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Abstract Taihu Basin is one of the most developed and

industrialized regions in China. In the last two decades,

rapid development of economy as well as an increase in

population has resulted in an increase of pollutants pro-

duced and discharged into rivers and lakes. Much more

attention has been paid on the serious water pollution

problems due to high frequency of algal blooming. The

dataset, obtained during the period 2001–2002 from the

Water Resources Protection Bureau of the Taihu Basin,

consisted of eight physicochemical variables surveyed

monthly at 22 sampling sites in the Taihu Basin, China.

Principal component analysis (PCA) and cluster analysis

(CA) were used to identify the characteristics of the surface

water quality in the studied area. The temporal and spatial

variations of water quality were also evaluated by using the

fuzzy synthetic evaluation (FSE) method. PCA extracted

the first two principal components (PCs), explaining

86.18% of the total variance of the raw data. Especially,

PC1 (73.72%) had strong positive correlation with DO, and

was negatively associated with CODMn, COD, BOD,

NH4
?–N, TP and TN. PC2 (12.46%) was characterized by

pH. CA showed that most sites were highly polluted by

industrial and domestic wastewater which contributed

significantly to PC1. The sites located in the west of Lake

Taihu were influenced by farmland runoff which may

contribute to nitrogen pollution of Lake Taihu, whereas the

monitoring sites in the eastern of Lake Taihu demonstrated

that urban residential subsistence and domestic wastewater

are the major contaminants. FSE indicates that there is no

obvious variance between 2001 and 2002 among most

sites. Only several sites free from point-source pollution

appear to exhibit good water quality through the studied

period.

Keywords Surface water quality � Principal component

analysis � Cluster analysis � Fuzzy synthetic evaluation �
Taihu Basin

Introduction

With the increase of population and rapid economic

development, surface water has received large amounts of

pollution from a variety of sources such as urban waste-

water, industrial and agricultural activities, as well as the

assimilation and transport of pollution effluents (Bowen

and Depledge 2006; Milovanovic 2007). Human health is

largely influenced by water pollution, as water pollution
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affects sustainability of the aquatic ecosystem and social

economic development in some regions. Nutrients from

farmland fertilizer and urban wastewater discharged into

rivers contribute main pollutants to the surface water in a

catchment, thereby tending to induce serious ecological

problems such as eutrophication and environmental pollu-

tion (Wang et al. 2007). It is therefore essential and urgent

to control water pollution and improve the water quality,

and regularly implement monitoring programs which give

the tools to help understand the spatial and temporal vari-

ations of the surface water quality.

Taihu Basin is one of the most industrialized regions in

China with high population density, urbanization, and

economic development. The area covers only 0.4% of

territory of China while contributing about 11% of Gross

National Product (GNP) and more than 14% of China’s

gross domestic production (Qin et al. 2007). Since the

1980s, rapid development of local economy and increased

population and urbanization has resulted in pollutants

being produced and discharged into rivers and lakes. In

recent years, serious water pollution problems have

extracted much attention due to the fact that algal blooms

occurred much more frequently, extending its coverage,

while simultaneously persisting throughout the summer.

This environmental issue seriously affects the lake, as a

supply of drinking water (Qin et al. 2007). In the late May

of 2007, Lake Taihu was overtaken by a major algae

bloom, leaving approximately two million people without

drinking water for at least 1 week.

In order to examine the pollution sources and improve

the surface water quality, numerous studies have focused

on eco-environmental issues in Lake Taihu and analyzed

the loss and load of pollutants from different pollution

sources (Zhang et al. 2003; Gao et al. 2004; Guo et al.

2004; Qin et al. 2007). However, research on the water

quality at the whole catchment scale is very limited, thus

improvements to research should be undertaken. A large

number of studies focused on the pollution and eutrophi-

cation of Lake Taihu (Chen et al. 2003), whereas others

focused on the status of pollution in principal rivers around

the lake (Wang et al. 2007; Xie et al. 2007; Xu et al. 2009).

These studies provided good insights into the spatial and

temporal characteristics of the surface water quality in the

Taihu Basin. However, the intensive agricultural activities

and the rapid urbanization of the basin heavily influenced

the natural flows, well developed drainage network which

received large amounts of contaminants from industry,

domestic wastewater, agriculture, aquiculture and live-

stock, and thus not only making it difficult to identify the

pollutants sources but also assess characteristics of the

surface water quality (Xu et al. 2009).

