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corrosion of titanium alloys used in dental implants and their 
consequent biological side effects on peri-implant tissue.
Results  After screening the duplicates and following the 
application of exclusion criteria, the full texts of 23 articles 
were included in the review.
Conclusions  The development of improved strategies 
toward the reduction of corrosion and degradation of tita-
nium alloys used for dental implants is crucial, also to pre-
vent metal release in the tissue surrounding them to prolong 
their lifetime. As chemical and physical properties are cru-
cial for the electrochemical behavior of the implant material, 
the development of appropriate alloys or coatings/layers for 
corrosion inhibition is mandatory.
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Introduction

Cobalt-based alloys, magnesium (Mg), and its alloys have 
proven their applicability as bone implants. However, 
titanium (Ti) is the most popular material used for dental 
implants, and its alloys have been widely applied clinically. 
An ideal implant should be biocompatible, possess high 
strength, fatigue and fracture toughness behavior and should 
be able to withstand the reactive environment it is exposed 
to inside the human body [1–96].

Ti-based dental implants have become a predictable 
standard of care for replacing missing teeth, thanks to the 
good mechanical properties, the resistance to corrosion, and 
the excellent biological performance of Ti, that is able to 
produce a spontaneous Ti oxide layer after exposure to oxy-
gen atmosphere (mainly TiO2) [2, 4, 7, 10–15]. However, 
corrosion of dental implants may jeopardize the mechanical 
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stability of the device, as well as the integrity of the sur-
rounding tissue. Pure titanium, in spite of its corrosion-
resistant characteristics within controlled environments and 
in the absence of load, it can corrode under oral conditions 
and in association with cyclic loads, thus influencing the 
mechanical stability of dental implants. In fact, exposure to 
acidic substances and microbial metabolites can lead to a 
reduction in pH, potentially causing the rupture of the pas-
sive film. Moreover, the TiO2 barrier might have a poor tri-
bological efficacy and it might be removed/disrupted under 
loading [1–30]. Metallic debris may induce an inflamma-
tory response. In fact, the products yielded by corrosion may 
have cytotoxic effects on the tissue surrounding the implant 
[1–37].

Types of corrosion associated with metallic implants may 
be galvanic, fretting, pitting, and crevice corrosion. As for 
galvanic corrosion, theoretically, titanium screw would rep-
resent the anode, the metallic fill the cathode, and saliva 
would be the electrolyte. Fretting corrosion would occur 
because of disruption of the protective layer on titanium 
screws, while pitting corrosion would be the consequence 
of the spontaneous breakdown of the passivating film on a 
flat or overexposed area. Finally, crevice corrosion is associ-
ated with uneven surfaces.

These corrosive factors, together with wear induced 
by implantation procedures (e.g., friction, micro-motion), 
may determine an undesired release of metallic ions and 
particles from the implant to the surrounding tissues, thus 
eventually leading to severe biological complications such as 
peri-implant diseases [1–8, 13–16, 25, 36–63]. Furthermore, 
the rate of a corrosion process depends on the oxide layer 
formed, pH, the concentration and composition of the elec-
trolyte, and the transport of oxygen vacancy across the film.

Therefore, in consideration of corrosion as a potential 
risk factor for peri-implantitis, the knowledge of the influ-
ence of corrosion-induced release of ions and particles as a 
driving factor for peri-implant diseases and early/late failure 
of dental implants is fundamental and clinically relevant.

The aim of the present article is to review the currently 
available information about the corrosion of titanium alloys 
used in dental implants and their consequent biological side 
effects on peri-implant tissue.

Materials and Methods

The present review was conducted according to the Pre-
ferred Reporting Items for Systematic reviews and Meta-
Analyses extension for Scoping Reviews (PRISMA-ScR) 
guidelines. The research question was about the corrosion 
of titanium alloys used in dental implants and their conse-
quent biological side effects on peri-implant tissue. A lit-
erature search was conducted in four electronic databases 

(Medline/PubMed, Scopus, Embase, and Web of Science) 
using the combination of the terms “dental implants” OR 
“surface treatments” OR “alloys” AND “corrosion” OR 
“electrochemical” OR “degradation.

Articles not in English language were excluded.
The following types of articles were excluded: duplicated/

overlapping articles, animal studies, conference proceedings, 
expert statements, editorials, case reports, and nonoriginal 
papers.

Data sharing not applicable to this article as no datasets 
were generated or analyzed during the current study.

Results

The initial search resulted in 543 articles. After screening 
the duplicates and following the application of exclusion 
criteria, the full texts of 23 articles were included in the 
review (Fig. 1).

