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Abstract
In Wireless Sensor Networks (WSNs), the increasing network lifetime is an essential requirement. Energy consumption 
mainly takes place in data sensing, data transmissions, and data processing. In data transmission, the consumption is much 
higher as compared to the others. One of the approaches to reducing energy consumption is to construct a data aggregation 
tree. This paper investigates the problem of maximizing network lifetime by minimizing the total transmission and recep-
tion energy consumption by all sensor nodes. We also propose a heuristic algorithm, called Reduce Redundant Packet Tree 
(RRPT), to reduce the redundant packets in the network. This algorithm is based on the observation that the fewer the number 
of packets, the less energy consumption is. Following RRPT, we propose an Evolutionary Algorithm (EA), namely PGA, 
which adopts RRPT as a heuristic initialization for further performance improvement. We conduct several comprehensive 
experiments to verify the performance of our proposed algorithms. The experimental results demonstrate that our PGA can 
perform significantly better than the previous algorithms with 99% reliability through statistical tests in terms of solution 
quality.

Keywords  Network lifetime · Data aggregation tree · Wireless sensor network · Evolutionary algorithm

1  Introduction

Wireless Sensor Networks (WSNs) are constituted by hun-
dreds to thousands of sensor nodes whose main task is to 
sense data such as light, temperature, and humidity from 
the environment or the interesting regions. These data, then, 
will be reported to the base station or sink via wireless con-
nections. These days, in the era of the Internet of Things 
(IoT), there is a plethora of applications using WSNs in not 
only modern smart cities but in other smart environments as 

well, covering virtually every field ranging from industry, 
military, smart farming in agriculture, and so on. The energy 
of WSNs is mainly consumed for data transmission tasks 
instead of computation tasks. Therefore, if the energy of the 
sensor node is exhausted, the data will not be transmitted 
to the sink or base station. The direct transmission of each 
data packet from sensor nodes to the base station results in 
high data redundancy and a high communication load. For-
tunately, data collection can address this problem through 
the combination of data packets. Recently, data aggrega-
tion methods are attracting special attention from loads of 
researchers and experts. In the methods, the sensor node 
must receive packages from its children and then forward 
the received packets and its sensing packet to its parents. 
The key idea generally is to combine the data coming from 
different sources, which helps to reduce redundancy and 
minimize the number of transmissions, thereby prolonging 
the network lifetime.

In Kuo et al. (2015), the authors have proven that find-
ing a data aggregation tree with minimum energy cost in 
wireless sensor networks is NP-complete. They proposed the 
2-approximation to solve this problem. Although this algo-
rithm is near-optimal, it may incur more costs if the number 
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of redundant packets in the shortest path tree increases. Fol-
lowing that, Tam et al. (2020) proposed a novel multi-facto-
rial evolutionary algorithm using edge set tree representation 
to construct near-optimal data aggregation trees simultane-
ously, in which each gene represents an edge, each taking a 
value of 0 or 1. However, this algorithm has not thoroughly 
explored the characteristics of the problem, for example, the 
effect of the number of packets transmitted in the networks.

The contributions of the paper can be summarized as 
follows:

–	 We first present the problem of maximizing the lifetime 
of the wireless sensor network by minimizing the total 
transmission and reception energy consumption by all 
sensor nodes.

–	 We propose the heuristic algorithm called RRPT to 
reduce the redundant packets in the network. This algo-
rithm is based on the observation that the fewer the num-
ber of packets are, the less energy consumption is. Based 
on the RRPT algorithm, we also propose an Evolutionary 
Algorithm with RRPT initialization for further improve-
ment.

–	 We carry out extensive simulations to evaluate our 
approaches. The empirical results show that our 
approaches have greatly improved energy consumption.

–	 We apply statistical tests to check whether the proposed 
algorithm is better than the previous algorithms or not.

The remainder of this paper is organized as follows: Sect. 2 
gives an overview of state-of-the-art data aggregation in 
wireless sensor networks. Section 3 presents the system 
model and defines the problem. In section 4, we highlight the 
implementation of the proposed algorithm. Section 5 pre-
sents the performance evaluation of our algorithms. Finally, 
the paper concludes with Sect. 6.

2 � Related works

There are many related works on the problem of building a 
data aggregation tree for maximizing the network lifetime 
in WSNs. In this work, we classify the related works into 
three categories, namely cluster-based approach (or central-
ized approach ) and in-network aggregation, and tree-based 
approach.

Among various data aggregation methods, the clustering 
approach is considered a promising choice. In the cluster-
based data aggregation approach, sensor nodes are grouped 
into clusters. The clustering of sensor nodes can be achieved 
by either of the two methods: centralized or distributed. In 
this section, we brief the centralized-based approaches. 
With this approach, the base station has information on the 
entire network. In each cluster, the cluster head (CHs) node 

