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Abstract
Improving the efficiency of solving complex optimization problems is the focus of intelligent algorithm research in recent 
years. Complex optimization problems have the characteristics of high dimension, multi-minimum and variable coupling. 
Using intelligent algorithms to solve such problems is prone to premature convergence, high-dimensional invalid and exces-
sive computational costs, resulting in low optimization efficiency of complex problems. In this paper, a double-layer search 
particle swarm optimization algorithm is proposed. The algorithm derives the sub-objective function by grouping the 
particle population and variable dimension, constructs the bilevel-layer search space, and defines the dynamic parameter 
matrix to realize the information interaction and space reconstruction of the sub-space. For the optimization problem with 
complex characteristics, bilevel-search can realize the alternation of fine and rough search to reduce the computational cost 
and improve the optimization efficiency. The estimation program and test samples of the proposed method are tested, and 
compared with other intelligent algorithms to further prove the advantages of this method.

Keywords Complex optimization problem · Particle swarm optimization · Bilevel-search space · Dynamic matrix · 
Optimize efficiency · Computational cost

1 Introduction

In the process of innovative and green development in indus-
trial design, numerous technical problems requiring opti-
mization and innovation have emerged incessantly (Sellali 
et al. 2022; Soheyli et al. 2016; Sun et al. 2011). With the 
continuous expansion of industrial systems and the ongo-
ing enhancement of technical requirements, these techni-
cal issues are exhibiting a trend of large-scale and complex 
development. The optimization of industrial development 
gives rise to a category of complex optimization problems 
characterized by large scale, multipolarity, variable cou-
pling, and a complex structure of the objective function 
(Tey and Mekhilef 2014; Zhang et al. 2010). Typically, 
these problems establish solution models based on intelli-
gent algorithms.

For complex optimization problems exhibiting multiple 
extremum characteristics, swarm intelligence algorithms 
are prone to premature convergence caused by individuals 
getting trapped in local optima. This significantly restricts 
the algorithm's solution performance for such problems and 
leads to low optimization efficiency (Wah and Ma 2006; 
Azar et al. 2011; Andre and Siarry 2001). In the case of 
optimization problems with large-scale characteristics, 
the increase in problem complexity results in the phenom-
enon known as 'dimension disaster' in variable dimensions 
(Kerner 1989; Xiang et al. 2006; Li and Xin 2012). This 
renders conventional optimization algorithms ineffective. 
Particularly, when large-scale optimization problems pos-
sess variable coupling characteristics, solving them becomes 
exceedingly complex (Dutta and Gandomi 2020).

The particle swarm optimization (PSO) algorithm is 
an iterative optimization method and widely employed as 
a mainstream approach for solving complex optimization 
problems. When compared to other algorithms such as 
genetic algorithms and simulated annealing, PSO algorithm 
demonstrates certain advantages in terms of convergence, 
diversity, and consistency (Yeh et al. 2010; Lin and Tang 
2021; Fu-Shiung et al. 2019; Yan et al. 2021). In the study of 
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asset markets, William R. introduced the concept of 'asymp-
totic inefficiency,' which refers to the scenario where the 
limited portfolio and return cannot align or approximate, 
indicating inefficiency in the long run (Zame 1989). In the 
context of global optimization problems, the phenomenon 
of 'gradual ineffectiveness' implies that the algorithm can 
approach the optimal solution with a low rate of progress, 
but achieving higher accuracy requires more computational 
resources (Liu and Zeng 2015; Liu et al. 2015, 2017; Liu 
et al. 2014).

In the process of calculating complex optimization prob-
lems, our objective is to find or approach the optimal solu-
tion while minimizing the computational cost to improve the 
efficiency of optimization. However, in actual calculations, 
as we strive for higher accuracy, the associated computa-
tional costs also increase. This phenomenon is referred to as 
'Asymptotic Inefficiency' (Liu 2011; Liu et al. 2016, 2017; 
Zhao et al. 2015). When particle updating narrows down the 
range of the optimal solution, i.e., enhances the calculation 
accuracy, the inevitable consequence is an increase in com-
putational cost. Therefore, our aim should be to minimize 
the impact of “Asymptotic Inefficiency”.