Discussion

After dental implants are inserted in the jaws, the integrity of 
the protective TiO2 passive layer, as well as the maintenance 
of their physicochemical properties, depends on the hos-
tile electrolytic oral environment. In fact, oral fluids (saliva, 
blood plasma) are characterized by organic and inorganic 
substances in combination with a pH between 6 and 7, that 
may be reduced by some factors such as microbial metabo-
lites and corrosive substances, thus making the environment 
acidic and highly reactive to chemically attack the metallic 
surfaces [20–25, 36, 42, 62, 70–74, 82].

Cl− , F− , H+ , and other corrosive substances, may be 
found not only in saliva, but also in prophylactic commer-
cial formulations, such as toothpaste and mouth rinses, and 
foods.

In particular, in literature, the F− ion concentration 
adversely affects the corrosion resistance of titanium-based 
materials because of the formation of hydrofluoric acid 
(HF) from fluoride ions when the aqueous environment 
is acidified by some food or microbial metabolites. HF is 
strongly reactive to metals because of its chemical charac-
teristics prone to induce the breakdown of the TiO2 protec-
tive layer (TiO2 + 4HF → TiF4 + 2H2O). Therefore, HF not 
only promotes the degradation but also the discoloration of 
the metal surface because of the generated fluoride-titanium 
compounds [53–69].

One of the significant factors contributing to the reduc-
tion in the corrosion resistance of titanium is the action of 
oral bacteria. When dental implants are inserted in the oral 
cavity, the outer implant surface and the micro gaps between 
the implant and abutments are covered by protein-rich fluid 
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pellicle (saliva, blood), thus promoting the adhesion of 
bacteria to these surfaces. Bacterial acidic metabolites and 
oxygen level deficiency may determine oxidation reactions 
between the biofilm-covered Ti surface and the exposed Ti, 
increasing the corrosion rate of the implant material [20–41].

Therefore, bacterial cells and physical, chemical, micro-
biological, and inflammatory corrosion processes promote 
the surface damage of dental implants and contribute to the 
implant surface degradation. This may adversely alter the 
microenvironment conditions of peri-implant tissues, lead-
ing to cytotoxic and inflammatory reactions. Finally, such 
events compromise the success of dental implant rehabilita-
tions [10–32].

The processes involved in the corrosion of titanium 
alloys of dental implants may be mechanical (wear parti-
cles/debris), electrochemical (corrosion-related free metal 
ions, organometallic complexes, and salts), and/or a com-
bination of both mechanical and electrochemical processes 
(tribocorrosion).

Tribocorrosion occurs under the dual action of wear and 
corrosion under a variety of conditions such as sliding, fret-
ting, rolling, impingement in a corrosive medium.

The most common types of electrochemical corrosion 
found in titanium alloys used for implant applications are 

galvanic, fretting, and pitting/crevice corrosion, as well as 
environmentally induced cracking (EIC) [20–25, 36, 42, 62, 
70–74, 82].

Galvanic corrosion is associated with a direct contact of 
two dissimilar metals in an electrolytic solution. The dif-
ference in electrochemical potential of the two metals pro-
motes oxidation of the more reactive metal. This becomes 
the anode, which generates a flow of electrons and ions to 
the cathode. Galvanic corrosion is not frequent in dental 
implant applications because of the presence of only one 
component, the dental screw, and the insulating nature of 
the protective passive layer that forms on the surface. Any-
way, in some cases, the surrounding tissue might behave 
as a medium for electrical flow between metallic implants 
and other types of alloys used in dentistry for amalgams or 
orthodontic devices [1–15].

Fretting corrosion is due to the repeated micro-motion 
or friction of a metal component against another material 
that causes mechanical wear and breaks up the passivating 
layer on the contact surface of the metallic device. Fretting 
between dental implants and bone during implantation and 
due to cyclic loads imparted from chewing has been sug-
gested as a cause of Ti corrosion and metal ion release. The 
release of metal debris and ions has been linked to inhibition 

Fig. 1   PRISMA flow chart
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of cell differentiation, phagocytosis of Ti particles by mac-
rophages and other cells, and inflammation. Abnormal elec-
trical signals may affect the stability of the adjacent tissue, 
and fretting corrosion may amplify other types of corro-
sion by rupturing the passivating film and exposing bare Ti 
[10–23].

Pitting corrosion (i.e. the result of the spontaneous break-
down of the passive film on a flat and evenly exposed area) 
is not likely to occur on Ti surfaces.