is responsible for collecting, processing, and aggregating 
sensed data from the member nodes and forwarding it via 
the base station. An outstanding advantage of this approach 
is that it reduces the amount of information performing data 
aggregation at the cluster top nodes before forwarding to 
the base station. Besides, the ability to reuse bandwidth, 
increase resource allocation, and improve capacity control 
are also benefits of adopting cluster-based data aggregation 
approaches. Recent studies (Abirami and Anandamurugan 
2016; Lee et al. 2015; Mantri et al. 2015; Mosavvar and 
Ghaffari 2019; Rida et al. 2019) have applied the methods 
based on this approach to solve practical problems in wire-
less sensor networks with the above advantages. Mantri et al. 
(2015) proposed an algorithm called Bandwith Efficient 
Cluster-based Data Aggregation (BECDA) to provide an 
efficient data collection solution in wireless sensor networks. 
With the goals of increasing the use of available bandwidth, 
reducing communication costs, and minimizing energy con-
sumption in the system, the BECDA algorithm is proposed 
to reduce the number of packet transmissions from nodes 
to the base station. This proposed algorithm shows signifi-
cant improvement in terms of PDR and throughput when 
compared with previous solutions. In Abirami and Anan-
damurugan (2016), the authors presented a shuffled frog 
meta-heuristic algorithm for CHs selection. This algorithm 
chooses CHs based on the energy remaining in the nodes. 
The shuffling strategy of frogs is used to exchange infor-
mation between local searches to attain global optimum. 
Mosavvar and Ghaffari (2019) proposed combining the fire-
fly algorithm and LEACH in Singh et al. (2017) protocol 
for aggregating data in WSNs. According to the proposed 
method, sensor nodes are divided into clusters. In each clus-
ter, nodes are periodically active and inactive. Nodes with 
more remaining energy will be selected as active nodes. The 
cluster is activated and deactivated based on their energy 
level and distance. In addition, Lee et al. (2015) proposed 
a two-layer cluster head selection based on distance. A CH 
is selected in the second layer without communicating with 
other nodes. As presented in Rida et al. (2019), a new data 
handling approach was proposed to reduce data transmission 
without data integrity loss.

In-network aggregation is the global process of gath-
ering and routing information through a multi-hop net-
work, processing data at intermediate nodes to reduce 
energy consumption, thereby prolonging network lifetime 
(Ennajari et  al. 2016). In Zhang et al. (2018), a novel 
ring scheme is proposed for the problem, in which the 
original packets of N nodes are aggregated into M pack-
ets ( 1 < M < N  ). Based on in-network data aggregation, 
this scheme improves energy efficiency and reliability of 
transmission in the network. Furthermore, the authors also 
proposed a fuzzy logic system. During data transmission, 
the network is divided into rings, and data is gathered from 
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the outer ring to the inner circle. The copies of the packets 
are used to increase transmission reliability and reduce 
packet loss. The proposed fuzzy logic system regulates 
the number of these copies. The data collection mecha-
nism in the network is also used in Vehicular Ad-hoc Net-
works (VANETs). It is designed by Dietzel et al. (2016) 
to securely collect data from traffic devices and increase 
the system’s scalability.

in addition to the above approaches, another practical 
approach is to aggregate data based on a tree structure, 
namely, a data aggregation tree. In the data aggregation 
tree, the sensor nodes are organized into a tree, where data 
gathering is performed at intermediate nodes along the 
tree. The leaf nodes send the collected information to the 
root node (sink node) through the intermediate nodes (par-
ent node). Recently, related studies (Lin and Chen 2017; 
Kuo et al. 2015; Nguyen et al. 2016) have proposed meth-
ods based on this approach for data aggregation problems 
in WSNs in terms of lifetime maximization. In the study of 
Nguyen et al. (2016), the Maximum Lifetime Data Aggre-
gation Tree Scheduling (MLDATS) problem is introduced 
and is justified as the NP-complete problem. The authors 
proposed a tree-based algorithm called the local-tree-
reconstruction-based scheduling algorithm (LTRBSA) to 
solve the MLDATS problem. Moreover, in the context of 
maximizing WSN’s lifetime, Lin and Chen (2017) pro-
posed an approximation algorithm to solve a data aggre-
gation tree’s construction with lifetime inverse of the 
networks is guaranteed to be within its optimal bounds. 
In Kuo et al. (2015), Kuo et al. studied the problem of 
building a data aggregation tree where the total energy 
cost of data transmission in the WSN is minimized. Such 
issues are also explored and solved when there are relay 
nodes and poor link quality in the networks. The authors 
have proved that these problems are NP-complete and 
proposed O(1)-approximation algorithms to solve them. 
The simulations have shown the proposed algorithms to 
be effective regarding energy costs. However, in the case 
of a large problem size, e.g., a network of many sensor 
nodes, the proposed approximation algorithm does not 
give a good solution with a significant difference from the 
optimal solution.

In summary, as the related studies introduced, there are 
many approaches to building a data aggregation tree for 
maximizing the network lifetime in WSNs. However, in 
this paper, we focus on the model introduced in Kuo et al. 
(2015) and propose a meta-heuristic algorithm to solve the 
problem based on the tree-based approach. The proposed 
algorithm achieves significantly better results than the 
previous solid algorithms, including the 2-approximation 
algorithm (SPT) in Kuo et al. (2015) and the multi-facto-
rial evolutionary algorithm (ESMFA) in Tam et al. (2020).

3 � Problem statement

In this paper, we work on the problem of constructing a 
data aggregation tree that minimizes the total energy cost 
for data transmission in a wireless sensor network, which 
is a simple way to prolong the network lifetime. We con-
sider this problem under the scenario where nodes have the 
same transmission range and can do in-network aggrega-
tion. The problem proposed by Kuo et al. (2015), termed 
MECAT, is an NP-completed problem. In this section, we 
first recall the network model and the assumption of the 
network and then state the problem as a minimal optimiza-
tion problem. Eventually, we show a motivating example 
for properly understanding this problem.