To better understand temporal and spatial patterns of

water pollution and variance of the aquatic ecosystems,

monitoring data are usually interpreted by applying mul-

tivariate statistical techniques (Yidana et al. 2008), such as:

cluster analysis (CA), principal component analysis (PCA),

discriminant analysis (DA) and factor analysis (FA). The

multivariate statistical techniques are considered as useful

tools for both simplifying the complicated data sets con-

sisting of water quality variables, and extracting mean-

ingful interpretation (Vega et al. 1998; Wunderlin et al.

2001; Bu et al. 2009). In this study, physicochemical

parameters of water quality at 22 sites were surveyed and

analyzed monthly from 2001 to 2002 in the Taihu Basin.

Three different multivariate statistical techniques: PCA,

CA, and fuzzy synthetic evaluation (FSE) were adopted to

assess the characteristics of water quality and classification

of water samples in the surface water bodies. The objectives

of this paper are to: (1) identify the spatial and temporal

characteristics of the physicochemical variables of water

quality, (2) assess surface water quality using FSE, and (3)

determine important factors and sources influencing the

water quality.

Materials and methods

Study area

Taihu Basin is located near the downstream of the Yangtze

River (Fig. 1), including parts of Jiangsu Province, Zhe-

jiang Province, Anhui province and Shanghai city in

administration with an area of approximately 36,895 km2.

It is dominated by subtropical summer monsoons, with an

average annual rainfall about 1,177 mm. There are various

kinds of topographical situations, not only high moun-

tainous and hilly area towards west, but also low alluvial

plains in northern and eastern parts, occupying 80% of the

whole basin (Fig. 1). The drainage networks are well

developed and heavily diverted by human beings for flood

control and agricultural irrigation (Fig. 1). There are more

than 200 rivers distributed in the whole watershed, and 172

rivers or channels connected to Lake Taihu (Xu and Qin

2005). The total length of the rivers in the Taihu Basin is

ca. 12,000 km, i.e., about 3.24 km km-2 (Qin et al. 2007).

The greatest inflow rivers that bring most of the pollutants

into the lake are Chendonggang, Xitiaoxi, and Yincungang,

located in the west and southwest. The main outflow rivers

are Taipu, Xinyunhe, and Xijiang in the southeast.

Sampling sites and analysis

Due to the large area of the Taihu Basin, it is difficult to

collect the recent measurement data in the whole region.

Water samples from 67 different sites in the Taihu Basin

were collected at monthly intervals from 2000 to 2002
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from the Water Resources Protection Bureau of the Taihu

Basin (Fig. 1). According to the data completeness and

homogeneity of the sites in the same reaches, we here only

selected 22 sites between 2001 and 2002 for water quality

analysis. Four sites were selected at the mouth of the rivers

connected with Lake Taihu, and 18 stations were selected

from the main streams and tributaries. The datasets con-

sisted of 24 water quality variables: temperature, electrical

conductivity, pH, total suspended solid (TSS), Secchi disc

depth (transparency), total nitrogen (TN), ammonia nitro-

gen (NH4
?–N), chlorophyll-a, total phosphorus (TP),

biologic oxygen demand (BOD), chemical oxygen demand

in manganese (CODMn), chemical oxygen demand in chro-

mium (COD), dissolved oxygen (DO), petroleum, volatile

phenol, mercury, copper, lead, zinc, cadmium, chromium,

iron, hardness, and nitrate (nitrogen). Due to adverse weather

conditions, several samples were blank during some periods,

such as April 2001. In addition, the monitoring of trace metal

contaminants is discontinuous. Based on sampling continu-

ity of the sites, we selected 8 physicochemical variables for

our study, which consists of physical properties, organic

constituents, and nutrients.

Data analysis methods

Multivariate statistical approaches are widely and com-

prehensively used to identify the variances or similarities

of the environmental areas in term of surface water quality

Fig. 1 Location of the study

area and monitoring sites
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parameters (Maria and Graca 2006). PCA and CA were

employed to sort the water quality variables and sampling

sites, respectively. PCA was performed using Statistica 7.0,

and CA was applied using the SPSS 16.0 statistic software

packages. FSE was adopted to identify the pollution level

of surface water using Matlab R2008a.

