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Abstract This study presented herein compares the effect

of the sampling strategies by means of landslide inventory

on the landslide susceptibility mapping. The conditional

probability (CP) and artificial neural networks (ANN)

models were applied in Sebinkarahisar (Giresun–Turkey).

Digital elevation model was first constructed using a geo-

graphical information system software and parameter maps

affecting the slope stability such as geology, faults, drain-

age system, topographical elevation, slope angle, slope

aspect, topographic wetness index, stream power index and

normalized difference vegetation index were considered. In

the last stage of the analyses, landslide susceptibility maps

were produced applying different sampling strategies such

as; scarp, seed cell and point. The maps elaborated were

then compared by means of their validations. Scarp sam-

pling strategy gave the best results than the point, whereas

the scarp and seed cell methods can be evaluated relatively

similar. Comparison of the landslide susceptibility maps

with known landslide locations indicated that the higher

accuracy was obtained for ANN model using the scarp

sampling strategy. The results obtained in this study also

showed that the CP model can be used as a simple tool in

assessment of the landslide susceptibility, because input

process, calculations and output process are very simple

and can be readily understood.

Keywords Landslide � Inventory � Sampling strategy �
Susceptibility map � GIS � Conditional probability �
Artificial neural networks � Sebinkarahisar

(Giresun–Turkey)

Introduction

Landslides are frequently responsible for considerable

losses of money and lives. The severity of the landslide

affects the urban development and land use. Landslides and

related slope stability problems disturb many parts of the

world. Experiences in recent years in understanding, rec-

ognition and treatment of landslide hazard showed that our

knowledge is still fragmentary. A particular area requiring

attention concerns the selection and design of appropriate,

cost-effective remedial measures, which in turn require a

clear understanding of the conditions and processes that

caused the landslides. Much progress has been made in

developing techniques to minimize the impact of land-

slides, although new, more efficient, quicker and cheaper

methods could well emerge in the future. Landslides may

be corrected or controlled by one or more combinations of

four principle measures that are drainage, slope geometry

modification, retaining structures and internal slope

reinforcement.

As stated by Ercanoglu and Gokceoglu (2004), pro-

duction of landslide susceptibility maps at the early stage

of the landslide assessment has a crucial importance for

safe and economic planning, such as urbanization activities

and engineering structures, in particular. However, a

standard procedure for the production of landslide sus-

ceptibility maps does not exist. For this reason, many

researchers have used different techniques.

The landslide susceptibility maps are elaborated by

means of deterministic and non-deterministic (probabilis-

tic) models. The probabilistic ones are more frequently

used, and hence a large number of methodologies have

been developed (Rengers et al. 1998), based on the

inventory of landslides, geomorphological analysis, qual-

itative and statistical bivariate analysis (Brabb et al. 1972;
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DeGraff and Romesburg 1980; Jade and Sarkar 1993;

Chung and Fabbri 1999; Irigaray 1995; Fernández et al.

2003; Yilmaz and Yildirim 2006) and multivariate analysis

(Carrara 1983; Carrara et al. 1991; Baeza 1994; Chung

et al. 1995). Many researchers have used different tech-

niques such as heuristic approach (Ives and Messerli

1981; Rupke et al. 1988; Barredo et al. 2000; Van Westen

et al. 2000; Van Westen and Lulie 2003), deterministic

models (Ward et al. 1982; Cascini et al. 1991; Gokceoglu

and Aksoy 1996), statistical methods (Van Westen 1993;

Chacón et al. 1994, 1996; Chung and Fabbri 1999; Dai

et al. 2001; Lee and Min 2001; Carrara et al. 2003; Duman

et al. 2006). Some new techniques such as; fuzzy-logic,

artificial neural networks (ANN), neuro-fuzzy model, etc.

(Pistocchi et al. 2002; Lee et al. 2003a, b; Ercanoglu and

Gokceoglu 2004; Lee et al. 2004; Gomez and Kavzoglu

2005; Yesilnacar and Topal 2005; Yilmaz 2008b, etc.)

were used to evaluate the landslide susceptibility.

A landslide inventory is a dataset presenting a single

event, a regional event or multiple events. Landslide

inventory map shows the locations and outlines of land-

slides. Small-scale maps may show only landslide locations

whereas large-scale maps may distinguish landslide sour-

ces from deposits and classify different kinds of landslides

and show other pertinent data.

The mandatory element of landslide hazard or risk

assessment is reliable and accurate landslide inventory

map. The importance of variables reflecting the prior

landsliding conditions used in landslide susceptibility

analyses was also stated by Atkinson and Massari (1998).

However, the proper technique, quality, completeness,

resolution and reliability of the landslide inventory maps

are rarely ascertained. The lack of proper information on

the quality of the inventory maps and on the reliability of

the techniques used to complete the inventories may

compromise the hazard or risk assessment.

However, there is no agreement on the technique for the

preparation of landslide inventory map, researchers use the

different inventory maps where the landslides are shown as

point, scarp, seed cell, etc.

