineral cover area, only

determines the ferric oxide (Fe2O3). A more hyperspectral

index will be developed to identify other minerals such as

copper in the future work. The identification of the growing

environment of dense vegetation can be achieved by the

combination of more prior knowledge.
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