Principal component analysis

PCA is used to reduce the dimensionality of the data set by

explaining the correlation among several random uncorre-

lated environmental variables in terms of a small number

of underlying factors or principal components without

extreme loss of information (Vega et al. 1998). The

methodology will not be extensively reviewed here due to

its wide application in environmental science and a larger

number of documents providing a thorough description of

its formulation and properties (e.g. Emery and Thomson

1997; Jolliffe 2002; Wall et al. 2003).

To objectively isolate the most important modes of

variance of the water quality parameters, we applied PCA

on the normalized data set of selected eight indicators,

including pH, DO, COD, CODMn, BOD, NH4
?–N, TP, and

TN. The factor loadings are usually presented as correla-

tion coefficients between the associated principal compo-

nents (PCs), and can be considered as a measure of the

relative importance in the extracted PCs. Any factor with

an eigenvalue greater than unity (eigenvalue [1) was

considered significant according to the criteria of Cattell

and Jaspers (1967).

Cluster analysis

Cluster analysis is a multivariate technique that can classify

categories or clusters to reveal their intrinsic characteristics

based on their similarity (Vega et al. 1998). Hierarchical

clustering is the most common approach that uses Ward’s

(1963) linkage as a measure of similarity. Unlike PCA that

normally uses only two or three PCs for displaying key

variances of the parameters, CA uses all the variance or

information contained in the original data set to demon-

strate the similarity and proximity. The results of CA are

usually presented by a dendrogram which provides a visual

summary of the clustering results. The visual summary

explains the internal homogeneity and external hetero-

geneity of the objects (Singh et al. 2004; Shrestha and

Kazama 2007). Many studies have shown that CA reliably

classifies surface water quality and can guide future sam-

pling strategies (Singh et al. 2004; Xu et al. 2009). In the

present study, CA was performed on the normalized data

set by means of the Wads’ method, using Euclidean distances

as a measure of similarity.

Fuzzy synthetic evaluation

Fuzzy set theory is used for decision-making or pattern

recognition when the context of the problem is unclear and

boundaries are undefined or imprecise. The FSE method

evaluates each individual variable’s value according to

predefined quality criteria in the fuzzy environment by

designing a suitable membership function and using the

fuzzy operators (Cude 2001). In this approach, water

classes are defined as fuzzy sets in terms of degrees of

membership with flexible boundaries rather than binary/

crisp sets (Dahiya et al. 2007). Recent studies indicate that

FSE has become a useful tool which is extensively applied

throughout the world in decision-making and evaluation

processes in imprecise environments. Icaga (2007) pro-

posed an index model to evaluate the surface water quality

using fuzzy logic method in terms of physical and inor-

ganic chemical parameters. Dahiya et al. (2007) used FSE

to assess the physicochemical variables of groundwater for

drinking purposes. Since the FSE method has been deeply

discussed in Yen and Langari (1999), Ross (2004), Dahiya

et al. (2007) and Lu et al. (2009), only a brief description of

the procedure is presented below.

1. Select assessment variables and establish assessment

criteria:

The first important step is to select the representative

and rational water quality assessment variables. For each

site, an assessment indicator matrix U can be expressed as:

U ¼ u1f ; u2; . . .; ung ð1Þ

where n is the number of the selected variables. The water

quality is classified into five levels in terms of National

Surface Water Environmental Quality Standards (Chinese

Environmental Protection Agency 2002b, GB3838-2002).

Afterwards, the assessment criteria matrix V can be expressed

as follows:

V ¼ v1f ; v2; . . .; vmg ð2Þ

where m is the number of assessment criteria categories,

which equal 5 in this study.