3.1 � Network model

The network is modeled as a connected, undirected graph 
G = (V ,E) where:

–	 V = {v0, v1,… , vn} , is the set of nodes where v0 is the 
sink and the other ones are sensor nodes.

–	 E is the set of edges. Two nodes vi and vj are connected 
if and only if the distance between them is less than or 
equal to the sum of their communication radius.

–	 Each node vi has to send a report of size s(vi) to sink 
v0 periodically in a multi-hop fashion based on a rout-
ing tree. A routing tree or a data aggregation tree con-
structed for a network G = (V ,E) is a directed tree 
T = (VT ,ET ) with root v0 , where VT = V  and directed 
edge (u, v) ∈ ET only if an undirected edge (u, v) ∈ E . A 
node u can send packets to a node v only if (u, v) ∈ ET.

–	 Let Tx and Rx be the energy needed to transmit and 
receive a packet, respectively. As long as the packet 
size is sufficiently small, Tx and Rx are constants.

–	 While routing, a hop-by-hop aggregation is performed 
according to the aggregation ratio q ∈ �

+ , which is the 
maximum size of reports that can be aggregated in a 
packet.

–	 In a routing tree T, let:

–	 childT (vi) be a set of vi ’s children in T.
–	 desT (u, vi) be the size of reports to be sent by u 

which is the child of vi in T.
–	 desT (vi) be the total size of reports to be sent by vi ’s 

descendants in T, desT (vi) =
∑

u∈childT (vi)
desT (u, vi).

–	 cT (vi) be the energy consumption of vi . This one 
accounts for the energy cost of the radio, which is 
the sum of transmitting and receiving energy in the 
communication process. 



12332	 T. C. Dao et al.

1 3

3.2 � Problem formulation

Based on the network model, we can now formulate the 
problem as follows:

Input:

–	 A WSN is modeled as a connected and undirected graph 
G = (V ,E) , the sink node is v0.

–	 r is the transmission range of a node.
–	 q is the aggregation ratio.

Output: A data aggregation tree T = (VT ,ET ) rooted at v0 
( VT = V).

Objective: Minimize the total transmission and reception 
energy consumption by all nodes in the network

Since the number of packets sent and received by nodes in 
T are equal, the Eq. 1 becomes:

In this formulation, 
⌈
desT (vi)+s(vi)

q

⌉
 is the number of packets 

sent from vi to its parent on T.

Example 1  To illustrate the problem more clearly, we present 
a tiny example in this section. Consider a simple wireless 
sensor network described as a graph in Fig. 1a. We assume 
the aggregation ratio q is 3, and both Tx and Rx equal 1. 
Sensor nodes (v1, v2, v3, v4, v5) have sizes of reports (3, 4, 
9, 6, 8). Figure 1b and c are two routing trees constructed 
for this graph. In Fig. 1b, the number of packets sent by 

cT (vi) =
⌈

desT (vi) + s(vi)
q

⌉

× Tx +
∑

u∈childT (vi)

(⌈

desT (u, vi)
q

× Rx

⌉)

.

(1)
∑

vi∈V

cT (vi) → min.

(2)
∑

vi∈V

(Tx + Rx) ×

⌈
desT (vi) + s(vi)

q

⌉
→ min.

( v1, v2, v3, v4, v5 ) is (5, 4, 6, 2, 3), respectively. In Fig. 1c, 
those are (1, 6, 3, 2, 3). By using Eq. 2, the total energy 
consumption of two trees in Fig. 1b and c are 40 and 30, 
respectively. Therefore, the routing tree in Fig. 1c gives a 
better result.

4 � Proposed method

The MECAT problem has been proven to be an NP-hard 
problem in Kuo et  al. (2015). The authors proposed a 
2-approximation algorithm to tackle the MECAT prob-
lem. They found that a shortest-path tree turned out to be 
a 2 − approximation algorithm and could be easily imple-
mented in a distributed manner. In their solution, a sensor 
node is connected to the sink node when they have the least 
number of connected edges. This strategy may be ineffective 
if a sensor node can connect to a large number of other sen-
sors in the network, and it also omits other criteria for energy 
consumption, such as the number of packets, etc.

Hence, in this section, a new approach based on genetic 
algorithms called PGA is proposed to address the MECAT 
problem. We also come up with a heuristic algorithm and 
apply it to the initializing population of PGA to illustrate the 
effectiveness of the mentioned ones. Details of the heuristic 
algorithm and PGA are presented below.

4.1 � Proposed heuristic algorithm

The objective function of the MECAT problem is to mini-
mize the total energy cost for transmitting and receiving 
packets of all nodes in a wireless sensor network. We have 
observed that a larger number of packets will give rise to a 
higher amount of energy consumption in the network. In 
contrast, a smaller number of packets will lead to a lower 
amount of energy consumed. Therefore, the total energy cost 
is affected by the number of packets circulating in the net-
work. Reducing the number of packets will reduce the total 
energy consumption. One way to reduce it in the network is 

Fig. 1   An illustration of the problem with two routing trees constructed for a given network
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to reduce the number of “redundant packets”. The concept 
and an example of a redundant packet are presented in Defi-
nition 1 and Fig. 2, respectively. Inspired by our observa-
tion, a new heuristic algorithm, namely RRPT, is proposed 
to construct an aggregation tree with the least number of 
redundant packets.