Nefeslioglu et al. (2008) quoted that the conceptual

differentiation of different sampling strategies applied

during susceptibility evaluations is commonly ignored

and not stated anymore. Only a few study emphasized

on this difference in literature. Dai and Lee (2003) used

the source area in the analyses by separating the source

area and run-out zone. The analysis of rupture zone

only in landslide susceptibility mapping was also

explained by Fernández et al. (2003). Landslide rupture

hypothesis was suggested by Remondo et al. (2003)

and Santacana et al. (2003) considered the rupture

zone in landslide susceptibility evaluation. Suzen and

Doyuran (2004) reported that the best un-disturbed

morphological conditions would be extracted from the

close vicinity of the landslide polygon itself. Recon-

struction of pre-landslide hill slope was suggested by

Van Den Eeckhaut et al. (2006). Clerici et al. (2006)

have taken into account the selected factor cells that

are defined on the upper edge of the main scarps of

landslides during the susceptibility calculations (Nefeslioglu

et al. 2008).

This paper presents the effect of the different sampling

strategies (scarp, seed cells, point) on the landslide sus-

ceptibility maps prepared for landslide area in Sebinka-

rahisar (Giresun–Turkey) using the conditional probability

(CP) and ANN models and their comparison. Comparison

of the three landslide maps used in landslide susceptibility

analyses will allow for a quantitative estimate of the

differences between the three inventories. This paper will

also add an extra value to the literature of the landslide

susceptibility mapping as a comparative study of very

basic technique (CP) with soft computing technique

(ANN).

Study area and landslide characteristics

Geographical setting

The study area is located 110 km south of Giresun (Tur-

key) (Fig. 1a). The main drainage system is dominated by

the Avutmus creek that extends SW–NE. Topographical

and morphological determinations using grid-based digital

elevation model (DEM) derived by interpolating the con-

tour lines of a topographic map at scale 1:25,000 (Fig. 1b)

indicated that topographical elevations range from 788 m

to 2,221 m and slope angle reaches to 85.4� in some

locations in the study area.

Rainfall is the main source of water in the study area and

it is the most important element in the hydrologic cycle.

Studied area receives an average annual rainfall of

590 mm. Most of the rainfall occurs during April, with a

mean value of 86.6 mm. Meteorological records of

20 years (1985–2004) showed that the annual average

maximum temperature is 20�C in August whereas the

annual average minimum temperature is always recorded

in January as -2.1�C.

Several times, moderately steep slope forming materials

were failed after the periods of heavy rainfalls and affected

the homes and farm buildings, etc. (Fig. 2). A long history

of ground movements together with the river erosion at the

toe and a change in the groundwater regime within the

slope created the preconditions for landslide. Site investi-

gations characterized the ground conditions and identified

the active slip surface within the compound landslide

terrain.
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Stratigraphical and tectonic settings

The study area encompasses four units ranging in age from

Oligo-miocene to Upper Cretaceous–Paleocene. From

oldest to youngest, they are Dikmen volcanics, Sebinka-

rahisar formation and Kka5 (andesite and basalt) and Kka3

(dacite) which are the members of Altinoluk formation

(Fig. 3).

In the study area, Altinoluk formation consists of two

groups namely Kka3 and Kka5. Although Kka3 is formed

of dacite, Kka5 is observed as andesite and basalt. This

formation is densely jointed and crushed. Weathered, cru-

shed and jointed, gray and black colored Dikmen volcanic

crop out sparsely in the study area, although their basement

rock characteristics. This unit consists of basalt. The age of

this unit is Eocene (Yilmaz et al. 1985). Oligo-Miocene

Şebinkarahisar formation is formed of red fissured clay and

claystone, un-cemented loose sandstone, conglomerates

and the little quantity of gypsum in some locations. This

formation crops out most extensively in the study area as a

cover unit, and overlies the volcanic with an unconformity.

In the study area, lower part of the Sebinkarahisar forma-

tion is characterized with red clays derived from andesite-

basalt. From down to up, very loose and un-cemented

sandstone like sand, conglomerates are very distinctive.

Since it is well known, the neotectonic framework of

Turkey is outlined and characterized by major interconti-

nental strike-slip faults, namely the dextral North Anatolian

fault zone and the sinistral East Anatolian fault zone,

between which the Anatolian block moves westward rela-

tive to the Eurasian plate in the north and the Arabian plate

in the south due to the continued convergence of these

plates since the middle Miocene (McKenzie 1972; Dewey

and Şengör 1979; Şengör 1980; Barka and Gülen 1988;

Koçyiğit 1989) (Fig. 4) (After Yilmaz and Bagci 2006;

Yilmaz et al. 2006).

The other striking secondary faults are the left-lateral

Central Anatolian Fault Zone (CAFZ), the right-lateral Salt
Fig. 1 Location map and digital elevation model of the study area

Fig. 2 Photos from landslides
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Lake Fault Zone (SLFZ) and the Inönü–Eskişehir and

Akşehir oblique-slip normal fault zones (Koçyigit and

Özacar 2003). The area of neotectonic extensional tectonic

regime is effective in the south-western part of Anatolia,

partly covering the Central Anatolia region (Oral et al.

