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Abstract Kyanite Mining Corporation, located in Dill-

wyn, Virginia has been in operation for over 50 years and

their local operation is the largest kyanite mine in the

world. As part of the processing at this location, a magnetic

separate is generated and a minimum estimation of 3.57

million tons of waste has accumulated. Currently no use for

the magnetic separate has been identified. We investigated

eight representative samples of the magnetic mine waste

which varied in color from a dark tan to black, to determine

if the waste could be recycled as an ore or could be used as

an environmental media. Mineralogical investigations

indicate the composition of the magnetic mine waste is

dominated by magnetite, kyanite, lesser amounts of

hematite and charcoal. Magnetite occurs as fine grained

crystals and as inclusions in kyanite. Hematite occurs lar-

gely as botryoidal textures, as discrete grains, and as

coatings on kyanite grains. Fe-oxide spheres ranging in

diameter from approximately 5–100 lm are common and

may compose up to 10% in some samples. Titanium

dioxide was rarely observed as coatings on silicate mineral

grains. Energy dispersive spectroscopy analysis on mag-

netite crystals indicates they have end-member composi-

tions. Bulk property investigations indicate that grain

size distributions of samples are primarily unimodal with

20–40% of material being between 0.600 and 0.250 mm.

Hydraulic conductivity values of samples investigated vary

between 0.0036 and 0.0077 cm/s and are broadly consis-

tent with those expected of sands with similar grain size

distributions. In addition to the magnetic waste stream a

light blue, water soluble, amorphous Cu sulfate occurs as a

coating on surfaces of boulders. The coating is composed

of rounded interlocking particles 5–60 lm in diameter.

This material is of some environmental concern for fresh-

water invertebrates, but can be managed using sorption

media. Hyperspectral data were gathered of the magnetic

separate, kyanite ore samples, and the light blue Cu sulfate.

The signatures of the kyanite ore, the blue mineral coating,

and a mixture of the two provide spectral fingerprints that

an imaging spectrometer could exploit for rapid detection

and subsequent environmental monitoring.

Keywords Mine waste � Mineralogy � Kyanite �
Reflectance spectra

Introduction

Mine waste is a multifaceted and major environmental

problem that is well recognized as having tremendous

impact globally (e.g., Monjezi et al. 2009; Antunes et al.

2008; Krekeler et al. 2008; Marescotti et al. 2008; Pereira

et al. 2008; Hancock and Turley 2006; Brown 2005;

Younger et al. 2005; Hamilton 2000; Pain et al. 1998). One

approach to lessen the environmental impact of mine waste

is to recycle the waste (e.g., Driussi and Jansz 2006;

M. P. S. Krekeler (&)

Geology Department, Miami University,

Hamilton, OH 45011, USA

e-mail: krekelmp@muohio.edu

C. S. Allen

Department of Environmental Science and Policy,

George Mason University, Fairfax, VA 22030, USA

L. E. Kearns

Department of Geology and Environmental Science,

James Madison University, Harrisonburg, VA 22807, USA

J. B. Maynard

Department of Geology, University of Cincinnati,

Cincinnati, OH 45221-0013, USA

123

Environ Earth Sci (2010) 61:93–106

DOI 10.1007/s12665-009-0324-x



Brunori et al. 2005; Jung et al. 2005; Ritcey 2005; Yoo

et al. 2005; Siriwardane et al. 2003; Marabini et al. 1998;

Smith and Williams 1996a, b). Major challenges exist

however. For example, mine waste that is or has been

generated from sulfide ores and some types of gold mines

clearly may have no environmentally sound use owing to

heavy metal and sulfur anion content. The nature of the

mineralogy is clearly a control in the environmental impact

of mine waste (e.g., Dold and Fontbote 2001; Hudson-

Edwards et al. 1999; Foster et al. 1998; Cotterhowells et al.

1994; Davis et al. 1993; Ruby et al. 1993).

Mine waste from some industrial minerals operations

may be less environmentally damaging. Mine operations

extracting feldspars, quartz, aluminosilicates and certain

clay minerals may produce recyclable mine waste, because

commonly there are lesser amounts of heavy metals and

toxic anions occurring in these types of ores. Many silicate

minerals also have lower solubilities than sulfides (e.g.,

Langmuir 1997). Many industrial mineral products require a

high degree of purity and the separation processes required

enable waste materials to be sorted and potentially reused.