2. Establish membership functions:

The membership functions represent the degree to which

the water quality contaminants belong to the fuzzy set. For

an element ui of U, the value rij is called the membership

degree of ui in the fuzzy set V. The value 0 means that ui is

not a member of the fuzzy set; the value 1 means that ui is

fully a member of the fuzzy set. The values between 0 and

1 characterize fuzzy members, which belong to the fuzzy

set only partially. Various kinds of membership functions

can be used to quantify the membership degree, such as:

the Gaussian distribution function, the sigmoid curve, and
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quadratic and cubic polynomial curves. In this study, the

triangular membership function is applied to evaluate

the water quality variables as follows. The parameters in

the following equations are shown in Table 1, obtained

from the National Surface Water Environmental Quality

Standards (Chinese Environmental Protection Agency

2002b, GB3838-2002).

ri1 uið Þ ¼
1

ui � bð Þ= a� bð Þ
0

8
<

:

ui� a
a\ui\b

ui� b
ð3Þ

ri2 uið Þ ¼
0

ui � að Þ= b� að Þ
ui � cð Þ= b� cð Þ

8
<

:

ui� a; ui� c
a\ui\b
b\ui\c

ð4Þ

ri3 uið Þ ¼
0

ui � bð Þ= c� bð Þ
ui � dð Þ= c� dð Þ

8
<

:

ui� b; ui� d
b\ui\c
c\ui\d

ð5Þ

ri4 uið Þ ¼
0

ui � cð Þ= d � cð Þ
ui � eð Þ= d � eð Þ

8
<

:

c� vij�1; ui� e
c\ui\d
d\ui\e

ð6Þ

ri5 uið Þ ¼
0

ui � dð Þ= e� dð Þ
1

8
<

:

ui� d
d\ui\e

ui� e
ð7Þ

3. Calculate the membership function matrix:

After substituting the monitoring data of each assess-

ment variables, the fuzzy matrix R can be expressed as:

R ¼ rij

� �

n�m
¼

r11 r12 . . . r1m

r21 r22 . . . r2m

..

. ..
. ..

. ..
.

rn1 rn2 . . . rnm

0

B
B
B
@

1

C
C
C
A

ð8Þ

where rij i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mð Þ is the member-

ship degree of the ith assessment variable at the jth level.

4. Determine the weights matrix:

Water quality cannot be determined according to a

single water quality indicator. Each water quality variable

has its own contribution to water quality (Shen et al. 2005;

Lu et al. 2009). Therefore, it is necessary to determine the

weights of each variable in FSE. In this study, the entropy

method is used to determine the weights of assessment

variables (Zou et al. 2006; Lu et al. 2009). The weight of

entropy of the ith assessment variable is defined as:

wi ¼
1� Hi

n�
Pn

i¼1 Hi
ð9Þ

where 0�wi� 1
Pn

i¼1 wi ¼ 1. Hi is the entropy of the ith

indicator, calculated as:

Hi ¼ �k
Xp

j¼1

fij ln fij; i ¼ 1; 2; . . .; n ð10Þ

where fij ¼ rij=
Pp

j¼1 rij, k = 1/lnp, p is the number of

monitoring sites (22 in this article), and fij is the normalized

value of the ith variable at the jth monitoring site. If fij = 0,

then ln fij is supposed to be zero.

5. Calculate evaluation results:

The surface water quality assessment results can be

obtained from:

D ¼ W � R ¼ d1; d2; . . .; dmð Þ ð11Þ

in which the fuzzy matrix R = (rij)n9m, weight matrix

W = (wi)19n, and the results matrix D is calculated as:

dj ¼
Xn

1

wirij; j ¼ 1; 2; . . .;m; ð12Þ

The final evaluation result is:

Class = index max dj

� �� �
j ¼ 1; 2; . . .;m: ð13Þ

The index of the maximum value of dj (i.e. j) denotes the

water quality class of the water samples.

Results and discussion

Status of surface water quality in the Taihu Basin

Due to a large quantity of observed data, only the mean

values and standard deviations of the measured water

quality variables at 22 sites are shown in Table 2. The

mean values of the pH vary from 7.04 to 7.87 which falls

within the range of National Surface Water Environmental

Quality Standards of China (Chinese Environmental Pro-

tection Agency 2002b, GB3838-2002).

