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Abstract Water is one of the basic and fundamental

requirements for the survival of human beings. Mining of

the sulphide mines usually produce a significant amount of

acid mine drainage (AMD) contributing to huge amounts

of chemical components and heavy metals in the receiving

waters. Prediction of the heavy metals in the AMD is

important in developing any appropriate remediation

strategy. This paper attempts to predict heavy metals (Cu,

Fe, Mn, Zn) from the AMD using backpropagation neural

network (BPNN), general regression neural network

(GRNN) and multiple linear regression (MLR), by taking

pH, sulphate (SO4) and magnesium (Mg) concentrations in

the AMD into account in Shur River, Sarcheshmeh por-

phyry copper deposit, southeast Iran. The comparison

between the predicted concentrations and the measured

data resulted in the correlation coefficients, R, 0.92, 0.22,

0.92 and 0.92 for Cu, Fe, Mn and Zn ions using BPNN

method. Moreover, the R values were 0.89, 0.37, 0.9 and

0.91 for Cu, Fe, Mn, and Zn taking the GRNN method into

consideration. However, the correlation coefficients were

low for the results predicted by MLR method (0.83, 0.14,

0.9 and 0.85 for Cu, Fe, Mn and Zn ions, respectively). The

results further indicate that the ANN can be used as a

viable method to rapidly and cost-effectively predict heavy

metals in the AMD. The results obtained from this paper

can be considered as an easy and cost-effective method to

monitor groundwater and surface water affected by AMD.

Keywords Acid mine drainage (AMD) � Heavy metals �
Artificial neural network (ANN) � Sarcheshmeh copper

mine

Introduction

Copper exploitation is a major water quality problem due

to acid mine drainage (AMD) generation in Sarcheshmeh

mine, Kerman Province, southeast Iran. The oxidation of

sulphide minerals, in particular pyrite exposed to atmo-

spheric oxygen during or after mining activities generates

acidic waters with high concentrations of dissolved iron

(Fe), sulphate (SO4) and heavy metals (Williams 1975;

Moncur et al. 2005). The low pH of AMD may cause

further dissolution and the leaching of additional metals

(Mn, Zn, Cu, Cd, and Pb) into aqueous system (Zhao et al.

2007). AMD containing heavy metals have detrimental

impact on aquatic life and the surrounding environment.

Shur River in the Sarcheshmeh copper mine polluted by

AMD with pH values ranging between 2 and 4.5 and high

concentrations of heavy metals. The prediction of heavy

metals in Shur River is useful in developing proper reme-

diation and monitoring methods.

The Sarcheshmeh copper deposit recognised to be the

fourth largest mine in the world contains 1 billion tonnes

averaging 0.9% copper and 0.03% molybdenum (Banisi and

R. Rooki

Mining Engineering, Shahrood University of Technology,

Shahrood, Iran

F. Doulati Ardejani

Faculty of Mining, Petroleum and Geophysics,

Shahrood University of Technology, Shahrood, Iran

A. Aryafar (&)

Department of Mining Engineering, Faculty of Engineering,

Birjand University, Birjand, Iran

e-mail: ahariafar@yahoo.com

A. Bani Asadi

Environmental Geology, Faculty of Geosciences,

Shahrood University of Technology, Shahrood, Iran

123

Environ Earth Sci (2011) 64:1303–1316

DOI 10.1007/s12665-011-0948-5



Finch 2001). This ore body is located at southeast of Iran,

Kerman Province. Mining operation has placed many low-

grade waste dumps and has posed many environmental

problems. Environmental problems of sulphide minerals

oxidation and AMD generation in the Sarcheshmeh copper

mine and its impact on the Shur River have been investigated

in the past (Marandi et al. 2007; Shahabpour and Doorandish

2008; Doulati Ardejani et al. 2008; Bani Assadi et al. 2008).

Many investigations have been carried out on the

behaviour of the heavy metals in AMD and their impact on

the receiving water bodies (Govil et al. 1999; Merrington

and Alloway 1993; Hammack et al. 1998; Herbert 1994;

Moncur et al. 2005; Smuda et al. 2007; Wilson et al. 2005;

Lee and Chon 2006; Dinelli et al. 2001; Canovas et al.