Definition 1  Given an aggregation tree T = (VT ,ET ) with 
root v0 as a sink, nodes vi, vj ∈ VT ⧵ {v0} . A redundant 
packet is a packet sent from node vi to node vj whose size is 
less than the aggregation ratio q.

The main idea of the RRPT algorithm is to build an 
aggregated tree with as few redundant packets as pos-
sible. The algorithm is implemented based on a parent 
node selection strategy for a new node added to the data 
aggregate tree. The criteria for selecting the parent node 
of a node being considered is the minimum number of 
redundant packets on the path from that parent node to the 
sink. Details and an example of the RRPT algorithm are 
presented in Algorithm 1 and Fig. 3.
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Example 2  Fig. 3 illustrates an example of selecting a parent 
node of a node in RRPT. Figure 3a depicts an aggregation 
tree T with 9 nodes and node v9 being considered to be added 
to the tree. The size of the sensor node’s own report is shown 
in parentheses. Figure 3b depicts the tree when appending 
node v9 to its parent nodes. The values in parentheses are the 
size of the sensor node’s aggregated reports and the number 
of redundant packets, respectively. Assuming that node v6 is 
selected as the parent node, node v6 can aggregate its own 
report and the received report from node v9 (total size of 
reports is 3 + 2 = 5 ) into ⌈5

3
⌉ = 2 packets (including 1 

redundant packet). Repeating the process with other nodes 
on the path from node v6 to the root v0 , we calculate the 
number of redundant packets on this path as 3. Using a simi-
lar calculation, the number of redundant packets in cases 
nodes v7 , and v8 are selected as the parent nodes are 1 and 2, 
respectively. Comparing packet numbers, node v7 is chosen 
as the parent of node v9 because the path from node v9 to the 
root node passing through node v7 has the smallest number 
of redundant packets. After inserting node v9 , the obtained 
tree is shown in Fig. 3c.

4.2 � Proposed genetic algorithm

Genetic Algorithm (GA) has been proven effective on NP-
hard problems (Holland 1992; Mirjalili 2019; Binh et al. 
2021; Hien et al. 2022). In this section, we propose a new 
approach based on GA, namely PGA, to solve the MECAT 
and describe how the main steps of the PGA are imple-
mented in the proposed algorithm.

4.2.1 � Individual representation

An essential step in the design of a GA is to find an appropri-
ate individual representation. In the MECAT, several meth-
ods are suitable for representing the solution, such as Cayley 
representation, network random keys (Netkeys) representa-
tion, edge representation, etc. However, with our problem 
approach, the Netkeys representation method is used to rep-
resent the individual.

For the MECAT problem, consider a given graph 
G = (V ,E) with |V| = n and |E| = m . A possible solution of 
the problem is an aggregation tree T = (VT ,ET ) ( VT = V  ). 
Based on Netkeys representation, a solution to the MECAT 
problem is represented by a real number vector W with 
dimension m. Each element in W is linked to an edge in 
E whose value is a real number in the range [0, 1]. For 
instance, a complete representation of a possible solution in 
an input graph in Fig. 4 with 5 nodes is illustrated in Fig. 5.

With the above-mentioned encoding mechanism, a cor-
responding decoding method is also proposed. The proposed 
method includes four steps to generate the spanning tree T = 
(V, ET ) of graph G from the representation Netkeys W. The 
detailed steps are given as follows:

Step 1: Initially initialize T with ET = Ø.
Step 2: Traverse each element in W in descending order 

of value.
Step 3: With the ith element traversed, the link edge is 

checked. If the insertion of the link edge in ET would not 
create a cycle, then insert the link edge in T.

Step 4: Check the number of edges in ET . If |ET | = n − 1 , 
then stop the process, else, continue with Step 2.
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With this decoding from every possible Netkeys vector, 
the spanning tree constructed is unique and valid.

An example of the decoding method is shown in Fig. 6. 
For the given representation in Fig. 5, the traversal order of 
elements in descending order will be 10, 8, 6, 9, 2, 7, 1, 5, 4, 
3. Firstly, the link edge (v3, v4) (position 10) is inserted into 
the spanning tree. Next to that is the link edges (v2, v3) (posi-
tion 8) and (v1, v3) (position 6). If we added the link edge 
(v2, v4) (position 9), the cycle (v2, v4, v3, v2) would be created, 
thus the link edge (v2, v4) is not added to the spanning tree. 
Next, edge (v0, v2) (position 2) is inserted into the spanning 
tree. The number of edges of the spanning has reached a 
maximum of 4. Therefore, the decoding algorithm is ter-
minated, and we have a constructed tree as shown in Fig. 6.

4.2.2 � Initialization

In this paper, we use a combination of two initialization 
methods: random initialization and heuristic initialization 
to generate initial population P0 with N Netkeys vectors of 
m-dimension. Herein, we use the proposed RRPT algorithm 
for heuristic initialization. The initialization procedure, 
including three steps, is described as follows:

Step 1: The population P0 includes the individuals gener-
ated with random initialization and heuristic initialization.

Step 2: Eliminate the identical individuals in P to obtain 
a population of distinct individuals.

Step 3: Generate individuals by using the Local search 
algorithm that is described in Algorithm 4, then add them 
to P0 until the population size is reached.