Instead, crevice corrosion has been observed on Ti and 
Ti alloys, and it consists of a localized corrosion due to a 
geometric confinement in the design of the device or from a 
previously corroded region on the surface [26–31].

Finally, EIC is the most common cause of corrosion in 
implants for bone applications, and because of its localized 
nature, may go unnoticed until failure of the implant. It 
consists of the brittle mechanical failure of metallic devices 
under stress levels significantly lower than their ultimate ten-
sile strength. The magnitudes of the forces that can cause 
EIC vary over a wide range and include forces that, under 
non-corrosive conditions, would be considered negligible 
[10–23].

Because of these processes, a series of biochemi-
cal reactions might be triggered at the biointerface 
microenvironment.

As a consequence of the corrosion processes of dental 
implants and the Ti particle/ion release, signaling factors 
promoting the differentiation and recruitment of osteoclast 
cells responsible for peri-implant bone resorption determine 
an induction of inflammatory process in the peri-implant soft 
tissue cells and bone cells [10–23, 41–52].

Once metallic particles/ions are released, the peri-implant 
inflammatory process may be caused by the activation of 
the function of phagocytic cells such as neutrophils and 
macrophages, by the stimulation of communication path-
ways of osteoblastic cells, or by the promotion of micro-
bial accumulation in the degraded rougher surface region. 
In particular, the phagocytosis of Ti ions may determine a 
higher expression level of pro-inflammatory cytokines (e.g., 
Interleukin 1β, Interleukin 6, and Tumor necrosis factorβ). 
Finally, the induction of receptor activator of nuclear factor 
kappa-Β ligand (RANKL) expression within osteogenic cells 
is promoted, thus indirectly promoting RANKL-induced 
osteoclast differentiation and consequent tissue inflamma-
tion and bone resorption [41–52].

The cytotoxic effect of Ti products on the inflammatory 
response of human cells has been demonstrated for particles 
and Ti ions.

In the literature, evidence for Ti degradation in diseased 
peri-implant tissues has been detected by inductively cou-
pled plasma mass spectrometry in submucosal plaque, soft-
tissue biopsies, and exfoliative cytologic samples in greater 
amount in diseased peri-implant mucosa than in healthy 

sites. Nevertheless, for both healthy and inflamed tissue 
biopsies, the Ti concentration found (7.3 to 38.9 μM) was 
within the levels needed to activate the IL-1β secretion from 
human macrophage in vitro, that is a phenomenon closely 
related to stimulating an in vivo proinflammatory reaction.

Therefore, there seems to be poor specificity between the 
biological impact of Ti concentration and the pathological 
process of peri-implant diseases [62–74].

To resume, it is likely a multidirectional pathway loop 
for the degradation of Ti surface in the oral environment: 
(1) first of all, wear, acidic substances, and metabolites 
released from oral bacteria promote the degradation of the 
peri-implant microenvironment, thus provoking the passive 
oxide layer breakdown and consequent pitting and galvanic 
attacks; (2) then, the corroded Ti surface with an increased 
roughness provides additional niches for bacterial recolo-
nization; (3) the microbial accumulation promotes oxygen 
level deficiency that prevents the re-formation of the passive 
oxide layer; (4) finally, corrosion products induce microbial 
dysbiosis, the occurrence of inflammatory reaction, and the 
consequent generation of acid products (hydrogen peroxide 
and H+) that in the end also negatively affect the corrosion 
resistance of Ti [62–74].

An interdisciplinary engineering and biomedical 
approach is needed to improve the strategies to reduce the 
corrosion of dental implants and the consequent undesired 
effects.

Exploring Titanium Alloy Compositions for Dental 
Implants

Altering the composition of titanium alloys for dental 
implants to resist corrosion is the most straightforward 
option with the aim of creating a material that can achieve 
passivity, regulate the hydrogen evolution reaction, and 
reduce the anodic/cathodic activity directly. In fact, several 
elements are acknowledged to inhibit the degradation pro-
cess by leading the growth of highly stable passive oxide 
films and microstructures [62–74, 76–96].

The main elements proposed for titanium alloys and 
their role in improving their electrochemical properties are 
resumed in Table 1. When an alloying element is added to 
Ti, the alloy may undergo phase transformation reactions, 
that may result in three microstructure phases (β, β + β, and 
β) with intermetallic variants. Anyway, there is no consensus 
regarding the best crystalline phase to prevent corrosion: β 
crystalline phase is expected to be more resistant to dissolu-
tion and stabler than the β-phase, but the single β-phase in 
Ti alloys has proven a better electrochemical behavior than 
β + β and β alloys.