When utilizing particle swarm optimization for various 
optimization problems, the manifestation of 'Asymptotic 
Inefficiency' can differ. Particularly, when addressing simple 
optimization problems, the impact of this phenomenon may 
be negligible. This paper, however, focuses exclusively on 
complex optimization problems. It compares the 'Asymp-
totic Inefficiency' exhibited by different particle swarm opti-
mization algorithms and validates the performance of the 
bilevel-search particle swarm optimization algorithm (Zame 
1993; Skevas and Skevas 2021; Tran et al. 2016).

The rest of this paper is organized as follows. In Sect. 2, 
the characteristics and influence of complex optimiza-
tion problems are analyzed, especially the phenomenon of 
“premature convergence”. In Sect. 3, we provide a detailed 
introduction to the principles of the bilevel-search parti-
cle swarm optimization algorithm. In Sect. 4, presents an 
empirical assessment of the optimization performance of 
the bilevel-search particle swarm optimization algorithm 
through example calculations and a comparison with three 
popular particle swarm optimization algorithms. in Sect. 5, 
we summarize the research findings and outline potential 
future research directions.

2  Background

Optimization problems are pervasive in various technical 
domains of social production (Abdullah and Hassan 2020; 
Kim et al. 2013). The key technical elements for solving 
diverse optimization problems lie in scientific mathemati-
cal models and intelligent solution algorithms. However, 

specific models and algorithms do not uniformly yield sig-
nificant effects on solving all problems. The effectiveness of 
optimization problem solutions is heavily influenced by the 
inherent characteristics of the problem itself. Factors such as 
the dimensionality of the objective function, the quantity and 
distribution of local extremum points, and variable coupling 
often contribute to the complexity of problem-solving (Lui 
and Teodorovi 2011; Dereli and Kker 2021). This chapter 
analyzes the characteristics of complex optimization prob-
lems, including their large-scale nature, multipolarity, and 
variable coupling. Furthermore, it investigates the impact of 
these characteristics on optimization efficiency.

2.1  Complex optimization problems 
with large‑scale characteristics

Taking single objective unconstrained optimization as an 
example, search for the global optimal solution of the objec-
tive function within the solution space can be formulated 
as Eq. (1):

where, f is the objective function; Ω is the solution space of 
the problem; n is the dimension value of the optimization 
vector x.

The dimensionality of the solution space Ω is directly 
determined by the number of optimization variables x. Real-
world optimization problems, such as large-scale power sys-
tem control optimization (Cagliari et al. 2021) and large-
scale distribution route optimization (Wu 2014; Economics 
and Wisconsin 1996), often involve a significant number 
of decision variables. As the dimension of the objective 
function increases, it becomes increasingly challenging to 
find feasible solutions, regardless of the computational cost 
involved.

As shown in Fig. 1, PSO algorithm is used for Sphere-
function experiments with different dimensions. The experi-
mental results show that the higher the dimension, the less 
ideal the calculation effect is. After the function reaches 50 
dimensions, even if it consumes more calculation resource, 
it can’t give a feasible solution to the problem, resulting in 
"negative efficiency" (Ngango and Hong 2022).

2.2  Complex optimization problems with multi 
extremum characteristics

Multi extremum characteristic means that in addition to 
the global optimal value, a large number of local extremum 
points are distributed in the solution space, such as the 
Griewank function of Eq. (2). The optimization problem of 
multi pole points is easy to cause “premature convergence” 

(1)minf (x) s.t. x ∈ Ω ⊆ Rn
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(El-Abd and Mohammed 2009) and make the algorithm 
stop evolution too early.

After PSO algorithm solves the five-dimensional mul-
timodal function Griewank, the top 10 particles with the 
best fitness are selected, and their positions are shown in 
Table 1. It can be seen that all particles cannot get rid of 
the local extreme value and stay away from the global 
optimal solution. Table 2 shows the particle motion speed. 
The top 10 particles with the fastest progress are selected 
to observe their motion speed. It is found that the parti-
cle speed is close to 0, that is, even if more computing 
resources are consumed, the particles do not have enough 
power to get rid of the local dilemma for multi extreme and 
multi-dimensional problems.