Kyanite Mining Corporation, located in Dillwyn, Vir-

ginia has been in operation for approximately 50 years and

is the sole producer of kyanite in North America. This

facility is the largest kyanite mine in the world and has

40 million tons of proven reserves. The ore body is a

kyanite quartzite with approximately 20–30% kyanite and

is mined at Willis Mountain. According to the company’s

information the final refined suite of products are typically

90–92% kyanite. The company has a strong environmental

management program in place and has won a United States

national mine reclamation award.

Aspects of the geology of the region have been most

notably described by Owens and Pasek (2007), Owens and

Dickerson (2001) and references therein. The ore body is

located in the Piedmont physiographic province of central

Virginia and is part of the Ordovician Chopawamsic For-

mation of the central Virginia volcanic-plutonic belt. The

kyanite quartzites were long believed to represent simple

prograde metamorphism of aluminous sandstones. How-

ever, Owens and Pasek (2007) have refined the geologic

model of kyanite quartzites in the region and interpret the

protoliths as being igneous rocks subjected to severe

leaching in a high sulfur alteration environment.

As part of the processing of kyanite quartzite ore, quartz,

K-feldspar, muscovite, pyrite, hematite and magnetic min-

erals (magnetite and pyrrhotite) are separated. Three waste

streams result. Several tens of tons daily of quartz, musco-

vite and feldspar are separated into sand which is sold to

aggregate companies and occasionally to other industrial

mineral companies. A second waste stream is the pyrite

which may be negligible to several tons per week. The pyrite

is sold as a mineral commodity or stored in sealed silos

depending on market demand. Several tons to tens of tons

per day of magnetic separate, the third waste stream, are

generated. Currently no use for the magnetic separate has

been identified. Possible uses for the magnetic waste stream,

may include ore for iron or potentially an ore for titanium.

Kyanite Mining Corporation permitted the collection of

eight representative samples from recent dump piles of the

magnetic waste stream to be investigated in detail to

determine if there were any components which may pose

an environmental risk for recycling applications. An

investigation of the variability of mineralogical and bulk

physical properties of the mine waste was conducted to

determine possible uses for the material. An unusual blue

mineral coating that has recently developed in a specific

region of the mine was also included in the investigation to

determine the nature of the mineralogy and assess potential

environmental impacts.

Materials and methods

X-ray diffraction (XRD), scanning electron microscopy

(SEM) and X-ray fluorescence (XRF) were used for

materials investigation. XRD analysis was done with a

Philips h - 2h X-ray diffractometer using CuKa radiation

under conditions of 40 kV and 30 mA. Scanning condi-

tions were at 0.02� 2h with dwell times of 0.3 s per step.

Samples were finely powdered and packed into back pack

well mounts. Search/match phase identification, as well as

diffraction pattern presentation was done with ‘‘JADE’’

software. SEM investigation was conducted using a LEO

1430VP scanning electron microscope using a standard

tungsten filament. Energy dispersive spectroscopy (EDS)

analyses were obtained using an Oxford, Inc., light element

energy dispersive spectrometer in conjunction with the

SEM. Element analyses and presentation utilized ‘‘INCA’’

software, a product of Oxford, Inc. XRF investigations

were obtained using a Rigaku XRF spectrometer and

samples were prepared using pressed powder pellet

method. Grain size analysis was done using mechanical

sieves. Coefficients of permeability were determined using

a Geotest permeameter. Twenty-five replicate determina-

tions were made from each sample.

Diffuse reflectance spectra for the 350–2,500 nm region

were gathered using an Applied Spectral Devices Far

Range Spectroradiometer (ASD-FR2). The band sample

interval for the instrument was 1.5 nm in the 350–

1,050 nm region and 10–12 nm in the 1,050–2,500 region.

All spectra were resampled at a 1 nm band interval during

the data reduction process, using vendor-supplied RS3TM

software. The instrument was used in two configurations.

First, it was outfitted with an 8� field of view (FOV) fore-

optic attachment. The optical head was positioned 0.5 m
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above each sample at a nadir-viewing angle, resulting in a

spot size of 7.0 cm. This configuration was used to collect

spectra of the blue mineral coating and the magnetic waste

stream samples. A contact probe was attached to the fiber

optic to gather spectra of the kyanite samples, which were

all smaller than the instrument’s FOV at 0.5 m and for

spectrally heterogeneous sub-sections of the hydrous cop-

per sulfate and the kyanite ore samples.