The lowest DO value was found at Changzhengqiao

(1.08 mg/L), and the relatively lower values at Xinfengzhen,

Table 1 The limits of the membership function based on surface

water environmental quality standards

Variables The parameters of the membership functions

a b c d e

pH C7.5 7.5 8 8.5 8.75 9

pH B7.5 6 6.25 6.5 7 7.5

DO (mg/l)a 7.5 6 5 3 2

CODMn (mg/l) 2 4 6 10 15

COD (mg/l) 12 15 20 30 40

BOD (mg/l) 2 3 4 6 10

NH4
?–N (mg/l) 0.25 0.5 1.0 1.5 2.0

TP (mg/l) 0.02 0.1 0.2 0.3 0.4

TN (mg/l) 0.2 0.5 1.0 1.5 2.0

a The number membership functions in reverse order
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Beiguodaqiao, Zhendongdukou and Baidugang were found

ranging from 3.17 to 4.06 mg/L. This suggests that the

discharge of industrial and domestic wastewater induced

serious organic pollution at these regions, since the

lower DO was mainly caused by the decomposition of

organic compounds (Boyle and Fraleigh 2003). The highest

Table 2 Mean and standard deviations (SD) of physicochemical variables of surface water quality in the Taihu Basin

Variables PH DO CODMn COD BOD NH?
4 –N TP TN

1. Baidugang Mean 7.31 4.06 7.72 24.79 9.00 3.70 0.29 4.97

SD 0.21 2.88 2.38 9.44 4.22 2.55 0.18 2.62

2. Dagangqiao Mean 7.04 5.95 3.58 12.77 3.75 0.62 0.09 2.66

SD 0.46 3.51 1.87 6.46 2.32 0.84 0.08 0.96

3. Hushanqiao Mean 7.64 8.28 3.87 19.21 2.77 0.53 0.08 1.66

SD 0.37 2.46 0.91 7.57 1.01 0.84 0.03 1.49

4. Wangjiaqiao Mean 7.40 6.30 4.93 15.25 1.85 2.37 0.19 4.24

SD 0.20 1.56 0.92 6.42 0.61 2.06 0.12 2.20

5. Lianjiangqiao Mean 7.52 7.01 4.50 15.43 2.47 0.82 0.23 3.27

SD 0.23 1.82 1.58 9.25 1.56 0.55 0.09 1.35

6. Zhiqianqiao Mean 7.56 4.57 5.70 21.28 3.71 1.81 0.23 5.92

SD 0.35 1.94 0.93 5.60 1.26 0.86 0.07 2.18

7. Jiuxian Mean 7.63 5.45 5.36 20.81 3.48 1.58 0.21 5.20

SD 0.40 3.11 1.22 3.97 1.14 1.33 0.09 2.04

8. Zhangtangcun Mean 7.55 5.35 4.89 18.25 3.55 0.92 0.18 3.76

SD 0.40 2.59 1.16 4.44 1.34 1.09 0.13 1.85

9. Panjiaba Mean 7.32 4.84 5.86 19.78 6.90 1.94 0.22 4.06

SD 0.18 1.82 1.03 6.26 3.49 0.91 0.10 1.51

10. Luxudaqiao Mean 7.53 6.90 4.38 16.81 1.73 0.68 0.11 1.48

SD 0.23 1.81 0.73 4.32 0.94 0.67 0.06 0.87

11. Shipu Mean 7.42 5.11 6.46 24.57 4.37 2.20 0.23 3.32

SD 0.35 1.94 0.73 9.03 1.60 0.98 0.09 1.17

12. Zhujiacun Mean 7.35 5.02 6.62 22.07 3.21 2.32 0.20 4.32

SD 0.17 2.77 1.11 4.45 0.78 1.23 0.07 1.49

13. Zhendongdukou Mean 7.46 3.95 5.97 24.73 5.28 2.25 0.25 3.49

SD 0.34 1.86 0.92 4.37 2.14 0.79 0.11 1.19

14. Tanjingcun Mean 7.58 5.82 5.01 16.09 2.89 1.17 0.11 2.10

SD 0.20 0.84 1.11 2.59 0.99 0.83 0.04 1.19

15. Jiangbianzha Mean 7.87 7.45 4.19 14.39 2.56 0.60 0.10 1.35

SD 0.28 1.76 1.74 3.37 1.08 0.69 0.03 1.01

16. Changzhengqiao Mean 7.42 1.08 12.00 57.04 11.50 5.83 0.64 11.01

SD 0.27 0.78 3.88 26.41 7.54 2.79 0.40 4.35

17. Beiguodaqiao Mean 7.44 3.21 8.46 27.00 5.58 0.97 0.15 5.37

SD 0.28 0.33 1.33 4.22 0.48 0.19 0.04 2.61

18. Siheqiao Mean 7.62 4.41 6.90 24.13 4.97 0.93 0.16 5.54

SD 0.25 1.19 1.84 4.51 0.73 0.29 0.04 2.92

19. Liuhezha Mean 7.40 4.89 5.94 22.71 3.13 2.17 0.16 3.34

SD 0.37 1.61 1.36 7.09 1.64 1.52 0.07 1.64

20. Xinfengzhen Mean 7.49 3.80 6.40 24.71 4.97 2.32 0.23 3.78

SD 0.28 1.61 0.94 6.04 2.42 0.95 0.14 1.04

21. Zhushagangkou Mean 7.43 7.17 5.53 23.42 3.04 0.64 0.12 2.03

SD 0.39 2.06 0.77 10.84 1.44 0.29 0.04 0.95

22. Wuzhen Mean 7.49 5.74 4.31 21.27 2.02 0.70 0.22 1.89

SD 0.25 1.89 0.69 11.92 0.86 0.47 0.11 1.61
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DO concentration value was found at Hushanqiao

(8.28 mg/L).

There is no distinct difference of CODMn, COD, and