(2)

f =
1
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2.3  Complex optimization problems with variable 
coupling characteristics

The optimization problem of variable coupling character-
istics is also called indivisible problem, which means that 
some or all variables depend on each other, and the value of 
the objective function is affected by both the variable itself 
and the coupling variable. The common method to solve 
this kind of problem is to divide the large-scale coupling 
problem into small-scale uncoupled subproblems, and finally 
reconstruct the solution of the original problem by using the 
results of the subproblems.

The optimization problems encountered in engineering 
design often involve complex characteristics. The bilevel- 
search particle swarm optimization method proposed in this 
paper takes into account the coupling relationships among 
variables and aims to solve complex high-dimensional prob-
lems by reducing their dimensions, thereby improving opti-
mization efficiency.

3  Methods

When employing the bilevel-search framework in the PSO 
algorithm to address large-scale complex optimization 
problems with coupling characteristics, several challenges 
need to be addressed: 1. Hierarchical handling of complex 
optimization problems; 2. Determination of sub-layer opti-
mization objectives; 3. Construction of a high-level search 
subpopulation.

3.1  Hierarchical processing method

Hierarchical processing of large-scale complex optimization 
problems with variable coupling characteristics is to divide the 
high-dimensional space layer into multiple low-dimensional 
combined subspace layers to realize the splitting and dimen-
sionality reduction of high-dimensional problems. This chapter 

Fig. 1  Evolution curve of sphere-function in different dimensions

Table 1  Position of the top 10 elite particles

P d1 d2 d3 d4 d5

x1 4.449 − 1.089 1.164 − 2.269 − 2.035
x2 1.117 − 2.084 2.741 − 2.879 − 2.170
x3 2.613 − 4.210 4.009 6.558 2.532
x4 5.425 6.166 − 1.503 − 6.632 1.119
x5 − 1.808 3.758 − 1.496 3.663 1.119
x6 − 1.880 3.758 − 1.496 3.663 − 1.087
x7 − 1.880 − 2.758 − 1.247 2.4957 1.9409
x8 8.464 1.2794 − 1.382 1.798 − 5.227
x9 − 1.161 − 1.183 7.026 − 1.286 3.085
x10 − 7.953 − 1.445 − 1.122 − 5.964 9.972

Table 2  Position of the top 10 profiteer particles

P d1 d2 d3 d4 d5

v1 0.0042 − 0.0034 − 0.0661 0.0010 − 0.0239
v2 0.0014 − 0.0045 − 0.0327 0.0085 0.0137
v3 0.0047 − 0.0111 − 0.0458 − 0.0061 0.0081
v4 0.0049 − 0.0022 − 0.0384 − 0.0881 0.0821
v5 0.0053 0.0652 − 0.0390 1.9101 0.3684
v6 0.0074 − 0.0026 − 0.0762 0.0012 0.0150
v7 0.0065 − 0.0022 − 0.0594 0.0064 0.0148
v8 0.0050 0.0356 − 0.0885 − 1.002 0.3553
v9 0.0030 − 0.0081 − 0.0971 0.0084 0.0264
v10 0.0045 − 0.0132 − 0.0477 0.0105 0.0127
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mainly studies the two-layer space, and the space with higher 
layers can be treated similarly.

when the high-dimensional solution space is divided into 
multiple low-dimensional subspaces, the variables within these 
subspaces remain coupled. In this case, we employ multiple 
reference vectors to facilitate information transfer between dif-
ferent subproblems. This approach helps to partially restore 
the variable coupling relationship that may be disrupted by 
the segmentation of the solution space. As a result, it reduces 
computational costs and enhances the optimization efficiency 
of complex optimization problems.

The objective function of the bilevel-search space can be 
expressed as:

The sub-objective functions of the layer-2 of the double-
layer search space can be expressed as:

where, s is the dimension of subspace, s = d / k. c is the 
reference value.