The system’s dark current adjustment used the mean of 60

co-added dark current spectra. The white reference spectrum

was the mean of 60 co-added spectra taken of a SpectralonTM

panel (model SRT-99-120, SNI4440-D), manufactured by

Labsphere, Inc., Nashua, NH, USA. Five mean spectra, each

determined from 30 co-added spectra, were taken for each

sample condition. The five mean spectra were averaged to

obtain the mean spectrum for each sample condition. Each of

the five samples’ spectra were then averaged; this spectrum

is used in the data analysis. The spectrometer’s fiber optic

cable inherently limits the spectra in the 2,450–2,500 nm

region. Each sample was illuminated from one side using a

250 W, quartz–tungsten–halogen (QTH) lamp positioned at

a 30� angle from a height of 0.36 m.

Sample containers were plastic petri dishes, 10 cm in

diameter and 1.2 cm deep. Each container had two coatings

of a flat, black-colored paint. The painted sample con-

tainers have flat, featureless, 5% reflectance spectra over

the 400–2,500 nm region, which made them ideal back-

grounds. Each container was larger than the spectroradi-

ometer’s 7.0 cm instantaneous field-of-view (IFOV) at the

0.5 m viewing height.

Results

The magnetic separate has accumulated in a waste pile that

is approximately 150 m wide, 350 m long and has an

average height of approximately 20 m. The estimated

volume is 1.05 million m3 and the estimated tonnage using

a non-weighted average of common minerals present of

3.4 g/cm3 is 3.57 million metric tons. Field inspection of

the magnetic waste pile indicates that it consists of mixed

wastes including occasional quartz and kyanite-rich sands.

Approximately 95% of the pile appears to be magnetic

waste. An inspection of the perimeter of the pile indicates

that there is no secondary mineralization or iron staining

associated with it.

Mineralogy

Pyrrhotite occurs as smooth grains with a velvety surface

luster and are moderately magnetic. Most grains are black

with a minority of grains having a faint bronze coloration.

X-ray diffraction on selected individual grains shows that

pyrite occurs at the core of many pyrrhotite grains or as an

intergrowth with pyrrhotite.

Oxide minerals are very common in the magnetic waste

stream and include magnetite, hematite and titanium oxides

(Figs. 1, 2). Magnetite composes approximately 1–80% of

the mine waste. The mineral occurs as euhedral to anhedral

grains and are commonly 50 lm–0.5 mm in diameter. EDS

analyses indicate that there are no impurities above detection

limit (*0.10 wt%). Magnetite is intimately associated with

kyanite grains and occurs as inclusions, which are com-

monly 10–50 lm in diameter and also as coatings on kyanite

and other grains. Hematite composes approximately 1–10%

of the mine waste. Hematite is found in two modes, as thin

smooth dull red coatings on pyrrhotite/pyrite grains and as

botryoidal coatings on kyanite and feldspar grains. Hematite

can be found on approximately 10–20% of kyanite and

feldspar grains and 20–30% of pyrrhotite grains. Titanium

oxides are rare in sample material and are observed only as

coatings on silicate grains.

Several silicate minerals occur in the magnetic waste

stream including kyanite, quartz, K-feldspar, and musco-

vite. Kyanite is a major component of most of the magnetic

waste separate and composes approximately 1–95% of the

material. Sample MT 1 is very rich in kyanite. Kyanite in

the magnetic mine waste is commonly a light yellow and

gives bulk material a tan color. Kyanite in the magnetic

separate commonly has fine grained inclusions of magne-

tite, composing an estimated 5% to as much as 60% of the

grain volume. These inclusions are commonly subhedral to

euhedral and commonly are 10–50 lm in diameter. Quartz

composes approximately up to 20% in some samples and

occurs as conchoidal, anhedral to subhedral grains, com-

monly with small magnetite inclusions similar to those

found in the kyanite. Muscovite grains were rarely

observed and were found to contain approximately 1–2

Fig. 1 Powder XRD patterns with major minerals listed
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wt% BaO using EDS analysis. K-feldspars were common

and often had 0.1–0.5 wt% BaO using EDS analysis.

Charcoal is a major non-mineral component of the waste

and found in all samples of the waste but typically compose

approximately 1–3% by volume of the magnetic separate.

Fragments are commonly 50 lm to a few centimeters in

diameter. SEM data show that charcoal has a high surface

area with many micropores. Rarely fragments of titanium–

vanadium alloy are present.

A blue mineral coating is pervasive on approximately

5% of ore boulders on the Willis Mountain mining area.

The coating is very faint to 2 mm thick. XRD analyses of

the blue crust did not conclusively identify the mineral.