BOD among the sites. The CODMn, COD and BOD con-

centrations ranged from 3.58 to 12.00 mg/L, 12.77 to

57.04 mg/L, 1.73 to 12.50 mg/L, without large fluctuation

at most sites except Changzhengqiao. The higher contents

of CODMn, COD, and BOD appeared in the water samples

collected from Changzhengqiao and Baidugang.

In contrast, the higher concentrations of TN, NH4
?–N

and TP were detected at most sites upstream of Lake Taihu,

such as Baidugang, Jiuxian, Panjiaba and Changzhengqiao.

This indicates that the nutrients coming from both agri-

cultural activities and domestic wastewater extensively

deteriorate the surface water quality. Though diffuse pol-

lution contributed more than 60% nutrient (N, P) loading

(Wang et al. 2004), high concentrations of nitrogen and

phosphorus (e.g. NH4
?–N) were found at many sites

strongly affected by urbanization, which probably was the

main reason for the hypertrophic state of the northern part

of Lake Taihu (Chen et al. 2003). Previous studies also

indicated that pollutants produced by industry were mainly

from the east or southeast of the lake, such as Suzhou,

Wuxi and Jiaxing, pollutants from agriculture (cropping,

rice growing, etc.) accounted for 37% of COD, 49.5% of

TN and 48% of TP produced in the basin, these non-point

pollutant sources came mostly from the west (Huang et al.

2004; Qin et al. 2007).

Among all the monitoring sites, Changzhengqiao loca-

ted in Wuxi city was found to have the worst water quality

with most highest indicators (e.g. TP, TN, COD, BOD),

which suggests that it is still urgent to control the point

pollutions in the Taihu Basin. On the other hand, the water

quality at Dagangqiao and Hushanqiao located near the

hilly region were relatively better than the others.

Principal component analysis on variables of surface

water quality

PCA was applied to identify characteristics of water quality

variables at all studied sites, based on the normalized

average values obtained from monitoring data surveyed in

a monthly interval during the study period.

A planar plot of eight variables against their values is

presented in Fig. 2. As shown in Fig. 2, the significant

factor PC1, with an eigenvalue greater than unity extracted

by PCA accounts for 73.72% of the total variance. The

second factor (PC2) was almost equal to unity (0.99) which

accounts for 12.46% of the total variance. It can therefore

be clearly seen that the first factor captures all nutrient

related variables, and has strong negative loadings on

COD, CODMn, BOD, TP, NH4
?–N and TN, and positive

loading on DO. The second factor (PC2) accounts for

12.46% of the total variance and has strong positive

loading on pH and moderate positive loading on DO. Using

PCA, the eight original variables were reduced to two key

uncorrelated factors. Each factor is significantly correlated

to specific variables representing a different dimension of

the water quality. The first factor represents the nutrient

dimension, which is related to all nutrient variables. The

high correlation of nutrient variables suggests that there is

high consistency in their variations, which is in agreement

with previous research conducted on Lake Taihu (Wang

et al. 2007). Furthermore, this factor accounts for the

majority of total variance, which can be concluded that

overloading of nutrients is the major environmental prob-

lem to aquatic systems in the Taihu Basin (Luo and Pang

2005). The second factor is only strongly associated with

pH, which may be influenced by other environmental

variables (Boyle and Fraleigh 2003; Wang et al. 2007).