Zirconium (Zr), tantalum (Ta), niobium (Nb), chromium 
(Cr), and molybdenum (Mo) are normally added to Ti to 
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form a stable and resistant oxide film when in contact with 
the environment.

Ta incorporation forms a stable Ta2O5 passive film and a 
β phase in the Ti matrix, which reduces pitting initiations, 
the corrosion rate, and icorr while enhancing the corrosion 
potential (Ecorr) parameter of Ti–Ta alloys [76–96].

Instead, adding Mo to pure Ti improves the stability of 
the anodic oxides, increasing Rp and decreasing icorr and 
ipass as the content of Mo enhances in Ti–Mo alloys.

As for intermetallic compounds, they will dissolve prefer-
entially on the surface by developing a galvanic cell with the 
matrix, which impairs the alloy’s electrochemical stability. 
Single-phase alloys exhibit better electrochemical proper-
ties. When more than one phase and/or diverse crystallo-
graphic orientations are present, it is necessary to achieve 
grain refinement and an even distribution of the elements.

In fact, a fine microstructure determines an “enveloping 
effect” by modifying the cathode/anode area ratio between 
the intermetallic and the matrix to minimize the galvanic 
effects and provide corrosion protection of the less noble 
phase, while homogeneous microstructures and greater 
elemental distributions may cause an increased corrosion 
resistance because of the improved stability and durability 
of the passivation films formed on the matrices.

Table 1 only resumes binary Ti alloys, but several other 
elements have been used to develop corrosion resistant ter-
nary, high entropy alloys (HEAs), or compositionally com-
plex alloys (CCAs). For this reason, researchers should first 
model combinations of elements by computational tools 
that consider first-principles calculations to predict material 
properties and electrochemical mechanisms before testing it 
by in vitro studies.

Surface Treatment Options for Dental Implants

Surface treatments are applied to the implant substrate to 
minimize the corrosion damages by avoiding the penetra-
tion of corrodents on metal underneath and preventing the 
electrochemical reactions [16–23, 45–96]. The outcomes of 
the most frequent technologies proposed to protect against 
corrosion of dental implants surfaces are resumed in Table 2.

The electrochemical stability of coatings is influenced by 
their elemental and crystalline composition. Moreover, the 
reinforcement of the oxide layer with homogeneously dis-
tributed functional and stable compounds and crystal phases 
by coating/film deposition techniques has demonstrated to 
enhance the corrosion performance of the implant material.

Table 1   Main elements proposed for titanium alloys and their role in improving their electrochemical properties

Alloy-
ing 
element

Atomic 
number

Classification Effect on Ti alloy microstructure and electrochemical parameters

Zr 40 Transition metal Zr addition determines higher polarization resistance (Rp) and lower values of corrosion current 
density (icorr), corrosion rate, and capacitance parameters of Ti–Zr alloy

Ta 73 Transition metal Ta incorporation forms a stable Ta2O5 passive film and a β phase in the Ti matrix, that decreases 
pitting initiations, the corrosion rate, and icorr while enhancing the corrosion potential (Ecorr) 
parameter of Ti–Ta alloys

Nb 41 Transition metal Nb addition decreases the corrosion rate, icorr, and passivation corrosion density (ipass) values, while 
increasing the Ecorr parameter of Ti–Nb alloys

Cu 29 Transition metal Cu addition determines nobler Ecorr and higher Rp, while the icorr decreases with increasing Cu 
content

Ag 47 Transition metal Ag addition to create Ti–Ag alloys increase Ecorr, while decreases icorr
Pd 46 Transition metal Pd addition accelerates the protective cathodic reactions and inhibits the dissolution of Ti while 

decreasing icorr and capacitance and enhancing the Rp of Ti-0.2Pd alloy
Cr 24 Transition metal Cr addition forms a Cr-rich oxide film that improves the Rp and diminishes the icorr of the Ti–Cr 

alloy
Mn 25 Transition metal Mn addition enhances the cathodic reaction but does not improve the corrosion resistance of Ti con-

siderably
Co 27 Transition metal Ti–Co alloys show similar corrosion behavior to pure Ti
Mo 42 Transition metal Mo addition improves the stability of the anodic oxides, increasing Rp and decreasing icorr and ipass 

as the content of Mo enhances in Ti–Mo alloys
Fe 26 Transition metal Fe addition may reduce the icorr and increase the critical pitting potential (Epit) and Rp parameters of 