SEM investigation however does identify the material as a

copper sulfate with no other impurities (Fig. 3). Images

indicate particles are between 5 and 60 lm in diameter

with anhedral interlocking textures. Some particles are well

rounded or partially well rounded.

Bulk properties

Grain size analysis indicates particle size distribution in four

samples is unimodal and in four samples is multimodal

(Fig. 4). The[0.710 mm fraction is commonly dominated

by charcoal fragments and the \0.710 mm size fraction is

dominated by mineral grains. The uniformity coefficient

(d60/d10) varies from 1.97 to 4.72.

Observed K values vary between 0.0036 and 0.0077 cm/

s and are broadly consistent with values expected of sands

with similar grain size distributions (Table 1). Average

values obtained for K were compared to estimates based on

grain size analysis using the method of Sheperd (1989) and

Alyamani and Sen (1993). Both methods overestimated the

hydraulic conductivity with that of Sheperd (1989) pro-

ducing values of approximately two orders of magnitude

above the observed and that of Alyamani and Sen (1993)

producing values approximately one order of magnitude

above observed.

XRF

The chemical compositions of the magnetic waste stream

samples show some variation with respect to major and

trace elements (Table 2). Major element contents varied

with P2O5 (0.06–0.30 wt%), SiO2 (1.86–57.71 wt%), TiO2

(0.81–1.49 wt%), Al2O3 (19.27–33.85 wt%), Fe2O3

Fig. 2 SEM images of particles in the magnetic waste. a Magnetite

overgrowths on kyanite. b Charcoal grain with kyanite. c Ti-oxide

coating on K-feldspar with muscovite grain. d Botryoidal hematite.

e Ti–V alloy in charcoal interpreted as saw blade residue. f Botryoidal

hematite on K-feldspar. g Several representative magnetite grains.

h Spherical magnetite. i Titanium oxide coating on muscovite grain
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(36.70–56.76 wt%), MgO (0.47–1.09 wt%), CaO (3.07–

3.48 wt%), MnO2 (0.01–0.03 wt%), Na2O (3.79–8.17

wt%), K2O (1.17–3.02 wt%), and S (0.03–1.73 wt%).

Some elements showed correlations (Fig. 5). Concentra-

tions of Al2O3 and SiO2 systematically varied showing a

linear correlation (r2 = 0.97). Concentrations of Al2O3 and

Fe2O3 also showed a very strong linear correlation

(r2 = 0.94). Bulk minor and trace element XRF data show

that Ba, Mo, Nb, Zr, Y, Sr, U, Rb, Th, Pb, Zn, Cu, Ni, Co,

Cr, and V are present. Elements which are of potential

environmental concern are Mo (10–32 ppm), Pb (21–

77 ppm), Zn (17–48 ppm), Cu (33–276 ppm), Ni (\1–

8 ppm), Co (22–187 ppm), and Cr (82–137 ppm). A strong

correlation (r2 = 0.91) exists between Mo and Pb and a

weak linear correlation (r2 = 0.63) exists between V and

Cr concentrations. Moderate correlations between phos-

phorous and V (r2 = 0.82), Cr (r2 = 0.56), and Cu

(r2 = 0.91) occur. No discernable correlation between

concentrations of Pb, Zn, Cu and S occur.

Remote sensing

Contact-probe spectra of the kyanite samples are displayed

in Fig. 6a. The ore sample demonstrates 3–4% absorption

maxima from 2,190 to 2,210 nm—indicative of aluminum-

hydroxyl (Al–OH) stretching at the surface of aluminum-

rich minerals—and a gradual decrease in reflectance from

1,500 to 2,500 nm. Both of these features are consistent

with previously collected data (Salisbury et al. 1991; Hunt

et al. 1971, 1973; Hunt and Salisbury 1970) and the spectra

Fig. 3 SEM data for blue

mineral coating. a Small

rounded particle of Cu sulfate.

b BSE image of Cu sulfate on

mica flake. c Irregular shaped

particles of Cu sulfate. d Higher

magnification of upper left
portion of c. e EDS data

showing histogram of wt%

elements
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of three kyanite specimens included in the figure (Kyanite

A, B, and C). In addition, the kyanite A, B, and C samples

also mildly fluoresce at 688–689 nm (0.2–0.5%) and 705–

706 nm (0.3–0.8%) (Lakshminarasappa et al. 2006). When

these samples are illuminated by the lamp instead of the

contact probe, they do not fluoresce.