2007). The conventional method of measuring the heavy

metals is involved in the sampling and a time-consuming

and expensive laboratory analysis. Less study has been

carried out for the prediction of heavy metals in AMD.

Therefore, investigation of a method that can predict the

concentrations of heavy metals in water affected by AMD

is necessary to develop an appropriate remediation and

monitoring method for comprehensive assessment of the

potential environmental impacts of AMD.

Artificial neural networks (ANN) have gained an

increasing popularity in different fields of engineering in

the past few decades, because of their capability of

extracting complex and nonlinear relationships. Kemper

and Sommer (2002) estimated the heavy metal concentra-

tion in soils from reflectance spectroscopy using back

propagation network and multiple linear regression.

Almasri and Kaluarachchi (2005) applied the modular

neural networks to predict the nitrate distribution in ground

water using the on-ground nitrogen loading and recharge

data. Khandelwal and Singh (2005) predicted the mine

water quality by the physical parameters using back

propagation neural network (BPNN) and multiple linear

regression. Singh et al. (2009) modelled the backpropaga-

tion neural network to predict water quality in the Gomti

River (India). Erzin and Yukselen (2009) used the back

propagation neural network for the prediction of zeta

potential of kaolinite.

The literature review has shown that despite many

research works having been conducted related to the

application of the ANN method in mining and relevant

environmental problems, the ANN method has not been

directly used to predict heavy metals in AMD. In this

paper, attention has been focused on the prediction of the

heavy metals in the Shur River impacted by AMD. The

results obtained from the predictions using ANN and MLR

are compared with the measured concentrations of major

heavy metals sampled and analysed in Shur River of Sar-

cheshmeh copper mine, southeast Iran.

Site description

Sarcheshmeh copper mine is located 160 km to southwest

of Kerman and 50 km to southwest of Rafsanjan in Kerman

province, Iran. The main access road to the study area is

Kerman–Rafsanjan–Shahr Babak road. This mine belongs

to Band Mamazar-Pariz Mountains. The average elevation

of the mine is 1,600 m. The mean annual precipitation of

the site varies from 300 to 550 mm. The temperature varies

from ?35�C in summer to -20�C in winter. The area is

covered with snow for about 3–4 months per year. The

wind speed sometimes exceeds 100 km/h. A rough

topography is predominant at the mining area; Fig. 1 shows

the geographical position of the Sarcheshmeh copper mine.

Fig. 1 Location of the

Sarcheshmeh mine and Shur

River (modified after

Shahabpour and Doorandish

2008; Derakhshandeh and

Alipour 2010)
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The orebody in Sarcheshmeh is oval shaped with a long

dimension of about 2,300 m and a width of about 1,200 m.

This deposit is associated with the late Tertiary Sarcheshmeh

granodiorite porphyry stock (Waterman and Hamilton

1975). The porphyry is a member of a complex series of

magmatically related intrusives emplaced in the Tertiary

volcanics at a short distance from the edge of an older near-

batholith-sized granodiorite mass. Open pit mining method

is used to extract copper deposit in Sarcheshmeh. A total of

40,000 tons of ore (average grades 0.9% Cu and 0.03%

molybdenum) is approximately extracted per day in Sar-

cheshmeh mine (Banisi and Finch 2001).

Sampling and field methods

Sampling of waters in the Shur River downstream from the

Sarcheshmeh mine was carried out in February 2006. Water

samples consist of water from Shur River (Fig. 1) originating

from Sarcheshmeh mine, acidic leachates of heap structure,

run-off of leaching solution into the River and samples

affected by tailings along the Shur River. The water samples

were immediately acidified by adding HNO3 (10 cc acid/

1,000 cc sample) and stored under cool conditions. The

equipments used in this study were sample container, GPS,

oven, autoclave, pH meter, atomic adsorption and ICP ana-

lysers. The pH of the water was measured using a portable pH

meter in the field. Other physical parameters were total dis-

solved solids (TDS), electric conductivity (EC) and tem-

perature. Analyses for dissolved metals were performed

using atomic adsorption spectrometer (AA220) in water lab

of the National Iranian Copper Industries Company (NICIC).

Although not given here, ICP (model 6000) was also used to

analyse the concentrations of those heavy metals that are

detected in the range of ppb. Table 1 gives the minimum,

maximum and the mean values of some physical and

chemical parameters.