Clusters analysis on variables of water quality

A dendrogram of samples obtained by the Ward method

using CA is shown in Fig. 3. Twenty-two sampling sites

were divided into three groups. Group 1 consisted of sites

1, 3, 6, 7, 11–13 and 17–22. Group 2 consisted of sites 2, 4,

5, 8–10, 14 and 15, and group 3 only included site 16 (i.e.

Changzhengqiao) which was detected as the heaviest pol-

luted site. The CA results revealed that the similarities of

the monitoring sites in each group are represented by the

characteristics of the water quality variables.

As shown in Fig. 3, the first main group is formed from

two subgroups that are linked at a rescaled distance of 7.

Fig. 2 Principal component analysis (PCA) ordination of the 22 sites

by 8 environmental variables in the Taihu Basin

Environ Earth Sci (2011) 64:809–819 815

123



The first subgroup includes sites 1, 11, 13, 17, 18, and 20

with higher concentrations of COD ([24 mg/L), NH4
?–N,

TP, and TN, which shows that surface water has become

highly eutrophic and polluted. In the PCA method of

classification these samples scored negative on factor 1 and

close to 0 on factor 2 (see Fig. 4). The sites 1, 11, 13, and 20

show much higher concentration in NH4
?–N ([2.2 mg/L),

TP ([0.22 mg/L) and TN ([3.3 mg/L). This may have

been caused by the large amounts of contaminants dis-

charged into the surface water, produced in urban towns.

Xie et al. (2007) investigated twelve most important rivers

in Changshu city, Taihu region, and concluded that the

highly NH4
?–N pollutants mainly originated from point

sources, such as domestic sewage, rural human and animal

excreta, and industrial wastewater. The second subgroup

consists of sites 3, 6, 7, 12, 19, 21, and 22 with COD in the

range from 19 to 23 mg/L and relatively lower NH4
?–N

and TP, especially at sites 3, 21 and 22, the NH4
?–N and

TN contents are much lower, indicating that these sites are

not intensively influenced by point source pollution.

In contrast, the sites in group 2, with infield and farm-

land around, were relatively moderately polluted. The

contents of COD vary from 12.77 to 17.38 mg/L, and the

NH4
?–N values are much lower than those in group 1. In

the PCA analysis, these samples were mostly grouped as

positive values on factor 1 (Fig. 4). Most sites in this group

indicate that the agriculture and households were dominant

contributors of the nutrients flowing into the lake. This can

be explained by observing the fact that a large portion of

discharges from villages and livestock farms (especially

those outside the core cities) are not appropriately treated,

and effective technical measures to control agricultural

sources of pollution are not readily available in China at

present (Wang et al. 2006). Intensive agricultural activities

resulted in higher concentration of TN coming from fer-

tilizers. This was the major reason of water eutrophication.

Group 3 corresponded to the highest polluted site which

was only located at site 16 (i.e. Changzhengqiao). From

Fig. 4, it also can be clearly seen that site 16 presented the

worst quality due to the lowest negative value on factor 1.

The site Changzhengqiao located in the north of Wuxi,

received pollutants from point and non-point sources.

Large amounts of urban wastewater, industry, and domestic

wastewaters were discharged into the river directly, which

brought site 16 to the super-polluted status.

Fuzzy synthetic evaluation of surface water quality

in the Taihu Basin

Fuzzy synthetic evaluation with the entropy method for

weight determination was used to assess the surface water

quality in the Taihu Basin during the studied period.

Figure 5 illustrated intra-annual variability of surface water

quality in the Taihu Basin between 2001 and 2002.

As shown in Fig. 5a, most of the samples in the west of

Lake Taihu belong to class III water quality in both wet and

dry season. Some sites, such as Wangjiaqiao, Jiuxian,

Lianjiangqiao, and Panjiaba displayed class V water

quality during the dry season, because most of them are

located in the agricultural region and received nutrients

from farmland. These sites showed obvious seasonal vari-

ances due to agricultural activities. As mentioned above,

Changzhengqiao was the heaviest polluted site due to the

industrial pollution and domestic wastewater.