The mine waste samples produced largely featureless

spectra from 400 to 2,500 nm (Fig. 6b). Seven of eight

kyanite mine waste samples (MT-2–MT-7) are flat, fea-

tureless spectra ranging from 3 to 7% reflectance, consis-

tent with typical magnetite spectra in the near and

shortwave infrared (700–2,500 nm) (Clark et al. 2007;

Grove et al. 1992; Hunt et al. 1971). For these samples,

very slight increases in reflectance (*1%) in the visible

region (400–700 nm) are likely caused by impurities in the

waste stream mentioned above (e.g., kyanite, quartz, tita-

nium dioxide) that contribute to a higher overall reflectance

in the samples. Sample MT-1 presents a linear reflectance

increase from 6 to 12% over the 400–900 nm range and

then assumes a gradual upward reflectance trend similar to,

but stronger (3.5%) than, samples MT-2–MT-7 from 900 to

2,400 nm. The higher reflectance is likely a function of

Fig. 4 Grain size distributions

for magnetic waste stream
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greater kyanite impurities in this waste stream sample than

the others considered here.

The amorphous hydrous copper sulfate and substrate

spectra are displayed in Fig. 6c. The copper sulfate crust is

a vivid blue-green color, confirmed by a strong reflectance

peak at 530 nm in the visible spectrum combined with

overlapping copper and possible iron absorptions at

wavelengths\530 nm (5%) and a strong copper absorption

at 760 nm ([20%) (Hunt et al. 1971, 1972, 1973). The

sample also presents an aluminum-hydroxyl (Al–OH)

absorption at 2,190 nm (2%), and subtle features at

1,520 nm (1%) and 1,695 nm (2%); the latter two may be

subtle ferrous iron absorptions (Hunt et al. 1971, 1973).

The offset present in the spectra at 1,000 nm is an artifact

of the transition between spectrometers in the ASD-FR2

instrument. As expected, the white-colored kyanite ore

substrate for the copper sulfate crust possesses a strong

aluminum-hydroxyl (Al–OH) absorption feature at

2,190 nm ([20%). The substrate also has Al–OH absorp-

tion features at 2,345 nm (11%) and 2,440 nm (5%). The

ore substrate also has a minor copper-induced absorption

feature (1%) centered at 750 nm. Like the copper sulfate

crust, the ore substrate also possesses weak absorptions at

1,520 and 1,695 nm, although they are weaker in this

sample (\1%) (Hunt et al. 1971, 1973).

The whole sample spectra were gathered with the lamp

instead of the contact probe and demonstrate the mixing of

the two constituents in the sample—the blue-green copper

sulfate crust and the kyanite ore substrate. This spectrum

has a visible reflectance maximum at 555 nm, 25 nm

longer than the blue crust, the strong copper-induced

absorption feature at 770 nm (15%), and subtle incarna-

tions of the possible ferrous iron features at 1,520 nm

(\1%) and 1,695 nm (\1.5%). The Al–OH absorption

feature at 2,190 nm (9%) remains prominent. Although

noise begins to dominate the spectra *2,350 nm, the

Al–OH absorption feature at 2,345 nm is also apparent in

this sample.

Discussion

Materials

Discussions with mine staff indicate that the nature of the

heterogeneity of the magnetic waste pile has changed over

time with the core consisting more of a mix of silicate-rich

sand and magnetic-rich waste. Accordingly, estimates of

the total percentage of minerals and the total reserves of

metals in the pile may be high.

Wood cuttings from the local forestry industry are used

in processing kyanite product and result in the charcoal

observed. Titanium–vanadium alloy fragments observed in

charcoal are interpreted as saw blade fragments and

therefore these materials may complicate the interpretation

of bulk chemical data.

The blue coating is X-ray amorphous and cannot be

identified as a mineral most likely owing to the hygro-

scopic nature causing a state of constant re-equilibrium

with changing humidity. The rounded nature of the

Cu-sulfate masses in the SEM images is interpreted as a

dissolution–solidification texture. Only Cu, S, and O were

observed in EDS analysis. The material is identified as an

amorphous copper sulfate. The origin of the copper sulfate

is likely related to the hydrothermal history of the rock as

suggested by Owens and Pasek (2007).

Broadly similar minerals have been identified from other

mine waste settings. Peterson et al. (2006) described

efflorescent alpersite, (Mg,Cu)SO4�7H2O, from the Big

Mike Mine in central Nevada and efflorescent alpersite

and cuprian pentahydrate (Mg0.49,Cu0.41,Mn0.08,Zn0.02)

SO4�5H2O from Miami, Arizona, from sulfide mine waste.