Method

Back propagation neural network design

Artificial neural networks (ANN) are generally defined as

information processing representation of the biological

neural networks. ANN has gained an increasing popularity

in different fields of engineering in the past few decades,

because of their ability of deriving complex and nonlinear

relationships. The mechanism of the ANN is based on the

following four major assumptions (Hagan et al. 1996):

• Information processing occurs in many simple elements

that are called neurons (processing elements).

• Signals are passed between neurons over connection

links.

• Each connection link has an associated weight, which,

in a typical neural network, multiplies the signal being

transmitted.

• Each neuron applies an activation function (usually

nonlinear) to its net input in order to determine its

output signal.

Figure 2 shows a typical neuron. Inputs (P) coming

from another neuron are multiplied by their corresponding

weights (W1,R), and summed up (n). An activation function

(f) is then applied to the summation, and the output (a) of

that neuron is now calculated and ready to be transferred to

another neuron. Many types of neural network architec-

tures and algorithms are available. In this study, a gener-

alised regression neural network (GRNN) is used.

In this network, each element of the input vector p is

connected to each neuron input through the weight matrix

W. The ith neuron has a summer that gathers its weighted

inputs and bias to form its own scalar output n (i). The

various n (i) taken together form an S-element net input

vector n. Finally, the neuron layer outputs form a column

vector a (Eqs. 1, 2).

Table 1 Maximum, minimum and mean physical and chemical constituents including heavy metals of the Shur River

pH SO4
-2 Cl- HCO3

- Ca2? Mg2? Cu Fe Mn Zn TDS EC (lS/cm)

Min 3.3 27 0 0 92 13 0 0.01 0.04 0 446 870

Max 7.20 1,526 230 628 460 123 158 23 52 31.48 2,080.68 2,260

Mean 5.27 778.45 23.56 34.01 182.78 56.70 20.29 4.60 16.05 6.33 1,009.90 1,306.52

Concentrations of elements are given in ppm

Fig. 2 A typical neuron (Demuth and Beale 2002)
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Then, final output of network is calculated by:

aS ¼ f ðnSÞ ð2Þ

Here, f is an activation function, typically a step function or

a sigmoid function, which takes the argument n and pro-

duces the output a. Figure 3 shows examples of various

activation functions.

Backpropagation neural networks (BPNN) are recogni-

sed for their prediction capabilities and ability to generalise

well on a wide variety of problems. These models are

supervised type of networks; in other words, trained with

both inputs and target outputs. During training the network

tries to match the outputs with the desired target values.

Learning starts with the assignment of random weights.

The output is then calculated and the error is estimated.

This error is used to update the weights until the stopping

criterion is reached. It should be noted that the stopping

criteria is usually the average error or epoch.

Network training: the over fitting problem

One of the most common problems in the training process

is the over fitting phenomenon. This happens when the

error on the training set is driven to a very small value, but

when new data is presented to the network the error is

large. This problem occurs mostly in case of large networks

with only few available data. Demuth and Beale (2002)

have shown that there are a number of ways to avoid over

fitting problem. Early stopping and automated Bayesian

regularization methods are most common. However, with

immediate fixing of the error and the number of epochs to

an adequate level (not too low/not too high) and dividing

the data into two sets, training and testing, one can avoid

such problem by making several realizations and selecting

the best of them. In this paper, the necessary coding was

added through MATLAB multi-purpose commercial soft-

ware to implement the automated Bayesian regularization

for training BPNN. In this technique, the available data is

divided into two subsets. The first subset is the training set,

which is used for computing the gradient and updating the

network weights and biases. The second subset is the test

set. This method works by modifying the performance

function, which is normally chosen to be the sum of

squares of the network errors on the training set. The

typical performance function that is used for training feed

forward neural networks is the mean sum of squares of the

network errors according to the following equation:

mse ¼ 1

N

XN

i¼1

ðeiÞ2 ¼
1

N

XN

i¼1

ðti � aiÞ2 ð3Þ

where, N represents the number of samples, a is the pre-

dicted value, t denotes the measured value and e is the

error.