1995; Altiner et al. 1997; Reilenger 2002) (Akman and

Tüfekçi 2004).

Landslides

It has been recognized that the study area is frequently

subjected to landslides. Landslides have posed a significant

hazard in Sebinkarahisar for many years. Geological and

geotechnical studies were conducted on the landslide to

gain a better understanding of the triggering mechanisms

and failure process and to better prepare for future failures

in the area. Velocity of the slope movements has been

predicted by monitoring the relative building movements in

2 years and classified as slow rate (0.06 m/year to 1.5 m/

month) using the movement scale of Varnes (1978).

However, very high velocities of slope movements were

recorded after heavy rainy seasons by increasing the water

level of rivers and their erosive power.

Well-defined slip surface and ground conditions were

satisfactorily characterized by subsurface investigations in the

study area. Boreholes and trial pits on the slopes also revealed

the presence of clayey soils at the contact of the slope-forming

materials with the basement rock. In order to derive a geo-

technical model for landslide area, exploratory drilling results

were combined with geology and morphology.

Many daylights of rotational slides and ground movements

through slope material and rock mass along particularly weakFig. 3 Simplified geological map of the study area

Fig. 4 Tectonic map of Turkey

508 Environ Earth Sci (2010) 60:505–519

123



clayey soils that form a sliding plane reaching over the river

bed were observed. The deep-seated elements of the landslide

involve translational sliding with a sliding plane parallel to

the basement rock. It means that first a translational slide

started along the river bank and the removal of the lateral

supports induced rotational slides upslope.

Landslides in the study area usually occur on the slopes

above river/creek having very high discharge value and

velocity in winter and are very destructive as seen in Fig. 2b.

Landslides occupy slopes whose toes have been subjected to

surface-water erosion, suggesting that undercutting of slopes

by surface water is the primary cause of the landslides.

Groundwater, stratigraphical conditions and precipitation

are secondary causes. The presence of clays also contributes

to the failure. A combination of the removal of lateral support

by toe erosion and loading of slope by groundwater are

thought to be the triggering mechanisms. As long as the

landslide toe remains stable, further slope failure is unlikely

to occur. It was concluded that the closeness to the river

should be used as a main affecting factor of landslides.

The mechanism of landslides was illustrated on a model

section in Fig. 5. Erosion of the toe of a slope causes a series

of landslides and after the rainstorms saturated Sebinka-

rahisar formation flows over the andesite–basalts. Each slide

leads to the removal of the lateral support of the main land-

slide blocks upslope, and progressively worsens the stability

of the system. Each slope failure causes reduction of the

lateral stress in its close vicinity, which in turn makes the red

clay in the sliding surface mechanically expand and reduce

its strength. Physical swelling is not possible in short term

due to the low permeability of the clay. However, after a

period of time, water flows into the area, reduces the clay

shear strength and causes further failure.

Preparation of landslide inventory and landslide

susceptibility mapping

In recent years, geographical information system (GIS)

technologies have the potential to address a wide range of

problems in disaster management and hazard mitigation,

and are increasingly playing an important role in spatial

planning and sustainable development (Yilmaz 2007, Yil-

maz 2008a). Landslide susceptibility mapping before the

landslide assessment is very important for safe planning.

Several attempts have been made to understand the tem-

poral-spatial distribution of landslides and thus minimize

the possible impacts by means of predictive risk models.

As indicated in Part I, a number of different models have

been developed in order to assess the landslide suscepti-

bility. Quantitative techniques have become very popular

in the last decades depending on the developments in

computer and GIS technology.

To predict the landslide locations, it is necessary to

assume that landslide occurrence is determined by land-

slide-related factors and that future landslides will occur

under the same conditions as past landslides (Lee and Talib

2005). In order to construct the landslide susceptibility map

quantitatively, the CP and ANN models were used by

means of GIS.

In this study, GIS software, ArcGIS 9.1 was used as a

basic tool for spatial management and data manipulation.

The cell size of landslide and parameters maps were chosen

as 20 9 20 m as the working scale was 1:25,000. These

maps consist of 524 rows and 689 columns, and totally

361,036 cells.

A map of existing landslides serves as the basic data

source for understanding conditions contributing to land-

slide occurrence. The map may be prepared at different

sampling strategies concerning existing landslides. A

simple inventory should identify the definite and probable

areas of existing landslides. There are several consider-

ations to keep in mind when gathering data on existing

landslides. First, the time and effort required to conduct an

inventory varies with (1) geologic and topographic com-

plexity; (2) size of an area; and (3) desired level of

inventory detail (Varnes 1978). Second, more detailed

inventories will require larger map scales to reveal the

small features of this added detail. Third, additional data

gathering can add detail to an existing inventory. This

Fig. 5 Cross-section showing

the landslide mechanism
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enables a previously completed simple inventory to be

transformed into an intermediate inventory with less time

and effort than producing the intermediate inventory solely

from field work and aerial photography.