4.2.3 � Fitness function

In the genetic algorithm, the fitness function, by defini-
tion, is a process for scoring each chromosome based on its 
qualification. In the MECAT problem, the fitness function 
value is the total energy consumed by the nodes in the data 
aggregation tree.

After obtaining the spanning tree from the decoding indi-
vidual, to calculate the value of the fitness function, it is 
necessary to create a tree to synthesize the data from that 
spanning tree and calculate the value of the target function 
according to the total energy consumption formula of the 
node on the data aggregation tree. The construction of a tree 
that aggregates data from the spanning tree is described in 
detail in Algorithm 3.
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4.2.4 � Crossover operator

This paper describes a crossover operator based on the Sim-
ulated Binary Crossover (SBX) Deb et al. (1995). SBX is 
a pseudo-hybrid that repeats the principle of single-point 
crossover in binary representation. It has some essential 
properties, such as it does not change the genotype value on 
average, and the offspring’s genotype is inherited close to 
their parents. Thanks to these properties, EA can maintain 
the basic genetic blocks (original term: building block) well 
over generations during evolution.

characteristics of the population. Details of the Local search 
algorithm are described in Algorithm 4. Figure 7 illustrates 
an example of the Local search algorithm.

V0

V1 V2

V3

(3) (2)

(5)

redundant packet

Fig. 2   An example of a redundant packet in an aggregation tree. It is 
assumed that an aggregation tree T with the sink node v0 , three nodes 
v1, v2, v3 , and the aggregation ratio q is 3. The size of the sensor 
node’s own report is shown in parentheses. For node v3 , its own 
report of size 5 is aggregated into ⌈5

3
⌉ = 2 packets, one of maximum 

size 3, and one of smaller size 2. The packet of size 2 is a redundant 
packet, which can aggregate more data

4.2.5 � Mutation operator

In this paper, we use a new mutation operator based on 
Local search to introduce new genetic material into an 
existing individual in order to add diversity to the genetic 

4.2.6 � Selection method

The GA’s selection consists of two main types: select to 
breed and select to build populations for the next genera-
tions. The details of the selection methods are shown as 
follows:

–	 Selection for reproduction: In this proposal, tournament 
selection is used. Specifically, two individuals are ran-
domly selected to take part in a tournament, i.e. the indi-
vidual with the best fitness is selected. For crossover, two 
tournaments are held to select two parents. The advan-
tage of this selection is that the worst individuals in the 
population will not be selected, and the best individual 
will not dominate in the reproduction process.

–	 Selection for building populations of the next genera-
tion: The proposed algorithm uses elitism selection to 
select the best individuals from the current population 
to survive the next generation. This strategy will ensure 
that the maximum fitness value does not decrease.
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5 � Experiment results

5.1 � Experimental settings

Two datasets are created for our experiments based on Tam 
et al. (2020), namely Type 1 ( 200m × 200m ) and Type 2 
( 100m × 100m ). For each dataset, 30 instances are generated. 
Type 1’s instances have formatted as l_n_r , while Type 2’s 
instances are m_n_r . In which, n is the number of sensor 
nodes and r is the transmission range. Parameters for the 
problem are shown in Table 1.

We evaluate the performance of our proposed algo-
rithm by comparing PGA to the strong baselines, including 

the previous state-of-the-art algorithm ESMFA and the 
2-approximation algorithm SPT. For a fair comparison, we 
set up two algorithms PGA and ESMFA with the same popu-
lation size, the same number of generations, and the same 
number of evaluation calls. All results of PGA and ESMFA 
are averaged and reported on 30 independent runs with dif-
ferent random seeds.

The details of configurations for different algorithms are 
summarized in Table 2.

All experiments are implemented in Java program lan-
guage and executed on the same machine running Ubuntu 
Linux 16.04 with Intel(R) Core(TM) i7-4800MQ CPU @ 
2.70GHz. The programs, data, and resources are made avail-
able at https://​github.​com/​DaoTr​anbk/​PGA4M​ecat.​git.

Fig. 3   An illustration of a strat-
egy for selecting a node’s parent 
node in the RRPT algorithm

V0

V1 V2

V3 V4

V6 V7

V5

V8

V9

(3)

(8)

(17)

(7)

(4) (4)

(5)

(6)

(2)

V0

V1 V2

V3 V4

V6 V7

V5

V8

V9

(5/1)

(10/1)

(19/1)

(9/0)

(6/0) (6/0)

(7/1)

(8/1)

V0

V1 V2

V3 V4

V6 V7

V5

V8

V9

(a) (b) (c)

V0

V1 V2

V3 V4

Fig. 4   A graph G with five vertices and ten edges
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Fig. 5   A representation for a possible tree in graph G

Table 1   Parameters of the problem

Parameter Description Value

n Number of sensor nodes 100, 110, 120,… , 190
r Transmission range 10, 15, 20
s(v

i
) Non-uniform report size 1, 2, 3, 4, 5

T
x

Transmission energy constant 2
R
x

Receiver energy constant 1
q Aggregation ration 4

Table 2   Parameters in PGA and ESMFA

Parameter ESMFA PGA

Population size 100 100
Maximum generations 1000 1000
Number of evaluation calls 100,000 100,000
rmp 0.3 –
Mutation rate – 0.2
Crossover rate – 0.7

https://github.com/DaoTranbk/PGA4Mecat.git
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5.2 � Experimental criteria

We evaluate the performance of our proposed algorithms on 
several criteria: average (Avg) and standard deviation (Std) of 
objective value, running time (Time), and convergence trend. 
In addition, we use the relative percentage difference (Binh 
et al. 2019; Dao et al. 2021) to analyze the improvements in 
the performance of the proposed algorithms. Namely, the rela-
tive percentage difference between algorithm A and algorithm 
B, RPD (A, B), is the difference between the average objective 
values obtained by two algorithms A and algorithm B. In the 
MECAT problem, which is a minimum optimization problem, 
the formula of the RPD metric is as follows:

where CA and CB are the average cost of solutions obtained 
by the algorithm A and algorithm B, respectively.