It is possible to improve generalisation if we modify the

performance function by adding a term that consists of the

mean of the sum of squares of the network weights and

biases which is given by:

msereg ¼ cmseþ ð1� cÞmsw ð4Þ

Where, msereg is the modified error, c is the performance

ratio, and msw can be written as:

msw ¼ 1

N

XN

i¼1

wi ð5Þ

Performance function will cause the network to have

smaller weights and biases, and this will force the network

response to be smoother and less likely to over fit (Demuth

and Beale 2002).

Heavy metals prediction using BPNN

According to the correlation matrix (Table 2), pH, SO4 and

Mg that have most dependent on heavy metals (Cu, Mn and

Zn) concentrations were selected as inputs of the network.

The outputs of network were heavy metals concentrations

including Cu, Fe, Mn and Zn. In view of the requirements

of the neural computation algorithm, the data of both the

independent and dependent variables were normalised to

an interval by transformation process. In this study, nor-

malisation of data (inputs and outputs) was done for the

range of (-1, 1) using Eq. 6 and the number of training

data (44) and test data (12) were then selected randomly.

pn ¼ 2
p� pmin

pmax � pmin

� 1 ð6ÞFig. 3 Three examples of transfer functions (Demuth and Beale

2002)
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where, Pn is the normalised parameter, p denotes the actual

parameter, pmin represents a minimum of the actual para-

meters and pmax stands for a maximum of the actual

parameters.

In this research, several architectures (varied numbers of

neurons in hidden layer) with Automated Bayesian Regu-

larization algorithm for ANN model with the default

parameter values for algorithm (Demuth and Beale 2002) are

used to predict heavy metals concentrations using BPNN.

Two criteria were used to evaluate the effectiveness of each

network and its ability to make accurate predictions. The root

mean square error (RMS) can be calculated as follows:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyi � ŷiÞ2

n

s

ð7Þ

where, yi is the measured value, ŷi denotes the predicted

value, and n stands for the number of samples. RMS indicates

the discrepancy between the measured and predicted values.

The lower the RMS, the more accurate the prediction is.

Furthermore, the efficiency criterion, R2, is given by:

R2 ¼ 1�
Pn

i¼1 ðyi � ŷiÞ2
Pn

i¼1 y2
i �

Pn

i¼1
ŷ2

i

n

ð8Þ

where R2 efficiency criterion represents the percentage of

the initial uncertainty explained by the model. The best

fitting between measured and predicted values, which is

unlikely to occur, would have RMS = 0 and R2 = 1.

Table 3 gives the correlation coefficient (R) and RMS

between predicted and measured concentrations in training

and test from any architect.

The indices 1 and 2 for R and RMS in Table 3 are

related to the training and test data, respectively and n is

the number of neurons in the hidden layer.

The optimal network for this study is a feed forward

multilayer perceptron (Cybenko 1989; Hornik et al. 1989;

Haykin 1994; Noori et al. 2009, 2010), having one input

layer with three inputs (pH, SO4, Mg), one hidden layer

with six neurons that each neuron has a bias and is fully

connected to all inputs and utilises sigmoid hyperbolic

tangent (tansig) activation function (Fig. 4). The output

layer has four neurons (Cu, Fe, Mn and Zn) with a linear

activation function (purelin) without bias. Linear activation

function can provide any range of data in output without

any limitation for output values.

Bayesian regularization algorithm (trainbr) was used as

training function to prevent overtraining of the ANN

models. Figure 4a shows the backpropagation neural

Table 2 Correlation matrix between heavy metals concentrations and independent variables

pH SO4 Cl HCO3 Ca Mg Cu Fe Mn Zn TDS EC

PH 1

SO4 -0.713 1

Cl -0.046 -0.035 1

HCO3 0.310 -0.507 0.534 1

Ca -0.308 0.645 0.088 -0.014 1

Mg -0.625 0.694 -0.004 -0.238 0.121 1

Cu -0.697 0.663 -0.101 -0.199 0.238 0.764 1

Fe 0.021 0.078 -0.195 -0.255 -0.164 -0.008 -0.022 1

Mn -0.758 0.668 -0.160 -0.305 0.173 0.709 0.809 0.068 1

Zn -0.710 0.624 -0.186 -0.306 0.204 0.659 0.720 0.156 0.910 1

TDS -0.407 0.649 -0.235 -0.334 0.509 0.366 0.390 0.099 0.563 0.613 1

EC -0.779 0.767 0.212 -0.096 0.475 0.727 0.757 -0.081 0.739 0.628 0.334 1

Table 3 R and RMS between predicted and measured heavy metals concentrations in training and test data