The study area has experienced many landslides over a

long period and 92 landslides have been mapped in the

study area (Fig. 1b). In order to prepare an inventory map,

landslide locations were plotted on 1:25,000 scaled topo-

graphic map using the Landsat TM satellite images and

1:35,000 aerial photographs, then information was com-

pleted and confirmed by the field surveys.

In this study, three landslide inventory maps were pre-

pared by the following different techniques:

• The first map (Map A) (Fig. 6) was prepared through

the drawing of main scarp distinguished from the

accumulation/depletion zone or rupture zone as poly-

gon feature.

• The second map (Map B) (Fig. 6) was obtained using

the seed-cell proposed by Suzen and Doyuran (2004).

Detail of this method can be read from the paper

written by (Suzen and Doyuran 2004).

• The third map (Map C) (Fig. 6) was prepared using the

locations plotted as point selected at the upper part of

the scar.

As known, many factors influence the occurrence of

landslides, such as; geological, morphological, hydrogeo-

logical and meteorological conditions, vegetation and land

use. The intensity of precipitation was ignored in this

study, because it was almost the same throughout the area.

This means that the effect of rainfall is negligible, because

relative effect on the landslide occurrence in each cell will

be the same in the susceptibility analyses.

Lithology and structural elements are very important

parameters in the analyses of landslide susceptibility. There

are four types of geological units in the study area, and

Sebinkarahisar formation was found to be the most sus-

ceptible geological formation. Lineaments in the study area

were drawn by the use of field observations, 1:35,000

scaled aerial photographs and satellite images. Proximity to

the structural elements is a very important contributing

parameter in the evaluation of landslide susceptibility. That

is why distances to faults were calculated at 250 m inter-

vals by buffering. It was obtained that regions having

higher landslide occurrence probability were distributed in

the area closer to the faults (Fig. 7a).

In the susceptibility analyses, topographical parameters

such as, drainage system, topographical elevation, slope

angle, slope aspect and topographic wetness index (TWI)

were considered and produced from the DEM of the study

area. First, DEM was constructed by implementation of

1:25,000 scaled topographical map contours using ArcMap

of ArcGIS 9.1 software (ArcGIS (Version 9.1) 2005). In

order to assess the influence of drainage on the landslide

occurrence, distance from drainage was calculated from

topographical database.

Distance to drainage is an important contributing factor,

because failure mechanism of landslides in the study area is

mainly based on the erosion at the toe. Distances to

drainage were calculated at 150 m intervals (Fig. 7b). At

the distance closer to the drainage system, a high proba-

bility of landslide occurrence was found.

Analyses showed that slope angle in a range of 10�–30�
(Fig. 7c) indicate high probability of landslide occurrence.

Slope aspect analyses (Fig. 7d) showed that landslides

were most abundant in E, W, S, SE, SW, NW facing

slopes. Relationships between elevation and landslide

occurrence indicated that landslides generally occur at the

elevation range of 1,000–1,300 m. It can be seen from the

Figs. 1 and 7e that landslides are also very rare at higher

elevation than 1,300 m having a low-CP (Table 1). This

sparseness is sourced from very thin soil cover and rocky

characteristics of the areas at higher elevations (Fig. 7e).

As a general aspect, shear stresses on the slope material

increase with the increasing slope degree, it is expected

that landslides will occur on the steepest slopes. On the

other hand, very low shear stresses are expected at gentle

slopes. As a result of the analyses related to slope as a

contributing factor showed that the low probability of

landslide occurrence obtained in the areas having a steeper

slope more than 30�. Because, steeper slopes are generally

not susceptible to shallow landslides due to the bedrock

outcrops and their eroded characteristics.

Topography first controls the spatial variation of

hydrological conditions and slope stabilities. It affects the

spatial distribution of soil moisture, and groundwater flow

often follows surface topography (Burt and Butcher 1986;

Seibert et al. 1997; Rodhe and Seibert 1999; Zinko et al.

2005). Topographic indices have therefore been used to

describe the spatial soil moisture patterns (Burt and

Butcher 1986; Moore et al. 1991). One such index is the

TWI developed by Beven and Kirkby (1979) within the

runoff model. It is defined as:Fig. 6 Sampling strategies used in the models
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TWI ¼ ln a=tanbð Þ; ð1Þ

where a is the local upslope area draining through a certain

point per unit contour length and tanb is the local slope.

The TWI has been used to study spatial scale effects on

hydrological processes. Water infiltration to slope material

cause pore water pressures and decreases the soil strength.

In this study, TWI (Fig. 7f) was taken under consideration

as a contributing factor. In the analysis, a transmissivity

value of 1 was used constant for the whole catchments

area.

Higher TWI values, distributed in higher elevations,

point out the infiltration of surface water into the slope

forming materials, and pore water pressures increase with

decreasing shear strength. It was observed that landslides

were very abundant at the lower elevations than locations

having high TWI values at higher locations.