Ti–Fe alloys
Bi 83 Post-transition metal Bi addition slightly increases Ecorr values but shows a significantly lower icorr in an electrolyte 

containing fluoride and acid lactic
In 49 Post-transition metal In addition decreases the corrosion rate and icorr, enhancing Rp values of Ti–In alloy
Mg 12 Alkaline earth metal Mg addition decreases the Ecorr,while increasing the icorr
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To this aim, a series of mechanism and ideal criteria 
that coatings and films need to meet for corrosion inhibi-
tion have been proposed: the formation of stabler oxide 
films (for example containing TiO2, ZrO2, Nb2O5, Ta2O5) 
contribute to prevent the internal dissolution of the coating 
due to corrosive attacks; dense, compact, and defect-free 
layers should fill the substrate porosities in order to pre-
vent the corrosive fluid to reach the surface of the implant; 
thick layers may decrease the dissolution of the coatings in 
the immersion medium; an improved ability of substrates 
to form passive layers after coating/film deposition deter-
mines a better protective behavior; a strong bond strength 
between the coating and the substrate might prevent the 

coating cracking and peeling off in the body fluid, thus 
avoiding local corrosion [16–23, 45–96].

Conclusions

The development of improved strategies toward the reduc-
tion of corrosion and degradation of titanium alloys used for 
dental implants is crucial, also to prevent metal release in the 
tissue surrounding them to prolong their lifetime.

As chemical and physical properties are crucial for 
the electrochemical behavior of the implant material, the 

Table 2   Outcomes of the most frequently used surface treatment technologies proposed to protect against corrosion of dental implants surfaces

Surface treatment technology Outcomes related to corrosion behavior

Grit blasting Some particles can leach from the surface, impairing the electrochemical stability of 
the material and determining an irregular topography that may disrupt oxide films, 
thus reducing corrosion resistance

Acid etching The formation of a TiH intermediate layer by the acid reaction with the Ti substrate 
positively affects the electrochemical stability, allowing the growth of a new stable 
oxide layer

Sandblasting/acid etching In spite of the irregular topography that may decrease the corrosion resistance, the 
etching process cleans any remaining impurities from blasting and creates a TiH 
intermediate layer that may contribute to protect the surface against corrosion

Sol–gel The formation of dense and crack-free coatings with adequate adhesion strength to the 
substrate may create a protective barrier effect, thus causing a reduction in the corro-
sion rate. Functional compounds can be added to the layer, thus providing additional 
corrosion resistance

Anodic spark deposition or plasma electrolytic oxidation This technique thickens the oxide layer that behaves as a barrier to ion diffusion. 
Therefore, it leads to the growth of a fully oxidized protective surface with different 
microstructures and compositions that may contribute to avoiding the electrochemi-
cal dissolution of the implant at the metal-electrolyte interface

Electrophoretic deposition It aims to create a compact and uniform coating that causes a reduction of the penetra-
tion rate of the solution into the coating. Functional compounds can be incorporated 
to improve the local corrosion resistance of the coating matrix

Physical vapor deposition (magnetron sputtering) It allows the creation of a more stable, compact, and homogeneous film than the natu-
ral oxide layer, in order to decrease the penetration of ionic species through the film, 
and to mitigate the electrochemical degradation process

Chemical vapor deposition It allows the formation of a dense and thin film that acts as a physical diffusion bar-
rier blocking the charge transfers between the substrate surface and the electrolyte 
effectively

Plasma spraying This method, in spite of forming a coating that may present several defects (such as 
pits, voids, microcracks, and pores) that are detrimental to electrochemical stabil-
ity, may involve reinforcement compounds to compensate for these disadvantages, 
enhancing the corrosion resistance

Hydrothermal- and alkali-based treatment It aims to obtain a dense and large coating thickness to physically isolate the substrate 
from the corrosive fluid, thus preventing its penetration into the coating underneath 
and providing effective initial protection

Ion implantation This technique aims to improve the corrosion resistance by changes in the crystallinity 
of the microstructure or alterations in the oxide composition of the passive film

Polyelectrolyte multilayers This method aims to improve the corrosion behavior by the creation of multilayers 
that reduce the electrolyte permeability due to the strong ionic pairing between 
polyelectrolytes in adjacent layers, and that may also display an intrinsic self-healing 
behavior because of the introduction of nano-reservoirs or nano-reactors within the 
multilayer structure
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development of appropriate alloys or coatings/layers for cor-
rosion inhibition is mandatory.

A thorough knowledge of corrosion mechanisms and 
the development of better methods to improve the corro-
sion resistance of dental implants may contribute to control 
peri-implant diseases and achieve safe and long-term dental 
implant rehabilitation treatment.
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