n R1 R2 RMS1 RMS2 R1 R2 RMS1 RMS2 R1 R2 RMS1 RMS2 R1 R2 RMS1 RMS1

Cu Cu Cu Cu Fe Fe Fe Fe Mn Mn Mn Mn Zn Zn Zn Zn

5 0.97 0.94 7.77 6.48 0.37 0.03 4.15 3.72 0.97 0.92 2.91 5.12 0.95 0.92 1.89 1.34

6 0.97 0.92 7.68 6.50 0.35 0.22 4.10 3.45 0.97 0.92 2.90 5.18 0.95 0.92 1.91 1.31

7 0.97 0.88 7.85 9.28 0.26 0.12 4.31 3.56 0.98 0.93 2.48 4.82 0.95 0.92 1.78 1.68

8 0.98 0.86 6.63 10.88 0.29 0.11 4.28 3.50 0.98 0.91 2.39 4.84 0.96 0.91 1.59 1.57

9 0.98 0.81 6.64 13.78 0.49 -0.12 3.89 5.79 0.98 0.86 2.28 5.56 0.97 0.81 1.45 3.97

10 0.98 0.75 6.29 15.80 0.36 -0.12 4.17 3.83 0.98 0.83 2.15 6.20 0.97 0.88 1.33 3.32
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network architecture. In Fig. 4b, Layer 1 is hidden layer

and Layer 2 is output layer. Figure 4c shows the structure

of the hidden layer.

Figure 5 shows the training process of the network. In

this figure, SSE is the sum square error for training data.

One feature of this algorithm is that it provides a measure

of how many network parameters (weights and biases) are

being effectively used by the network. The final trained

network employs approximately 44 parameters out of the

52 total weights and biases in the 3-6-4 network. The

training may stop with the message ‘‘Maximum MU

reached’’. This is typical, and is a good indication that the

algorithm has truly converged. In the present case, the

algorithm was stopped in 171 epochs. In this network

learning rate was 0.5.

The selected BPNN (3 neurons in input layer, 6 neurons

in hidden layer and 4 neurons in output layer) provided a

good-fit model for two data sets of Cu, Mn and Zn con-

centrations and poor fit for Fe concentration. The correla-

tion coefficient (R) values for the training and test data and

the respective values of RMS for the two data sets are

highlighted in Table 3. Figure 6a–h compares the network

predictions versus measured concentrations for training and

test data.

GRNN model

General regression neural network has been proposed by

Specht (1991). GRNN is a type of supervised network and

also trains quickly on sparse data sets but, rather than cate-

gorising it. GRNN applications are able to produce contin-

uous valued outputs. GRNN is a three-layer network where

there must be one hidden neuron for each training pattern.

GRNN is a memory-based network that provides esti-

mates of continuous variables and converges to the

underlying regression surface. GRNNs are based on the

estimation of probability density functions, having a

feature of fast training times and can model nonlinear

functions. GRNN is an one-pass learning algorithm with a

highly parallel structure. GRNN algorithm provides

smooth transitions from one observed value to another

even with sparse data in a multidimensional measurement

space. The algorithmic form can be used for any regression

problem in which an assumption of linearity is not justified.

GRNN can be thought as a normalised radial basis func-

tions (RBF) network in which there is a hidden unit centred

at every training case. These RBF units are usually prob-

ability density functions such as the Gaussian. The only

weights that need to be learned are the widths of the RBF

Fig. 4 a Backpropagation

neural network architecture,

b general schematic diagram of

network and its layers,

c structure of hidden layer

(Layer 1)
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units. These widths are called ‘‘smoothing parameters’’.

The main drawback of GRNN is that it suffers badly from

the curse of dimensionality. GRNN cannot ignore irrele-

vant inputs without major modifications to the basic algo-

rithm. So GRNN is not likely to be the top choice if there

are more than 5 or 6 non-redundant inputs. The regression

of a dependent variable, Y, on an independent variable, X,

is the computation of the most probable value of Y for each

value of X based on a finite number of possibly noisy

measurements of X and the associated values of Y. The

variables X and Y are usually vectors. To implement system

identification, it is usually necessary to assume some func-

tional form. In the case of linear regression, for example, the

output Y is assumed to be a linear function of the input, and

the unknown parameters, ai, are linear coefficients.