As another topographical index, the stream power index

(SPI) (Fig. 7g), which is a measure of erosive power of the

stream, was computed for the study area. SPI can be

defined by the following equation

SPI ¼ Astanb; ð2Þ

where As is the specific catchment area and b is the local

slope gradient in degrees.

The normalized difference vegetation index (NDVI) is a

measure of surface reflectance and gives a quantitative esti-

mate of the vegetation growth and biomass (Hall et al. 1995).

Satellite maps of vegetation show the density of plant growth

over the entire globe. The most common measurement is

NDVI. Very low values of NDVI (0.1 and below) correspond

to barren areas, sand or snow. Moderate values represent shrub

and grassland (0.2–0.3), while high values indicate temperate

and tropical rainforests (0.6–0.8) (Weier and Herring 2005).

Using the satellite image of Landsat Thematic Mapper

(TM), the NDVI (Fig. 7h) was taken into consideration as a

landslide-related factor. The NDVI was calculated from the

following formula:

NDVI ¼ IR� Rð Þ= IRþ Rð Þ; ð3Þ

where IR infrared portion of the electromagnetic spectrum,

R red portion of the electromagnetic spectrum.

Fig. 7 Parameter maps used in the analyses
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The results showed that the landslides focused into the

grassland areas and afforested areas having the respective

NDVI values of 0.1–0.6.

Conditional probability model

As stated by Duman et al. (2005), one such limitation is

the necessity to introduce a limited number of factors

Table 1 Results of the P(AIBi) obtained from the conditional prob-

ability model

Scarp P(AIBi) Seed cells P(AIBi) Point P(AIBi)

Distance from drainage (m)

0–150 0.027256 0.013899 0.00024

151–300 0.033893 0.016398 0.000461

301–450 0.029488 0.015871 0.000255

451–600 0.032407 0.013369 0.000303

601–750 0.028271 0.013401 8.9E-05

751–900 0.018215 0.012983 0.000129

901–1,050 0.007385 0.008153 0.000192

1,051–1,200 0.003991 0.005588 0

1,201–1,350 0 0 0

[1,350 0 0 0

Distance from faults (m)

0–250 0.031617 0.013789 0.000316

251–500 0.058584 0.026024 0.000472

501–750 0.041549 0.025164 0.000447

751–1,000 0.028948 0.017012 0.000302

1,001–1,250 0.018696 0.010853 0.000203

1,251–1,500 0.015071 0.008157 0.00023

1,501–1,750 0.002355 0.002033 0

1,751–2,000 0.003749 0.002091 7.21E-05

2,001–2,250 0.012992 0.00701 0.00028

[2,250 0.000261 0.000421 0

Slope angle

0�–5� 0.023724 0.010929 0.00024

6�–10� 0.035255 0.018739 0.000298

11�–15� 0.036202 0.016607 0.000441

16�–20� 0.026062 0.013081 0.000316

21�–25� 0.020251 0.009643 0.00013

26�–30� 0.011309 0.007196 0

31�–35� 0.00729 0.005456 0.000138

36�–40� 0.005617 0.00612 8.38E-05

41�–45� 0.011202 0.008961 0.000204

46�–85.4� 0.005787 0.010471 0

Slope aspect

Flat 0.004474 0.004175 0

N 0.019841 0.009639 8.03E-05

NE 0.018251 0.013141 0.000227

E 0.02706 0.013733 0.00034

SE 0.027998 0.012752 0.000336

S 0.02647 0.014139 0.000209

SW 0.029135 0.015219 0.000261

W 0.026563 0.013297 0.000148

NW 0.028783 0.012655 0.00027

N 0.026328 0.011884 0.000274

Elevation (m)

8,32–1,000 0.015437 0.005234 0.000132

1,001–1,100 0.073926 0.031747 0.000584

1,101–1,200 0.070006 0.035948 0.000567

Table 1 continued

Scarp P(AIBi) Seed cells P(AIBi) Point P(AIBi)