There are only a few sites with relatively good water

quality belonging to class II through the year, i.e. Hush-

anqiao, Tanjingcun, Jiangbianzha and Dagangqiao. Two

Fig. 3 Dendrogram showing sampling sites clusters in the Taihu

Basin, China

Fig. 4 Scatter plot of the first two factor scores for the 22 sampling

sites
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sites: Tanjingcun and Hushanqiao, located downstream of

Lake Taihu were not heavily polluted by the wastewater or

industry. The sites Jiangbianzha connected with the Yangtze

River may be diluted by the water interaction.

The FSE indicates that water quality at most of the

sampling sites vary from class III to V. Figure 5b shows

the assessment results in 2002 which are very similar to

that in 2001. The water quality at Zhushagangkou and

Luxudaqiao located in the southeast of Lake Taihu is better

than the northern sites. This is attributed to the water

retention time of Lake Taihu. The average retention time of

Lake Taihu is about 5 months, but it is shorter in the south,

since most runoff water is discharged via the Taipu River,

in the southeast. Water quality, therefore, is better in the

south than in the north (Qin et al. 2007).

Conclusions

Water quality analysis of the samples from the Taihu Basin

indicates that pH values are in the range of natural surface

water quality. The concentration of CODMn, BOD, COD,

Fig. 5 Intra-annual variability

of surface water quality in 2001

(a) and 2002 (b) in the Taihu

Basin based on fuzzy synthetic

analysis. The red and blue dots
represent the monthly water

quality in the catchment. The

position of the dot relative to the

centre of the diagram expresses

time (clockwise from January to

December). The ranking of the

surface water quality is

expressed by the distance from

the centre of the diagram—the

maximum is depicted at the

external circle. The position

of the monitoring stations,

are indicated by the small
crosses (?)
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TP, NH4
?–N, and TN at most monitoring sites in the Taihu

Basin indicates serious pollution. Spatial distributions of

COD, NH4
?–N, TP and TN concentrations show that

higher values appeared in water samples near large cities.

1. The results from PCA suggested that nutrient pollu-

tion, organic pollution, and agricultural runoff were

potential pollution sources. The extracted significant

factor (PC1), explaining 73.72% of the total variance,

is correlated with DO, BOD, COD, CODMn, NH4
?–N,

TP, and TN. The second factor accounting for 12.47%

of the total variance is associated with pH.

2. The results of CA are in agreement with that from

PCA. The CA divided 22 sampling sites into three

groups: site 16 (Changzhengqiao) was the most

polluted sample, and sites 1, 3, 6, 7, 11–13, 17–22

are moderately polluted points, the water quality of

remaining sites is comparably better.

3. The FSE showed that there is no significant variance of

water quality between 2001 and 2002 among all the

sites. Seasonal changes could be detected at some sites

in the west of Lake Taihu within the agricultural region.

Changzhengqiao was found to be the heaviest polluted

site due to large amounts of industrial pollutants, and

domestic wastewater discharged into the rivers directly.

The evaluation results indicate that water quality at this

site belongs to class V during the whole period. The

water quality at four sites (i.e. Hushanqiao, Tanqingcun,

Jiangbianzha and Dagangqiao) showed good water

quality ranging from class II to class IV.

In this study both the multivariate statistical analysis

(PCA and CA) and FSE method were applied to assess the

water quality in the Taihu Basin. The water quality assess-

ment results indicate that the variables responsible for water

quality variations are mainly related to nutrients (non-point

sources: agricultural activities) in the west of Lake Taihu

and organic pollution (point source: urbanization, industry

and domestic wastewater) in the east area of the Taihu

Basin. This study demonstrates the utility of multivariate

statistical techniques and FSE method for analysis and

interpretation of complex data set in environmental science,

identification of pollution sources, and understanding spatial

and temporal variations in water quality, which may provide

a useful tool for water quality management, as well as guide

the wastewater treatment and management to some extent.

However, an updated long-term continuous data set would

be necessary to improve the results.
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