RPD(A,B) =
CB − CA

CB

× 100%.

V0

V1 V2

V3 V4

V0

V1 V2

V4

V0

V1

V3

V1

V0V0

V1

V0

V1

V0

V1 V2

Fig. 6   An example of decoding the representation in Fig. 5

Fig. 7   An example of the Local 
search algorithm

 Selected link Link in cut-set

Tree T Tree T'Graph G

Cut

Fig. 8   RPD value calculated between RRPT and SPT on two types

Table 3   Three versions of PGA with different rates of individuals 
created by heuristic initialization and random initialization

Initialization PGA versions

H-PGA R-PGA M-PGA

Heuristic 100% 0% 60%
Random 0% 100% 40%
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Fig. 9   Comparison of two versions H-PGA and M-PGA to R-PGA in 
terms of RPD value (higher is better)
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Fig. 10   Comparison between H-PGA and M-PGA in terms of RPD

Table 4   Average objective 
value, standard deviation, and 
execution time obtained by the 
H-PGA and ESMFA on the 
large dataset

The best results are in bold

Instances H-PGA ESMFA

Avg ↓ Std ↓ Time(s) ↓ Avg ↓ Std ↓ Time(s) ↓

l_100_10 1092.00 0.26 5.74 1101.40 0.90 252.91
l_100_15 997.10 0.32 5.20 997.40 0.52 252.91
l_100_20 647.70 0.37 6.41 654.50 0.68 251.20
l_110_10 942.50 0.25 6.71 950.50 0.63 271.42
l_110_15 907.00 0.35 6.80 915.00 0.44 271.48
l_110_20 793.10 0.39 8.33 802.30 0.66 274.02
l_120_10 1277.80 0.22 6.62 1286.90 0.62 288.91
l_120_15 920.40 0.41 7.07 927.00 0.76 293.86
l_120_20 812.90 0.49 9.25 819.50 0.52 296.73
l_130_10 1021.00 0.24 8.55 1037.50 1.03 315.81
l_130_15 1122.50 0.57 7.92 1127.30 0.80 317.84
l_130_20 981.30 0.40 10.58 990.90 0.54 325.23
l_140_10 2069.90 0.13 7.50 2076.80 0.25 335.37
l_140_15 1292.00 0.22 8.93 1314.00 0.61 337.56
l_140_20 910.10 0.44 10.67 929.10 0.78 339.18
l_150_10 1573.70 0.21 9.43 1590.90 0.64 252.91
l_150_15 1375.60 0.37 9.43 1382.30 0.48 252.91
l_150_20 1040.00 0.32 12.87 1055.90 0.46 251.20
l_160_10 1510.00 0.22 10.50 1523.00 0.59 271.42
l_160_15 1384.40 0.34 11.61 1408.60 0.71 271.48
l_160_20 1099.70 0.37 15.73 1132.30 0.67 274.02
l_170_10 1918.30 0.21 10.81 1941.00 0.55 288.91
l_170_15 1346.00 0.34 12.99 1367.60 0.64 293.86
l_170_20 1116.20 0.36 16.80 1248.10 0.59 296.73
l_180_10 1477.60 0.22 13.03 1502.20 0.55 315.81
l_180_15 1507.30 0.37 14.23 1525.30 0.65 317.84
l_180_20 1229.60 0.38 19.24 1259.40 0.58 325.23
l_190_10 2483.10 0.16 12.29 2512.10 0.51 335.37
l_190_15 1754.60 0.25 15.32 1790.10 0.61 337.56
l_190_20 1238.10 0.36 19.34 1259.40 0.58 339.18
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5.3 � Performance analysis for the proposed heuristic 
RRPT

In this section, we evaluate the performance of our heu-
ristic algorithm RRPT by comparing RPD values between 
RRPT and the 2-approximation SPT. Figure 8 presents the 

obtained results by RRPT and SPT over all instances of each 
type in terms of RPD value. It can be seen that on Type 1, 
RRPT produces better results than SPT over 26/30 in total 
instances, however, SPT performs better than RRPT on 4/30 
instances by small margins (from about 0.15% to 0.7%). In 
the meantime, RRPT outperforms SPT on all instances 
of Type 2. The largest improvement in objective values 
obtained by RRPT is about 7.7% on the instance m_120_20 . 

Fig. 11   The convergence trend of instances in the benchmark datasets
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The average RPD values on Type 1 and Type 2 are 1.38% 
and 3.83%, respectively.

In addition, on Type 2, we see a growing trend of RPD 
values when the number of sensors increases and find that 
the RPD values are larger than the ones on Type 1. It is 
worth noting that the number of edges of input graphs in 
Type 2 is larger than in Type 1. As a result, RRPT is more 
effective than the SPT, especially on dense graphs with a 
large number of edges and a number of nodes.