1,201–1,300 0.03111 0.018426 0.000504

1,301–1,400 0.017453 0.011865 0.00023

1,401–1,500 0.017205 0.008389 0.000126

1,501–1,600 0.008641 0.00439 0.000105

1,601–1,700 0.012546 0.00879 0.00016

1,701–1,800 0.009291 0.00673 0.000151

[1,800 0.001325 0.001158 1.68E-05

TWI

0.15–1.5 0.010786 0.007387 6.56E-05

1.5–3.0 0.03245 0.016034 0.000343

3.0–4.5 0.027446 0.013343 0.000231

4.5–6.0 0.010738 0.009352 0.000346

6.0–7.5 0.00885 0.00708 0

7.5–9.0 0 0 0

9.0–10.5 0 0 0

10.5–12.0 0 0 0

12.0–13.5 0 0 0

[13.5 0 0 0

SPI

0–750 0.028847 0.014687 0.000214

751–1,500 0.036492 0.016825 0.000424

1,501–2,250 0.024828 0.013913 0.00028

2,251–3,000 0.013943 0.008424 2.09E-05

3,001–3,750 0.006606 0.005459 0.000139

3,751–4,500 0.009203 0.007989 0.000101

4,501–5,250 0.007973 0.006074 0

5,251–6,000 0 0.002774 0

6,001–6,750 0 0 0

[6,750 0 0 0

NDVI

-0.9–0.1 0.010464 0.010464 0.010464

0.1–0.3 0.018578 0.018578 0.018578

0.3–0.6 0.008669 0.008669 0.008669

0.6–0.84 0.024187 0.024187 0.024187

Geology

Dikmen 0.003237 0.003237 0.003237

Kka3 0.003479 0.003479 0.003479

Kka5 0.003959 0.003959 0.003959

Sebinkarahisar 0.051436 0.051436 0.051436
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subdivided into a limited number of classes into the

analysis. Otherwise, a high number of pixels of small

dimensions, and so of less statistical significance, could

result from the crossing of the data layers. However,

probably the most limiting aspect is that an eventual

change of the factors or simply their reclassification,

implies restarting the entire procedure which, however

conceptually simple it may be, is nevertheless compli-

cated to execute. To overcome this difficulty, Clerici et al.

(2002) have produced a shell program (or shell script)

that executes the procedure automatically making it,

therefore, possible to repeat it quickly and with limited

user involvement.

Each specific combination represents a pixel. Subse-

quently, the landslide spatial frequency, usually repre-

sented by the landslide density, is determined within each

pixel. Assuming the already mentioned principle that

slope failure in the future will be more likely to occur

under those conditions which led to the past instability

and working on the statistical concept whereby the fre-

quency of an event, the density of an event, equals the

probability that the same event will occur, the resulting

landslide density equals the landslide susceptibility

(Clerici et al. 2002). Conditional probability is denoted

mathematically as p(AIB) (Eq. 4) (Negnevitsky 2002;

Duman et al. 2005).

PðAjBÞ ¼ ðthe number of times A and B can occurÞ=

ðthe number of times B can occurÞ: ð4Þ

The number of times A and B can occur or the probability

that both A and B will occur, is also called ‘‘joint

probability’’ of A and B. It represents mathematically as

P(A \ B). The number of ways B can occur is the probability

of B, P(B);

P AjBð Þ ¼ P A \ Bð Þ=P Bð Þ ð5Þ
P BjAð Þ ¼ P B \ Að Þ=P Að Þ ð6Þ
P B \ Að Þ ¼ P BjAð Þ � P Að Þ ð7Þ
P A \ Bð Þ ¼ P B \ Að Þ: ð8Þ

Bayesian rule is given in Eqs. 9, and 10 and can be

written as event A being dependent on a number of

mutually exclusive events B1, B2,…, Bn.

P AjBð Þ ¼ P BjAð Þ � P Að Þ½ �=P Bð Þ ð9Þ

PðAÞ ¼
Xn

i¼1

PðA \ BÞ ¼
Xn

i¼1

PðAIBiÞ � PðBiÞ: ð10Þ

Landslide susceptibility maps were produced using

Eq. 10 for three different sampling strategies of scarp,

seed cell and point (Fig. 8). The p(A|B), p(A) and p(B)

values are tabulated in Table 1.

Artificial neural networks model

Neural networks may be used as a direct substitute for

multivariable regression, linear regression, trigonometric

and other statistical analysis and techniques (Singh et al.

2003). Neural networks, with their remarkable ability to

derive rules from complicated or imprecise data, can be

used to extract patterns and detect trends that are too

complex to be noticed by either humans or other com-

puter techniques. The main characteristics of ANN

include large-scale parallel distributed processing, con-

tinuous nonlinear dynamics, collective computation, high

fault tolerance, self-organization, self-learning and real-

time treatment. A trained neural network can be thought

of as an ‘‘expert’’ in the category of information it has

been given to analyze.

When a dataset is analyzed using neural networks, it is

possible to detect important predictive patterns that are not

previously apparent to a non-expert. Thus, the neural net-

works can act as an expert. The particular network can be

defined using three fundamental components: transfer

function, network architecture and learning law (Simpson

1990). It is essential to define these components, to solve

the problem satisfactorily.

As stated by Gomez and Kavzoglu (2005); an alternative

method for landslide risk zonation is the use of ANNs.

ANNs are an attempt, in the simplest way, to imitate the

neural system of the human brain.

Artifıcial neural networks have the ability to handle

imprecise and fuzzy data, so they can work with

continuous, categorical and binary data without violating

any assumptions. As assessment of probability for land-

sliding is performed through the forecast of future events

from experience of past landslides, it may be considered

as an ideal application for ANNs (Jain et al. 1996;

Yesilnacar and Hunter 2004; Gomez and Kavzoglu

2005).

Feed-forward back propagation learning algorithm as

ANNs was also applied to the study area. More than one

layer of neurons was included in the perceptron in order to

cope with nonlinearly separable problems, and a multilayer

perceptron (MLP) was obtained.