The method does not need to assume a specific func-

tional form. A Euclidean distance (Di
2) is estimated

between an input vector and the weights, which are then

rescaled by the spreading factor. The radial basis output is

then the exponential of the negatively weighted distance.

The GRNN equation can be written as:

D2
i ¼ ðX � XiÞTðX � XiÞ ð9Þ

YðXÞ ¼
Pn

i¼1 Yi exp �D2
i

2r2

� �

Pn
i¼1 exp �D2

i

2r2

� � ð10Þ

where r is the smoothing factor (SF).

The estimate Y(X) can be visualised as a weighted

average of all of the observed values, Yi, where each

observed value is weighted exponentially according to its

Euclidian distance from X. Y(X) is simply the sum of

Gaussian distributions centred at each training sample.

However, the sum is not limited to being Gaussian. In this

theory, the optimum smoothing factor is determined after

several runs according to the mean squared error of the
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Fig. 6 Comparison of the

network predictions and

measured concentrations for

training and test data using

BPNN model. a Correlation

between BPNN Cu versus

measured Cu (training data).

b Correlation between BPNN

Cu versus measured Cu (test

data). c Correlation between

BPNN Fe versus measured Fe

(training data). d Correlation

between BPNN Fe versus

measured Fe (test data).

e Correlation between BPNN

Mn versus measured Mn

(training data). f Correlation

between BPNN Mn versus

measured Mn (test data).

g Correlation between BPNN

Zn versus measured Zn (training

data). h Correlation between

BPNN Zn versus measured Zn

(test data)
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estimate, which must be kept at minimum. This process is

referred to as the training of the network. If a number of

iterations pass with no improvement in the mean squared

error, that smoothing factor is determined as the optimum

one for that data set. While applying the network to a new

set of data, increasing the smoothing factor would result in

decreasing the range of output values (Specht 1991). In this

network, there are no training parameters such as the

learning rate, momentum, optimum number of neurons in

hidden layer and learning algorithms as in backpropagation

network but there is a smoothing factor that its optimum is

gained as trial and error. The smoothing factor must be

greater than 0 and can usually range from 0.1 to 1 with

good results. The number of neurons in the input layer is

the number of inputs in the proposed problem, and the

number of neurons in the output layer corresponds to the

number of outputs. Because GRNN networks evaluate each

output independently of the other outputs, GRNN networks

may be more accurate than backpropagation networks

when there are multiple outputs. GRNN works by mea-

suring how far the given sample pattern is from the patterns

in the training set. The output that is predicted by the

network is a proportional amount of all the output in the

training set. The proportion is based upon how far the new

pattern is from the given patterns in the training set.

Heavy metals prediction using GRNN

In this method, the training and test data in BPNN were

used. To obtain the best network, the GRNN was trained by

different smooth factors to gain the optimum smooth factor

according to correlation coefficient and RMS error between

measured and predicted values in training and test data.

The results are given in Table 4.

In Table 4, the indices 1 and 2 for R and RMS are

related to training and test data, respectively and SF stands
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for smooth factor. The optimum smooth factor (SF) was

selected 0.10 according to evaluated criteria in training and

test data in Table 2. Taking this SF into consideration,

Fig. 7 shows the schematic diagram of GRNN network.

The general diagram of network, the associated layers and

the structure of hidden layer are shown in Fig. 8a and b,

respectively. This network (Fig. 7) has three layers; input

layer with 3 neurons (pH, SO4 and Mg), hidden layer

incorporating 44 neurons (number of training samples)

with radbas activation function in all neurons and output

layer with 4 neurons (Cu, Fe, Mn and Zn) with linear

activation function. In Fig. 8a, Layer 1 is hidden layer and

Layer 2 is output layer and as mentioned above, Fig. 8b is

the structure of hidden layer.