5.4 � Performance analysis for PGA with different 
initialization

To deeply investigate the performance of PGA, we imple-
ment PGA with three versions: H-PGA, M-PGA, and 
R-PGA, in which each version adopts a different initializa-
tion scheme with a different rate of individuals created by 
heuristic initialization using RRPT and random initializa-
tion as shown in Table 3. In M-PGA, the rate of heuristic 
initialization using RRPT is chosen to be 60% because our 
experiment results show that this rate helps M-PGA produce 
the best results. To evaluate the performance of the three 
versions, we use all instances on the Type 2 dataset.

Fig. 12   RPD values between 
PGA, ESMFA and SPT on two 
types data
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Figure 9 shows that H-PGA and M-PGA with heuristic 
initialization outperform R-PGA with a random one. In par-
ticular, M-PGA, which is 60% individuals created by RRPT, 
achieves a better result than R-PGA, approximately 18.67% 
in each Type 2’s instance. Meanwhile, H-PGA, which used 
RRPT to create all individuals in the population, gets a better 
result than R-PGA overall Type 2’s instances, approximately 
19.99% in each instance.

The comparison results between M-PGA and H-PGA 
are shown in Fig. 10. As a result, the RPD values between 
H-PGA and M-PGA in all instances are positive, which 
means H-PGA outperforms M-PGA in general. In each 
instance, H-PGA gets average better results than M-PGA, 
approximately 1.64%. Therefore, H-PGA is the best version 
of PGA and is then used to compare the baselines in the fol-
lowing experiments.

5.5 � Comprehensive comparison of PGA 
to the baselines

Here, we report the best results obtained by PGA with the 
best version H-PGA that uses a 60% heuristic and 40% ran-
dom in the initialization method.

5.5.1 � Objective value and running time

Table 4 shows the results of the H-PGA consisting of the 
average objective value (Avg), standard deviation (Std), and 
execution time over 30 independent runs on the large dataset, 
i,e. Type 2. It can be observed that the proposed algorithm 
PGA achieves better average objective values and smaller 
standard deviations than ESMFA in all instances. Especially, 
our PGA runs far faster than ESMFA but still outperforms 
the baseline, i.e. on the instance l_100_10 , PGA achieves 
better objective value while the running time of PGA is only 
about 1/44 of ESMFA (PGA: 5.74 s and ESMFA: 4.2 min). 
These obtained results show that the PGA performs better 
results, higher stability, and faster execution time than the 
baseline ESMFA.

5.5.2 � Convergence trend

To assess the efficiency of our proposed algorithms, the con-
vergence trend graphs are also investigated. The functions 

in Gupta et al. (2015) were used for computing normalized 
averaged objective values for comparing convergence trends 
between PGA and ESMFA. The convergence trend graphs 
for several instances of Type 1 and Type 2 are depicted in 
Fig. 11. In the figure, the y-axis gives the normalized aver-
aged objective value over 30 independent runs, while the 
x-axis denotes the number of generations made so far.

As can be observed in the convergence trend graphs in 
Fig. 11a–i, the proposed algorithm obtained good results 
and fast convergence speed in the initial generations. We 
observe that our PGA converges much faster than ESMFA 
in all the instances. Because of the good performance of 
RRPT algorithm in the initialization method, our PGA can 
obtain good individuals at the first generation, thus lead-
ing to enhance convergence speed of PGA as observed in 
Fig. 11. The convergence trend graphs also show that the 
heuristic initialization RRPT method is significantly better 
than Kruskal random initialization used in ESMFA (Tam 
et al. 2020).

5.5.3 � Relative percentage improvement

Figure 12 presents the RPD values of two pairs: (PGA, 
ESMFA) and (PGA, SPT) on Type 1 and Type 2. According 
to the results, it is clear that PGA outperforms ESMFA and 
SPT on all instances of each dataset type. Particularly, the 
value of RPD(PGA, ESMFA) on Type 1 has changed from 
0.03% to 1.98%. On Type 2, the biggest RPD value is 2.56% 
and the smallest one is 0.79%. When compared to SPT, the 
RPD(PGA, SPT) fell into a range from 1.67% to 6.08% on 
Type 1 and from 3.72% to 11.09% on Type 2. As a result, the 
improvement of the PGA’s result compared to SPT is more 
significant than the one compared to ESMFA.

Based on the obtained results, we see that the improve-
ment of the PGA’s result compared to the remaining algo-
rithms increases on dense graphs. Specifically, in each type, 
with the higher transmission range, which is equivalent to a 

Table 5   Ranks of algorithms achieved by Friedman test

Type Agorithms

H-PGA ESMFA SPT

Mean rank 1.00 2.00 3.00

Table 6   Test statistics of 
algorithms achieved by 
Friedman test

Test statistics

N Chi-square df p

60 120.00 2 0.00

Table 7   Test statistics using post-hoc test with Wilcoxon signed-rank 
test

∗Note: a. Based on positive ranks

Values Pair algorithms

PGA-ESMFA PGA-SPT ESMFA-SPT

Z −6.736a −6.736a −6.736a

p 0.000 0.000 0.000
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higher number of links in the network, the RPD values of PGA 
compared to the baselines were increased. Furthermore, the 
PGA effect compared to ESMFA and SPT is more precise 
when decreasing the deployment area’s size from 200 × 200 
(Type 2) to 100 × 100 (Type 1) which means that the average 
distance between nodes is also decreased in order to increase 
their connectivity. The average value of RPD(PGA, ESMFA) 
in Type 1 and Type 2 is 1.13% and 1.67%, respectively. Mean-
while, the average value of RPD(PGA, SPT) is 3.58% in Type 
1 and 7.03% in Type 2.