Neural networks consist of a large class of different

architectures. In many cases, the issue is approximating a

static nonlinear, mapping f(x) with a neural network f

(x)NN, where x [ RK. There are many kinds of ANN

models, among which the back propagation (BP) model is

the most widely used, and it is an instructive training

model. It is accepted that the most useful neural networks

in prediction and decision algorithm are back propagation

and radial basis function (RBF) networks. In this paper,

back propagation algorithm, created by generalizing the

Widrow–Hoff learning rule to multiple layer networks

Environ Earth Sci (2010) 60:505–519 513
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and nonlinear differentiable transfer function, is used. A

back propagation consists of an input layer, several hid-

den layers and outputs layers. All of those layers may

contain multiple nodes (After Yilmaz and Yüksek 2008,

2009).

The inputs xn, n = 1,…, n to the neuron are multi-

plied by weights wni and summed up together with the

constant bias term Qi. The resulting ni is the input to the

activation function y. The activation function was origi-

nally chosen to be a relay function, but for mathematical

convenience a hyperbolic tangent (tan h) or a sigmoid

function are most commonly used. Hyperbolic tangent is

defined as

f ðxÞ ¼ tan hðxÞ ¼ ex � e�x

ex þ e�x
: ð11Þ

The output of node i become

yi ¼ f
Xk

j¼1

wikxj þ Qi

 !
: ð12Þ

Connecting several nodes in parallel and series, an MLP

network is formed. A typical network is shown in Fig. 9.

The following equations explain mathematical notation of

back propagation algorithm.

am
0:j ¼ xmð Þj¼ xm

j ; ð13Þ

cm
i:j ¼

Xsi�1

k¼1

wi:j;kam
i�1:k þ bi:j; i [ 0; ð14Þ

am
i:j ¼ Fi:jðcm

i:jÞ; i [ 0: ð15Þ

am
i:j ¼ Fi:j

Xsi�1

k¼1

wi:j;kam
i�1:k þ bi:j

 !
ð16Þ

Fig. 8 Landslide susceptibility maps produced from the two models for three sampling strategies
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am
L:1 ¼ ym ð17Þ

1

2
y

m
� tm

���
���

2

¼ 1

2
ym � tmð Þ2¼ e2

m ¼ em: ð18Þ

The learning is done using the following procedure;

1. Selection of random and small sized (between 0 and 1)

numbers for all weight and bias.

2. Calculation of network output and comparison with the

destination output.

3. If the network output is approximately equal to the

desired output, then continue with step 1, and if not

weights are corrected according to the correction rule

and then continue with step 1.

MatLab 7.0 was used to training and testing for neural

networks. A three-layer feed-forward network that consists

of an input layer (9 neurons), one hidden layer (19 neurons)

and one output layer was used as a network structure of

9–19–1 (Fig. 9). MLPs can have more than one hidden

layer. However, there is rarely an advantage in using more

than one hidden layer (Lippmann 1987; Rumelhart et al.

1986). It has been shown that an MLP with one hidden

layer has the capability to approximate any function with

an acceptable degree of accuracy if there are enough

hidden nodes. In cases where the optimum number of

hidden nodes on a single hidden layer is large, two hidden

layers with a small number of nodes on each layer could be

more appropriate. In this study, one hidden layer having 19

nodes (as proposed by Hecht-Nielsen 1987) were used.

Initial weight range is also an important parameter influ-

encing the convergence of learning rule. In this study,

weights were randomly initialized in a small range of

[-0.25–0.25] as proposed by Kavzoglu (2001). Kavzoglu

(2001) had also suggested that the minimum number of

training samples should be more than 30 9 Ni 9 (Ni ? 1)

where Ni is the number of input nodes.

The important design parameters for network general-

ization are (1) number of hidden nodes, (2) size of training

and test datasets, (3) initial weight range, (4) learning rate,

(5) the momentum term, and (6) number of training cycles.

Extreme values of these parameters cause some severe

effects on training convergence and network generaliza-

tion. For example, too high learning parameter speeds up

the convergence however unstable NN (weights) oscillates

about the optimal solution, and too low values causes slow

training and a greater likelihood of becoming trapped in a

local minimum. Too high momentum parameter reduces

risk of local minima, speeds up training and causes

unstable learning, but too low value suppresses effect of

momentum leading to increased risk of potential entrap-

ment in local minima and causes slow training (Basheer

and Hajmeer 2000; Yesilnacar and Hunter 2004).

In this study 4,800 training samples were used, and

parameters were then adjusted as below:

Learning parameters 0.1

Momentum parameters 0.9

Networks training function: variable learning rate with

momentum (traing dx)

Activation (transfer) function for all layers: tansig

As in many other network training methods, models and

parameters were used to be able to reach minimum RMSE

values. After the network goal was reached, study area was

fed into the network in order to estimate the landslide

susceptibility. The set of susceptibility values obtained in

each grid was then converted to raster file in GIS medium,

and landslide susceptibility map was produced applying

different sampling strategies such as; scarp, seed cell and

point (Fig. 8).