Figure 9 compares the measured and predicted concen-

trations of heavy metals in training and test data. The selected

GRNN (3 nodes in input layer, 44 nodes in hidden layer, and

4 nodes in output layer) provided a good-fit model for the two

data sets of Cu, Mn and Zn concentrations and poor fit for Fe

concentration. The correlation coefficients (R) for the

training and test data and the respective values of RMS for

two data sets are shown in Table 4. A closely followed pat-

tern of variation by the measured and predicted heavy metals,

R and RMS values suggest a good-fit of the heavy metals (Cu,

Mn and Zn) model to the data set. The poor-fit model for Fe

ion is a result of low correlation between Fe and independent

variables in Table 2.

Multiple linear regression

Multiple linear regression (MLR) is an extension of the

regression analysis that incorporates additional indepen-

dent variables in the predictive equation. Here, the model

to be fitted is:

y ¼ B1 þ B2x2 þ � � � þ Bnxn þ e ð11Þ

where y is the dependent variable, xis are the independent

random variables and e is a random error (or residual)

Table 4 R and RMS with different smooth factors in training and test data

SF R1 R2 RMS1 RMS2 R1 R2 RMS1 RMS2 R1 R2 RMS1 RMS2 R1 R2 RMS1 RMS1

Cu Cu Cu Cu Fe Fe Fe Fe Mn Mn Mn Mn Zn Zn Zn Zn

0.02 1.00 0.79 1.03 12.55 1.00 0.35 0.39 3.65 1.00 0.79 0.40 7.95 1.00 0.84 0.20 2.22

0.04 1.00 0.81 2.31 11.99 0.99 0.34 0.75 3.63 1.00 0.82 0.81 7.43 1.00 0.84 0.47 2.20

0.06 0.99 0.83 3.68 11.46 0.97 0.37 1.10 3.54 0.99 0.85 1.27 7.05 0.99 0.86 0.77 2.07

0.08 0.99 0.86 4.67 10.63 0.95 0.41 1.65 3.47 0.99 0.88 1.62 6.77 0.99 0.89 1.02 1.81

0.10 0.99 0.89 5.47 9.89 0.90 0.37 2.20 3.55 0.99 0.90 1.89 6.60 0.98 0.91 1.31 1.56

0.12 0.98 0.91 6.18 9.43 0.86 0.26 2.62 3.69 0.98 0.92 2.23 6.58 0.96 0.93 1.66 1.42

0.14 0.98 0.92 6.88 9.31 0.81 0.13 2.95 3.82 0.97 0.92 2.69 6.69 0.94 0.93 2.02 1.39

0.16 0.97 0.92 7.58 9.34 0.77 0.00 3.21 3.91 0.96 0.92 3.19 6.84 0.92 0.93 2.36 1.41

0.18 0.97 0.93 8.28 9.33 0.73 -0.10 3.44 3.98 0.95 0.92 3.65 6.99 0.90 0.93 2.64 1.46

0.20 0.96 0.93 8.94 9.23 0.68 -0.19 3.64 4.03 0.94 0.93 4.03 7.09 0.87 0.93 2.86 1.50

Fig. 7 Schematic diagram of GRNN network

Fig. 8 a General diagram of network and its layers, b structure of

hidden layer (Layer 1)
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which is the amount of variation in y not accounted for by

the linear relationship. The parameters Bis, stand for the

regression coefficients, are unknown and are to be esti-

mated. However, there is usually substantial variation of

the observed points around the fitted regression line. The

deviation of a particular point from the regression line (its

predicted value) is called the residual value. The smaller

the variability of the residual values around the regression

line, the better is model prediction.

In this study, regression analysis was performed using

the training and test data employed in neural network data.

Heavy metal concentrations were considered as the

dependent variables and pH, SO4 and Mg were considered

as the independent variables. A computer-based package

called SPSS (Statistical Package for the Social Sciences)

was used to carry out the regression analysis. The estimated

regression relationships for heavy metals are given as

below:

Cu ¼ 29:639� 10:423� pHþ 0:01354� SO4

þ 0:649�Mg
ð12Þ

Fe ¼ 7:796� 0:452� pHþ 0:001609� SO4

� 0:03118�Mg
ð13Þ

Mn ¼ 34:451� 5:708� pHþ 0:004639� SO4

þ 0:145�Mg
ð14Þ

Zn ¼ 15:927� 2:78� pHþ 0:002376 � SO4

þ 0:06109�Mg
ð15Þ

The statistical results of the model are given in Table 5.