5.6 � Statistical tests

In this section, we examine several well-known non-para-
metric statistical tests Zar (1999); Sheskin (2020) to analyze 
obtained results by our PGA and the baselines on two types of 
datasets and to decide whether the differences between them 
are significant or not. The analysis consists of two steps:

–	 The first step is using the Friedman test to examine the 
significant differences between the results obtained by the 
algorithms.

–	 The second step is using the post-hoc test to compare each 
pair of algorithms in detail after examining a significant 
difference between the algorithms.

The null hypothesis for the Friedman test is that there are 
no differences between the results obtained by the algorithms. 
The Friedman test compares the mean ranks between the algo-
rithms’ results and indicates how the results differed. Table 5 
shows the mean rank for each of the algorithms. In the ranks 
table, the proposed algorithm, H-PGA, gets the best rank on 
all instances of two types of datasets.

Table 6 provides the test statistic �2 value (“Chi-square”), 
degrees of freedom (“df”) and the calculated probability value 
(“p”). As can be observed in Table 6, the results show that the 
probability value ( p = 0.000 ) is less than the selected signifi-
cance level ( � = 0.01 ), thus the null-hypothesis is rejected. It 
also can be concluded that at least two algorithms’ results are 
significantly different from each other.

To examine where the differences actually occur, we use 
Wilcoxon signed-rank test as a post-hoc test to compare each 
pair of results obtained by the algorithms: PGA to ESMFA, 
PGA to SPT, and ESMFA to SPT. In this experiment, a Bon-
ferroni correction is applied because of multiple comparisons. 
A new significance level of 0.01∕3 = 0.0034 is calculated. 
This means that if the p-value is larger than 0.0034, we do 
not have a statistically significant result. Table 7 shows the 
Wilcoxon signed-rank test’s output on each of the algorithms’ 
pair results. It can be observed in Table 7 that all the p values 
are less than the significance level of 0.0034, as a consequence, 
all pairs of results obtained by the algorithms (p = 0.00) were 

statistically significantly different. Therefore, it can be con-
cluded that there is an obvious difference between PGA’s solu-
tion quality and the other algorithms in terms of statistical 
testing, thus confirming that PGA performance is significantly 
better than the previous solid baselines with 99% reliability.

5.7 � Discussions

According to the performance analysis of the proposed heu-
ristic RRPT, we find that RRPT performs better than the 
2-approximation algorithm SPT in most instances. Notably, 
the obtained results by RRPT are significantly better than 
SPT on all instances of large datasets, thus indicating our 
heuristic is more scalable for large datasets. One predictable 
reason for the better performance of RRPT than SPT is that 
RRPT aims to build an aggregation tree with as few redun-
dant packets as possible to reduce the number of packets 
transmitting in the network. Remarkably, our heuristic uti-
lizes a parent node selection strategy for a new node added 
to the aggregation tree with the minimum number of redun-
dant packets on the path from its parent to the sink, while 
SPT uses a random selection.

Comparing our PGA to the previous competitive base-
lines, it is clear that our proposed algorithm steadily out-
performs its baselines and runs far faster than ESMFA. The 
main reason is PGA adopts efficient genetic operators such 
as crossover based on SBX, which performs directly on gen-
otypes. At the same time, ESMFA uses genetic operators on 
tree structures, which takes a long time to convert genotypes 
to corresponding phenotypes in tree structures. Moreover, 
utilizing RRPT as heuristic initialization helps the search 
process of PGA finds good solutions quickly.

Although this paper has demonstrated that PGA per-
forms well for MECAT and RRPT can help PGA produce 
significantly better results than strong baselines, there are 
still rooms to improve the performance of our algorithms. 
One promising direction is using other efficient encodings 
for MECAT as our encoding based on Netkeys still has a 
weakness of redundancy property for tree representations. 
Future work will investigate which encoding is more suitable 
for MECAT by evaluating the performance of each encoding 
nested in PGA.

6 � Conclusion

In this paper, we have presented the MECAT problem of 
maximizing the lifetime of Wireless Sensor Networks by 
constructing an energy-efficient data aggregation tree. Based 
on the observation of the problem’s characteristics, we have 
proposed the heuristic, namely RRPT, to find good solutions 
for MECAT, which can reduce the redundancy of packages 
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when transmitting data. Notably, the experiment results 
show that RRPT performed better than the 2-approxima-
tion algorithm on almost instances of the datasets. Further-
more, we have proposed an evolutionary algorithm called 
PGA that utilizes RRPT as heuristic initialization to further 
improve the performance of PGA. Experimental valida-
tions on different datasets have been carried out to verify 
the performance of our algorithms. The empirical results 
demonstrated that our PGA surpasses the previous strong 
baseline, including ESMFA and SPT. In particular, by using 
PGA, the energy consumption of the data aggregation tree in 
a WSN is reduced significantly. In future works, we plan to 
investigate the problems of maximizing the WSN’s lifetime 
in 3D terrains and apply our proposed algorithms to several 
related optimization problems for WSNs.
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