Validation of the maps

The landslide susceptibility maps can be tested using the

known landslide locations. The AUC is a good indicator to

check the prediction performance of the model and the

largest AUC, varying from 0.5 to 1.0, is the most ideal

model. By the use of the 100 subdivisions of LSI values of

all cells in the study area and cumulative percentage of

landslide occurrence in the classes, curves were drawn to

calculate AUC (Fig. 10). The obtained values of AUC from

the two models for different sampling strategies are tabu-

lated in Table 2. The AUC values showed that the map

obtained from ANN model looks like more accurate than

the other model, while scarp sampling was obtained as the

most appropriate sampling strategy in preparation of the

landslide susceptibility map. However, the AUC values for

scarp and seed cells sampling can be evaluated relatively

similar.

Fig. 9 Neural network structure used in the study
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Moreover, the validation by field investigations was also

performed by comparing the known landslide location data

with the classes of landslide susceptibility in maps. The

results obtained from field observation were also found to

be harmonious with results of AUC.

Results and discussions

The study area in Sebinkarahisar is located in the North

Anatolian Fault Zone, and has been recognized that the

study area and environment are frequently subjected to

landslides. Recently, numerous landslides in different

masses were occurred in the study area. Landslides in the

studied area were first characterized by means of field and

laboratory measurements, monitoring and remote sensing

data. As known, reoccurrence potential in this area and

understanding of the failure mechanism is very important

in order to select the remediation measures; therefore,

landslide mechanism was first explained.

Landslide susceptibility can be assessed using different

methods based on the GIS technology. Especially in the

last 20 years, many research papers were published in

order to solve the deficiencies and difficulties in the

susceptibility assessment. It should be aimed that the

procedure for preparing landslide susceptibility map must

be simple and have a higher accuracy.

Landslide events in Sebinkarahisar (Giresun–Turkey) are

strongly correlated to many factors. The quantitative rela-

tionship between affecting factors and landslide occurrence

was achieved and powerful relationships were found with

geology, faults, drainage system, topographical elevation,

slope angle, slope aspect, TWI, SPI and NDVI. In the sus-

ceptibility analyses, DEM was first constructed using Arc-

GIS 9.1 GIS software and parameters affecting slope

stability were considered. In order to show the effect of the

different sampling strategies on the landslide susceptibility,

maps of scarp, seed cells and point sampling strategies were

prepared. In the last stage of the analyses, landslide sus-

ceptibility maps were produced for each sampling strategy

using the CP and neural networks models, and results were

then compared by means of their validation.

Validations of the obtained maps indicated that the more

realistic results obtained from the analyses where the scarp

sampling strategy was used, however, it was relatively

similar with the seed cells strategy. It can be evaluated that

the two strategies such as scarp and seed cells considered

have relatively similar accuracy. Because the areas due to

the proposed strategies included in the analyses are very

closer. On the other hand, the worst performances of the

validations were obtained from the analyses depending on

the point sampling strategy using the both model CP and

ANNs. Nefeslioglu et al. (2008) had also reported that the

susceptibility map based on the samplings in which the

presence of data taken from a zone that almost represents

prefailure conditions constituted more realistic suscepti-

bility evaluations.

As reported by Yilmaz (2008c); point data in GIS can be

described by a single X, Y coordinate and does not reflect

Fig. 10 AUC representing the quality of the two models for three sampling strategies

Table 2 The AUC values obtained from the analyses

Model Sampling strategy

Scarp Seed cells Point

Conditional probability (CP) 0.908 0.886 0.827

Artificial neural networks (ANN) 0.921 0.902 0.848
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the landslide affected area, and this type of feature may be

used when the area extend of a small landslide cannot be

drawn due to the scale of the map. However, the logic way

is to reveal the landslide responsible pixels. In landslide

inventory mapping, for each landslide, the main scarp

distinguished from the accumulation/depletion zone or

rupture zone as polygon feature or seed cells should be

used to obtain an accurate and realistic susceptibility map.

As another result of this study, higher accuracies of

susceptibility mapping for the two models were obtained.

AUC values showed that the map obtained from ANN

model looks like having a better accuracy than the other

model. However, neural networks method was found to be

more realistic, in CP model, input process, calculations and

output process were very simple and can be readily

understood.

Yesilnacar and Topal (2005) stated that several inves-

tigators have compared neural network models with

logistic regression using different data sets, with some

researchers finding superior performance for the neural

networks and other authors finding no differences in overall

predictive performance (Tu 1996; Schumacher et al. 1996;

Manel et al. 1999; Ottenbacher et al. 2001; Mahiny and

Turner 2003). They had also indicated that the suscepti-

bility map produced using the neural networks method is

found to be more realistic. Aleotti et al. (1998) and Gomez

(2002) applied ANN approach for landslide susceptibility

mapping and found it out-performed traditional statistical

methods.
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