Assuming that the d-dimensional problem sets the popula-
tion number as n, the state of each particle can be expressed 
by matrix M:

Through dimensionality reduction, the coupling variables 
are divided into k groups, X = [X1, X2 … Xk], and the popula-
tion is also divided into sub-populations of group k, P = [P1, 
P2 … Pk], The population and variables are evenly distributed. 
The relationship between population and sub population can 
be expressed by formula (4). The hierarchical strategy is sum-
marized in algorithm 1.

where, s represents the number of variables in each group.

(3)

min f (xn) = min
[

F1(X1),F2(X2),⋯Fk(Xk)
]

= min
[

F1(x1 ⋯ xs),F2(xs+1 ⋯ x2s),⋯Fi(x(i−1)s+1 ⋯ xis)
]
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Algorithm 1: Bilevel-search hierarchical process 

 Input: population P and number of sub-spaces K. 

Output: Building layer-2 search space 

1 Population matrix of layer-1 ⬅ M=P·X 

2 Sub-population matrix of layer-2 ⬅ Msk =Pk·Xs 

3.2  Hierarchical optimization sub‑objectives

Dividing the complex optimization problem into a combi-
nation of subproblems implies a bilevel search approach, 
where the search space is divided into two levels. The 
first level search, known as the generalized or fine search, 
involves locking onto multiple search spaces and nar-
rowing down the search scope. The second level search, 
referred to as the regional or rough search, focuses on 
performing local optimization within each subspace. The 
optimization results obtained from the regional search are 
then fed back to the first level area to obtain the optimal 
solution.

The first layer search is well-understood and follows a con-
ventional multi-objective function solution method. However, 
the second layer search involves multiple sub-objective func-
tions. Since these sub-objective functions are still coupled, the 
optimization process requires not only updating the particle 
positions but also adjusting the dimensionality of the subpopu-
lations and variable combinations. The hierarchical structure 
is depicted in Fig. 2, while the optimization sub-objectives 
strategy is summarized in Algorithm 2.

Algorithm 2: optimization sub-objectives strategy

Input: Variables and objective functions

Output: sub-variables and sub-objective functions

1 Variable grouping ⬅ s =d / k ;

K groups, each subspace containing s variables

2 sub-objective function ⬅ Combine the s variables 

3.3  Population regeneration

When dealing with an uncoupled variable optimization 
problem, a reference vector Y is utilized to record and 
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update the optimal solution for each subspace. The initial 
reference vector is obtained by combining any solution 
from each subspace and is recorded as Y = [y1, y2 … yk]. 
Through the iteration of particles within each subspace, 
optimal solutions y* i(i = (1, 2 … k)) are found. The high-
dimensional optimal solution is represented as Y = [ y* 1, 
y* 2 … y* k].

However, it is evident that a single set of reference vec-
tors cannot accommodate high-dimensional problems with 
coupled variables. To address this, we introduce a refer-
ence matrix and update the worst vector within the matrix 
every few generations. From each sub-population in the 
second layer search, layer-1 elite particles and layer-2 
profiteer particles are selected to form the sub-population 
reference matrix. The sub-population reference matrix 
of the second layer then becomes the overall reference 
matrix of the first layer. The optimal solution for the high-
dimensional problem is chosen from this reference matrix. 
The reference matrix for iteration m can be expressed as:

After several population iterations, the reference matrix 
is updated. First, update the reference matrix of the second 
layer search, then randomly combine the reference vectors 
of each group of matrices, and finally update the reference 
matrix of the first layer search. The optimal solution of 

(8)Cm =

[

Cm
i,L1

⋯ Cm
k,L1

Cm
i,L2

⋯ Cm
k,L2

]

high-dimensional complex problems is obtained from the 
reference matrix. The population regeneration strategy is 
summarized in algorithm 3.