They point out that these minerals may commonly be

misidentified as chalcanthite.

Several minerals in the magnetic waste stream such as

magnetite, K-feldspar, quartz, muscovite are stable in

aqueous solutions whereas the pyrite and pyrrhotite are

more reactive in aqueous solutions. Pyrites have a low

abundance (\1–2 wt%) in the samples investigated. Pyrites

are commonly enveloped in oxide coatings and this may

explain the lack of acid mine drainage features such as

staining at the base of the waste pile.

Charcoal is well recognized as a strongly absorptive

material. Organic molecule pollutants such as pyrene

(Wang et al. 2006), benzene (Braida et al. 2003), other

aromatics (Sander and Pignatello 2005; Zhu and Pignatello

2005) are known to be absorbed by charcoal. Charcoal is

also recognized as a media that absorbs heavy metals from

aqueous solutions (Amuda et al. 2007; Aziz et al. 2005;

Ndiokwere 1984). Therefore the charcoal may also act as

an absorptive buffer for aqueous components dissolved

from pyrites and this may explain the lack of acid mine

drainage indications near the perimeter of the pile. The

Table 1 Comparison of observed hydraulic conductivity values with

grain estimate methods

Sample Observed Sheperd

(1989)

Observed Alyamani and Sen

(1993)

1 0.0058 0.0428 0.0058 0.0119

2 0.0036 0.1196 0.0036 0.0304

3 0.0038 0.0836 0.0038 0.0219

4 0.0039 0.1078 0.0039 0.0277

5 0.0075 0.0965 0.0075 0.0250

6 0.0077 0.1148 0.0077 0.0293

7 0.0067 0.1395 0.0067 0.0349

8 0.0066 0.0878 0.0066 0.0230
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continued use of wood cuttings in the production process is

recommended as this approach recycles waste but also

plays a role in waste management.

The strong linear correlations of Al2O3 and SiO2 and of

Al2O3 and Fe2O3 are attributed to simple mechanical

mixing of quartz, kyanite and magnetite. From bulk XRF

data alone it is not possible to elucidate a specific rela-

tionship between kyanite and magnetite content owing to

the presence of feldspar and mica.

The mineralogical control on the distribution of heavy

metals is somewhat unclear; however, linear correlations of

bulk analyses provide some insight. The strong to modest

correlations of P2O5 content to concentrations of V, Cr, and

Cu suggest that some of the distribution of these transition

metals is controlled by phosphate minerals, presumably

apatite but other phosphates are possible. SEM investiga-

tion shows that no apatite, occurs as distinct grains, how-

ever, apatite is common as inclusions in quartz. The

correlation of V and Cr suggest they occur in a single

mineral phase. Vanadium and chromium commonly sub-

stitute in apatites (Pan and Fleet 2002; Dai and Hughes

1989; Sudarsanan et al. 1977; Banks et al. 1971; Banks and

Jaunarajs 1965). The lack of a more pronounced correlation

may be explained by a number of factors. V and Cr have

solid substitution in oxides and solid solution between

hematite (Fe2O3), eskolaite (Cr2O3), and karelianite (V2O3)

can occur. Cr exhibits solid solution with magnetite and is

a major constituent of chromite. Vanadium occurs in

magnetite at minor concentrations and is a major constit-

uent of coulsonite. The strong correlation between Mo and

Pb suggests these elements occur in the same mineral

phase. These elements have a strong affinity for S and their

occurrence and distribution may be controlled by the sul-

fide phases.

The now non-operational Graves Mountain kyanite

mine, located in Georgia, has significant amounts of tita-

nium oxide in the form of rutile. Titanium oxides are a very

minor mineral in the waste investigated from Dillwyn.

Bulk concentrations of Ti in the waste are not sufficient to

warrant reprocessing of the material for titanium. TiO2

concentrations are likely controlled by a minor amount of

Ti in solid solution with magnetite which has well-known

extensive Ti substitution (e.g., Anderson and Lindsley

1988; Ghiorso and Sack 1991). TiO2 concentrations do not

correlate well with V or Cr. Complicating this interpreta-

tion is the presence of minor saw blade fragments com-

posed of Ti–V metal that is associated with some charcoal

fragments.

The multimodal grain size distribution and the com-

paratively low K values for these grain sizes must be

accounted for in any reprocessing or reuse. Because there is

a range of grain size it should be possible to select a size

Fig. 5 Examples of correlation of element concentrations determined

by XRF for bulk samples of the magnetic waste stream. a V and Cr

showing moderate correlation. b Mo and Pb showing moderate to

high correlation suggesting occurrence in the same phase. c Corre-

lation of Al2O3 and SiO2 and d Fe2O3 and Al2O3 suggesting linear

mixing of waste
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distribution as needed and possibly tune the permeability

for reactive bed media in a given recycling process.