Heavy metal concentrations were estimated according to

the Eqs. 12–15. Figure 10 shows the correlation between

measured heavy metal concentrations and those predicted

using MLR with three inputs.

As can be seen in Fig. 10, the inappropriate predictions

of the heavy metals shown by negative values is the most
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Fig. 9 Comparison of the

network predictions and

measured concentrations for

training and test data using

GRNN model. a Correlation

between GRNN Cu versus

measured Cu (training data).

b Correlation between GRNN

Cu versus measured Cu (test

data). c Correlation between

GRNN Fe versus measured Fe

(training data). d Correlation

between GRNN Fe versus

measured Fe (test data).

e Correlation between GRNN

Mn versus measured Mn

(training data). f Correlation

between GRNN Mn versus

measured Mn (test data).

g Correlation between GRNN

Zn versus measured Zn (training

data). h Correlation between

GRNN Zn versus measured Zn

(test data)
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Table 5 Statistical characteristics of the multiple regression models

Model Method Independent variables Coefficient Standard error Standard error

of estimate

t value F ratio Sig. level Determination

coefficient (R2)

Eq. 12 Enter Constant 29.639 32.646 18.87 0.908 29.718 0.370 0.696

pH -10.423 4.150 -2.512 0.016

SO4 0.01354 0.014 0.956 0.345

Mg 0.649 0.202 3.213 0.003

Eq. 13 Enter Constant 7.796 8.058 4.66 0.967 0.192 0.339 0.015

pH -0.452 1.024 -0.442 0.661

SO4 0.001609 0.003 0.460 0.648

Mg -0.03118 0.050 -0.625 0.536

Eq. 14 Enter Constant 34.451 10.775 6.229 3.197 35.337 0.003 0.731

pH -5.708 1.370 -4.167 0.000

SO4 0.004639 0.005 0.992 0.327

Mg 0.145 0.067 2.172 0.036

Eq. 15 Enter Constant 15.927 6.633 3.83 2.401 20.617 0.021 0.613
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important disadvantage of the MLR method compared to

ANN method.

Table 6 compares the correlation coefficient R and root

mean square error (RMS) associated with three methods for

both training and test data. It is well illustrated in Table 6 that

the BPNN and GRNN methods predicted some what similar

results. Furthermore, a close agreement can be seen between

the predicted concentrations and measured data when the ANN

method (BPNN and GRNN) is used. Low correlation values

between the model predictions and measured data using MLR

method describes its low capability in prediction heavy metals.

In Table 6, the indices 1 and 2 for R and RMS are

related to training a test data, respectively.

Conclusions

A new method to predict major heavy metals in Shur River

impacted by AMD has been presented using ANN method.

The predictions for heavy metals (Cu, Fe, Mn and Zn) using

ANN method incorporating BPNN and GRNN approaches

together with MLR method are presented and compared with

the measured data. The input data for the ANN and MLR

models have been selected based on the high values of the

correlation coefficients between heavy metals and pH, SO4

and Mg2? concentrations. In this paper, the BPNN model has

three layers including input layer (pH, SO4 and Mg2?),

hidden layer (6 neurons) with tansig activation function and

output layer (Cu, Fe, Mn and Zn) with linear activation

function. Whereas, the GRNN consists of three layers, i.e.

input layer (pH, SO4 and Mg2?), hidden layer (44 neurons)

with radbas activation function and output layer (Cu, Fe, Mn

and Zn) with linear activation function. An optimal

smoothing factor of 0.10 was obtained for GRNN model by a

trial and error process. It was found that the BPNN and

GRNN methods predicted some what similar results. Fur-

thermore, a close agreement was achieved between the

predicted and measured concentrations for heavy metals
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Fig. 10 Comparison of the

predicted concentrations using

MLR and measured

concentrations for training and

test data. a Correlation between

MLR Cu versus measured Cu

(training data). b Correlation

between MLR Cu versus

measured Cu (test data).

c Correlation between MLR Fe
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data). d Correlation between
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(Cu, Mn and Zn) when the ANN method (BPNN and GRNN)

was used. However, the correlation factor was low between

predicted Fe concentration and its associated measured data.

Low correlation values between the model predictions and

measured data using MLR method describes its low capa-

bility in prediction heavy metals.
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