Algorithm 3: sub-population regeneration process

Input: sub-population after layer-1 allocation

Output: sub-population after n iterations

1 Initialize sub-population and reference matrix ⬅ Ms1, 

Ms2, Msk , Cm;

2 Update sub-population particles ⬅ iter=iter+1;

sub-module of reference matrix ⬅ select elite particles;

3 Update reference matrix ⬅ iter=iter+n;

3.4  PSO based on bilevel‑search framework 
algorithm flow

When dealing with high-dimensional complex optimiza-
tion problems, PSO algorithm based on bilevel-search 
framework first divides the population P and space vector 
X, then searches hierarchically, and finally reconstructs the 
global optimal solution from the optimal solution of the 
subproblem. The algorithm flow is as follows:

Fig. 2  Bilevel-search space 
structure diagram
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Algorithm 4: BSPSO 

1 Initialization parameters N, Kc
2 search space of layer-1 zbest, fitnessbest;

3 Select K1 group of elite particles to form a position 

reference matrix Rx;

Select K1 group of profiteer particles to form the velocity 

reference matrix Rv;

4 Initialize layer-2 search space: Randomly divided into k
subspaces,

subspace: variable dimension is s=D/k, fixed dimension is 

m=D-s, population number sub_p=N/k;

5 Update layer-2 subspace particles subi_fitnessbest,

subi_ best; Regroup subspace fitnessbest; Update 

Rx;

6 iter=n, Update Rv;

7 Judging, Ym* is better than Y(m-1)*;

yes, update vector; no, continue 7;

7 Iteration q times, interactive subproblem vector 

information, update reference matrix C;

8 Judgment, stop condition; 

yes, stop it; no, change K, return 2;

4  Numerical experiment

In this section, numerical simulation experiments are car-
ried out to verify the performance of bilevel-search particle 
swarm optimization(BSPSO) algorithm in solving LSGO 
problems, and the current fluid algorithms is compared to 
reveal the effectiveness of BSPSO.

4.1  Selection of test function

For the LSGO problem, this paper selects 10 general LSGO 
test functions (Bergh and Engelbrecht 2004; Yang et al. 
2008; Li and Yao 2012; Zhang and Sanderson 2009; Hedar 
2005), and the relevant information of the test functions f1-
f10 is shown in Table 3. Where, f1–f5 are single peak func-
tions and f 6–f10 are multi peak functions. f 1, f 4 and f 6 are 
separable problems, and f 2, f 3, f 5 and f 7 are complex prob-
lems of variable coupling (Ke et al. 2009; Yu et al. 2013).

4.2  Influence of reference matrix on algorithm 
performance

For the same test function, under different reference matrix 
conditions, multiple independent operation results are shown 
in Table 4. List the BSPSO-p (p is the order of the reference 
vector, p = 2,3,5,10,20) results in turn.

The function dimensions of f1, f2 and f4 in Table 4 are 
30d, while the dimension of f3 is 50d. As observed from 
Table 4, for the f1 functions, increasing the reference vector 
improves the algorithm's performance, although the effect 
is not significant. On the other hand, for the f4 functions, 
the algorithm's performance shows significant improvement 
with an increase in the order of the matrix, particularly with 
the 10th order matrix. Regarding the f2 function, the impact 
of the reference matrix is not ideal, as it only offers moder-
ate improvement while consuming substantial computational 
resources. For the f3 function, which is 50-dimensional, 
increasing the order of the reference matrix enhances the 
algorithm's performance, albeit with slightly volatile data. 
Therefore, when dealing with high-dimensional functions, 
multiple experiments should be conducted to obtain average 
results.

Figure 3 shows the bilevel-search process of f4 function, 
and set the number of sub populations to 5. It can be seen 
that after the large-scale fine search of the first layer, the 
search area can be quickly locked, and then enter the rough 
search of the second layer to further improve the search abil-
ity and find the optimal value more accurately.

Figure 4 illustrates the bilevel-search process applied to 
the f3 function, with 3 subpopulations and p representing 
the order of the reference matrix. Through comparison, it is 
concluded that the search curves of the first layer are essen-
tially the same. In the second layer search process, the p-10 
search yields more accurate results, while the p-2 and p-3 
searches exhibit similar performance.