Remote sensing

The spectra in Fig. 6 provide useful library references for

airborne/spaceborne imaging spectrometer data. It is rea-

sonable to expect that features C2% in strength are

detectable via remote sensing, although this is highly

subject to atmospheric conditions, flying height/orbit con-

straints, the quality of atmospheric compensation, sensor

signal to noise ratios, and pixel phasing by the target

materials (Jensen 2005). Features such as the copper/iron

absorptions at wavelengths \530 nm in the blue-green

crust and kyanite ore, the copper absorption at 760 nm in

the blue-green crust, and the aluminum-hydroxyl (Al–OH)

features at 2,190 and 2,345 nm in both kyanite ore samples

should all be readily detectable from an airborne sensor,

such as AVIRIS or a spaceborne sensor, such as Hyperion.

The fluorescence features in the kyanite ore samples are not

present when sample spectra are gathered with the lamp

(not shown) and thus, would be unlikely to appear in data

gathered from a remote passive sensor. Signal to noise

ratios in imaging spectrometers are generally poor beyond

2,400 nm. Hence, the amorphous copper sulfate substrate’s

absorption feature at 2,440 nm would be difficult to extract

from noisy remotely sensed data in this wavelength range.

Data from 940–980, 1,120–1,180, 1,300–1,450, and

1,800–1,950 nm were removed from the plots because

atmospheric water vapor renders these portions of the

electromagnetic spectrum opaque or highly attenuated and

thus, difficult to work with when using airborne and

especially spaceborne data sets.

Environmental impacts

Kyanite has been shown to have a comparatively low

solubility (Oelkers and Schott 1999) and thus should not

contribute appreciable dissolved Al species to waters

interacting with the mine waste. This is important as

aqueous Al species are commonly regarded as toxic to

freshwater fauna (e.g., Borgmann et al. 2005; Lyderson

et al. 2002; Schmidt et al. 2002; Soucek et al. 2002).

Cu is a well-recognized heavy metal pollutant having

toxic effects on invertebrates (Rainbow 2002; Di Toro

et al. 2001; Santore et al. 2001; Langmuir 1997; Korthals

et al. 1996), fish species (Santore et al. 2001; Meyer et al.

1999; Farag et al. 1995; Ryan and Hightower 1994; Playle

et al. 1993; Wilson and Taylor 1993), vegetation (Ebbs and

Kochian 1997; Gallego et al. 1996; Fernandes and Henri-

ques 1991; Devos et al. 1992) and bacteria (Cevik and

Karaca 2006; Hattori 1992). Cu toxicity is particularly

Fig. 6 Reflectance spectra of mine samples and exemplars. a Shows

several remote sensing spectra for kyanite and kyanite ore. Kyanite

exemplar samples are from Minas Gerais, Brazil. Kyanite A and C

show fluorescence peaks under contact probe whereas Kyanite B and

the kyanite ore do not show fluorescence. All kyanite material spectra

show 3–4% absorption maxima between 2,190 and 2,210 nm that is

indicative of Al–OH stretching. b Remote sensing spectra for

magnetic waste stream samples showing flat featureless spectra. The

exception is that of MT-1 which has a distinct linear reflectance

increase from 6 to 12% over the 400–900 nm range. This feature is

attributed to the appreciable kyanite content of the sample. This

particular spectral feature may be useful for optical signature

automated separation for reprocessing. c Remote sensing spectra for

Cu sulfate and related materials which may permit areal mapping of

these materials in the mine from airborne platforms. The offset present

in the spectra at 1000 nm is an artifact of the ASD instrument. Blank

areas in all spectra are regions of atmospheric water vapor adsorption
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pronounced in freshwater invertebrates, including crabs

(Ferrer et al. 2003, 2006) and amphipods (Gale et al. 2006;

King et al. 2006). Although negative impacts of Cu pol-

lution have also been observed in soil bacteria, some

investigations have shown that bacteria can adapt to

increases in Cu (e.g., Rodrigues-Montelongo et al. 2006;

Niklinska et al. 2006). Detrimental effects of aqueous Cu

cation species have been shown to be complex and species

dependent in bacteria in some estuaries (Boyd et al. 2005).