In the realm of visualization, a comparison is made 
among the operational results of the f1, f3, f4 functions, as 
depicted in Fig. 5, where the fitness values of the functions 
are displayed. The first 1000 iterations represent the first 
layer search process, while the last 1000 iterations represent 
the second layer search process. It is evident that the second 
layer search enhances the algorithm's accuracy.

Generally, increasing the order of the reference matrix 
can significantly improve the algorithm's performance. 
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However, excessively high orders will result in substantial 
computational resource consumption. Therefore, the follow-
ing experiments will be conducted using a reference matrix 
of order 5.

4.3  Comparative analysis of experimental results

Compare the operation results of algorithms adaptive muta-
tion particle swarm optimization (AMPSO), an improved 
backbone particle swarm optimization algorithm based 

on learning strategy (Bare-bones PSO, BBPSO), adaptive 
weight adjustment AWPSO and adaptive mutation bilevel-
search PSO (AM_BPSO) on functions f1- f10. The results 
are shown in Table 5, including the average value, standard 
deviation and calculation time of fitness function.

For function f1, AM_BPSO algorithm has obvious advan-
tages, accurate and stable calculation, but the calculation 
time is relatively long; For function f2, f3, f7 and f8, the effect 
of AWPSO algorithm is similar to that of AM_BPSO algo-
rithm, and even AWPSO algorithm is better. For functions f4, 

Table 3  Function characteristics Test function Solution space Theoretical opti-
mal value

Dimension
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D
∑
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Table 4  Comparison of BSPSO 
algorithms with different 
reference matrix orders

Function BSPSO-1 BSPSO-2 BSPSO-3 BSPSO-5 BSPSO-10

f1 Variance 1.2135 0.9884 0.8854 0.5378 0.2336
Expectation 0.5340 0.3224 0.0971 0.0771 0.0392

f2 Variance 0.2867 0.2723 0.2503 0.1935 0.1905
Expectation 0.0013 0.0020 0.0021 0.0009 0.0067

f3 Variance 13.1412 10.4576 9.8573 8.0668 4.7939
Expectation 1.2406 1.2745 1.1786 1.5808 1.7009

f4 Variance 663.9219 110.7925 65.4422 19.3853 0.8622
Expectation 45,572 1591.9 986.4549 284.8326 0.3248
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Fig. 3  Bilevel-search process of f4 function

Fig. 4  bilevel-search process of f3 function Fig. 5  Comparison chart of f1, f3, f4 operation results
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f5, f6, f9 and f10, algorithm AM_BPSO has certain advantages 
in terms of calculation time and accuracy. Experimental 
results of f4 function is shown in Fig. 6.

The bilevel-layer search particle swarm optimization 
algorithm don’t have significant effects on all test func-
tions. The above conclusions can be drawn that for some 
low-dimensional functions, the bilevel-search algorithm 
does not show advantages. For high-dimensional complex 
problems, the bilevel-search particle swarm optimiza-
tion algorithm has obvious advantages. The bilevel-layer 
search particle swarm optimization algorithm has strong 
ability to solve complex problems, fast convergence speed 
and high calculation accuracy.

Under the condition of ensuring the accuracy, stabil-
ity and convergence speed of the algorithm, improve the 
accuracy and use the calculation cost as little as possible.

5  Discussion and conclusion

In this paper, we propose a particle swarm optimization 
algorithm based on a bilevel-search framework. The first-
level search, known as fine search, efficiently narrows 
down the search space to identify extreme regions. The 
second-level search, referred to as rough search, further 
enhances the algorithm's accuracy.

During the second-level search, we introduce a refer-
ence matrix to record and update the optimal positions 
of particles within each subspace. This incorporation of 
the reference matrix significantly accelerates the conver-
gence speed and improves the accuracy of the optimization 
process. Comparing our algorithm to other optimization 
algorithms, the double-layer search structure demonstrates 
significant advantages.

By utilizing the bilevel-search framework, our pro-
posed algorithm establishes a particle swarm optimiza-
tion approach that combines fine and rough searches. This 
strategy leads to faster convergence and more precise opti-
mization positions, setting it apart from other optimization 
algorithms.
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