The copper sulfate is of concern for water quality man-

agement and impact would be most expected for inverte-

brates, fish and vegetation in nearby streams.

Suggested environmental practices

The presence of minor amounts of sulfides indicates that

the waste is not suitable for applications involving surface

or groundwaters such as use as media in constructed wet-

lands or as a sand filter. Recycling the waste as fill is also

not recommended. A more realistic use may be as iron ore.

The United States Geological Survey (USGS) Mineral

Commodity Summaries (2008) reports the 2007 price per

metric ton is $63.00 US. Assuming that the 3.57 million

metric tons is ore, the upper limit of value of the magnetic

mine waste as ore is $225 million US. Using the minimum

value for Fe-rich samples of 36.70 wt% Fe2O3, which is the

approximate concentrations of some iron ores (Liu et al.

2006), as a multiplier of likely concentration, the mine

waste value estimate becomes $82.5 million US. The

annual market of iron ore in 2007 estimated by the USGS is

$3.1 billion US, thus the mine waste would represent 2.6%

of the annual US market. Although this is a small fraction

of the US market, if a demand could be identified or cre-

ated locally, modest production could take place. Kyanite

separation from the magnetic waste may enable Fe2O3

concentrations to be more in agreement with traditional

ores. Kyanite is used in specialized castings and if an

integrated product could be identified and produced at the

waste site, then transportation costs could be reduced.

Estimates are at best approximate but illustrate that under

value-added conditions a reprocessing of the waste stream

may be feasible.

Remote sensing techniques provide several management

options. The remote sensing results indicate that it may be

possible to differentiate very kyanite-rich waste from more

magnetite-rich waste based on reflectance. Samples with

reflectance values of C0.08 in the 800–2,200 nm range

may be considered for reprocessing in some fashion. An

ASD or similar system could be placed in an automated

system to sort waste stream materials. Fluorescence may

indicate high grade kyanite ore, but this feature is expected

to be observed only in field ASD contact probe conditions

or possibly process conditions. Cu-sulfate may be able to

be detected using remote sensing and periodic imaging is

recommended.

The occurrence of Cu sulfate at the mine is minor but

likely has some impact on the local environment. Pre-

cautions should be taken to minimize the dissolution or

migration of Cu and sulfate. It may be possible to capture

aqueous Cu species using exchangeable mineral materials.

Zeolites and sepiolite have been shown to absorb aqueous

Cu cations. Cui et al. (2006) showed clinoptilolite func-

tions well as a sorbent for Cu and Zn in a slurry bubble

column. Fungaro and Izidoro (2006) demonstrated effi-

cacy of zeolites for improving the quality of acid mine

drainage waters through cation exchange and precipitation

reactions. Zamzow et al. (1990) investigated clinoptilolite,

mordenite, chabazaite, erionite, and phillipsite for

removal of heavy metals from mine waste waters. Clin-

optilolite was challenged with waste water from a Cu

mine and all metals including Cu were reduced in con-

centration to below drinking water standards. Using

wastewater from an abandoned mine, Zamzow and Mur-

phy (1992) found that phillipsite was most effective at

removing heavy metals including Cu. Cu and Zn were

shown to be removed to concentrations below drinking

water standards.

The absorption of heavy metals in sepiolite has been

investigated (Kara et al. 2003; Brigatti et al. 1996; Garcia-

Sanchez et al. 1999). Brigatti et al. (2000) showed that

sepiolite has the highest affinity for removing Cu2? and

that the removal of Cu2?, Zn2?, Cd2? and Pb2? is func-

tionally independent of competitive cation interactions.

Sanchez et al. (1999) also investigated sepiolite and found

a high affinity for Cu2? sorption although they found Cd2?

was more strongly absorbed than Cu2?. Brigatti et al.

(1999) compared the sorption of Cu2?, Co2?, Zn2?, Cd2?

and Pb2? on sepiolite and zeolite-rich tuff and found that

Cu2? was most strongly absorbed by sepiolite but least

strongly absorbed by the zeolite. Zeolites are also granular

and thus have a high hydraulic conductivity compared to

sepiolite. It is recommended that a reactive media being

comprised of a mixture of sepiolite and clinoptilolite or

phillipsite be placed at the base of slopes where the copper

sulfate is present.

Conclusion

Investigations of the mine waste provide explanations of

the variability of properties of waste materials and can

provide insight into environmental management strategies.

Potential reprocessing of the material as an iron ore may be

an option if economic requirements can be met. Managing

copper sulfate pollution in the mine could be accomplished

with simple sorption media.
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