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Abstract
Scheduling of sensor nodes in an energy-efficient manner is one of the most effective ways for extending the lifetime of 
wireless sensor networks (WSNs). In energy-efficient scheduling, only a subset of the deployed sensor nodes is enabled to 
monitor the targets. As sensor nodes have restricted communication and sensing range, coverage and network connectivity 
should be considered while scheduling with fewer sensor nodes. For guaranteed transmission of sensing data from every 
target point to the base station, connectivity and coverage are the most pivotal issues in the scheduling of sensor nodes. In this 
research article, we have presented the energy-efficient active/sleep scheduling of the sensor nodes using a genetic algorithm 
(GA) with Dither Creeping mutation in which only few sensors are activated that ensures the coverage to all targets as well 
as communication with the sensor nodes and base station (BS). The novelty of the proposed GA with crossover and Dither 
Creeping mutation (GACDCM) is that the mutation probability is generated randomly rather than the fixed value for each 
string. As a result, for the same generation, the various strings of the proposed algorithm will be subjected to various creep-
ing mutation probabilities and the same string is subjected to various creeping mutation probabilities at successive genera-
tions. The proposed algorithm replaces the traditional bitwise mutation. For exploring the search space in case of extremely 
constrained problems, Dither Creeping Mutation is more efficient than bitwise mutation. We have simulated the proposed 
algorithm extensively with several WSN scenarios. the simulation results are analyzed with the existent algorithms to validate 
the efficiency of the presented algorithm. The experimental result showed that the lifetime of the suggested GACDCM is 
increased by 53.27% than traditional GA, 27.93% than GANCDCM, 13.23% than NSGA-II, and 4% than algorithm proposed 
by Harizan and Kuila (Wireless Netw 25(4):1995–2011, 2019).

Keywords  Wireless sensor networks · Connectivity · Coverage · Node placement · Genetic algorithm

1  Introduction

1.1 � Background

Wireless Sensor Network (WSN) comprises huge numbers 
of resource-constrained, low cost, tiny sensor nodes. The 
sensor nodes sense the physical parameters from the environ-
ment without human interference and transmit them directly 

or by multi-hop transmission to the BS (Lv et al. 2021). 
The sensor nodes are placed randomly or in a pre-planned 
fashion in the target area. When sensor nodes are deployed 
randomly in the target area, there may be the possibility of 
some portion of the target area being covered with a few 
nodes or some portion may be densely placed with sensor 
nodes. When less sensor nodes are used to cover the target 
area, most of the portion of the target area leave uncovered, 
which consequently requires more energy for transmitting 
the sensed data as the nodes are far away from each other. If 
the sensor nodes are placed densely in the target area, more 
energy will be consumed as more sensor nodes are in route 
participating in the data transmission (Farsi et al. 2019).

The random node deployment is mainly used where 
the area of interest is not easily accessible, for example, 
the applications like surveillance of the military realm, 
harsh environment monitoring, forest monitoring, etc. The 
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pre-planned deployment is used where the area of interest 
is easily accessible, for example, the applications like agri-
culture, environment monitoring, healthcare, etc. (Board-
man and Sullivan 2021). The deployment cost and the man-
agement of network is easy in the pre-planned deployment 
technique as compared to random deployment as the area 
of interest is covered with a less sensor nodes. In both the 
deployment techniques, connectivity and full coverage are 
very much important.

In WSN, the battery with the restricted energy source 
is the most stimulating issue. Once the sensor nodes are 
deployed, replacement or recharging of batteries is challeng-
ing or even impossible because of the large network size and 
harsh environment (Goyal and Tripathi 2022). Therefore, 
proper energy utilization has become a challenging issue 
for decreasing the power consumption and increasing the 
network lifetime.

As fewer nodes are used to cover the target area, most of 
the portion of the target area leave uncovered. Therefore, the 
sensor nodes need to be deployed densely. But because of the 
dense deployment of sensor nodes more energy will be con-
sumed. This issue can be resolved by energy-efficient active/
sleep scheduling of the sensor nodes. Various techniques 
and meta-heuristic based scheduling algorithms have been 
presented in the last few years. The majority of the existing 
scheduling algorithms take only one of two constraints into 
account: coverage or connectivity. For determining an opti-
mal schedule, only few proposed techniques taken into account 
both coverage and connectivity constraints. The greedy-based 
scheduling algorithms have extended network lifetime, con-
nectivity and coverage. However, the real-time implementation 
is challenging because of multiple packet losses, collisions, 
and pre-computed energy consumption rate that varies in real-
time scenarios (Cardei and Cardei 2008a, b). The NSGA-II (Jia 
et al. 2009a, b) based technique has been successfully used to 
select the fewest sensor nodes out of all the randomly deployed 
nodes which ensure the coverage to the region of interest. But 
they considered the range of communication of sensor nodes 
is twice that of the sensing range. However, in a target-based 
network, the targets may be spread over the application area, 
this assumption is not valid. The bio-inspired techniques such 
as Ant Colony Optimization (ACO) have shown noteworthy 
improvement in the node scheduling (Lee et al. 2011). The 
target tracking algorithm presented in (Lersteau et al. 2018) 
provides node scheduling to monitor the moving targets. The 
proposed algorithm finds the schedule with fewest sensor 
nodes which ensures coverage of moving targets and mini-
mizes the energy consumption for target tracking. The selected 
sensor nodes are considered to be in the communication range 
with one another for data transmission. However, because of 
the limited communication range selected sensor nodes in 

large network area may not be connected and thus affect data 
forwarding.

In this article, we have proposed energy-efficient sched-
uling where out of total deployed nodes, only a subset of 
the nodes is in active mode to monitor the targets and the 
rest of the nodes are in sleep mode. The subset of nodes 
continues to monitor and transmit the data till the energy 
of one or more nodes is drained. Then, from the remaining 
set of nodes, it activates a new subset of nodes. The same 
process is repeated until no more subsets can be formed to 
provide coverage to all target points as well as communica-
tion among sensor nodes and the BS. Thus scheduling the 
active and sleep modes of the sensor nodes saves energy that 
improves the network lifetime. Thus active/sleep schedul-
ing of the nodes helps to preserve the valuable energy of 
the sensor nodes by activating only fewest nodes out of the 
densely deployed nodes. The nodes are not only selected 
on the basis of the fewest node count but also consider the 
residual energy, coverage to all the target points as well as 
connectivity between the sensor nodes and base station to 
transmit the data sensed by nodes to the base station.

The sensing and transmission range is limited for the 
sensor nodes. For the guaranteed data transmission from 
the targets to the BS, full coverage, communication among 
the nodes and the base station are very stimulating issues 
in the WSN. Therefore, full coverage and communication 
between the sensor nodes and base station are equally con-
sidered while scheduling the sensor nodes. Residual energy 
is also considered along with the fewest nodes, connectivity 
and coverage. The node with the higher residual energy is 
selected. Because of this frequent formation of scheduling 
is not required, which in turn it will avoid the overhead on 
the network.

The coverage to the target points as well as the connectiv-
ity between sensor nodes with minimum nodes is a multi-
objective and NP-hard problem. The metaheuristic approach 
is highly preferred to determine the optimal solutions for 
such multi-objective optimization problems. The GA is 
found very simple, touristy, and widely used algorithm for 
finding out solutions to multiobjective problems. Here in our 
proposed work, a Genetic algorithm is employed to deter-
mine the optimal solution for scheduling the sensor nodes in 
active and sleep modes based on the multiobjective function. 
In our work, we proposed an algorithm for energy-efficient 
active/sleep scheduling. The proposed algorithm aimed to 
enhance the overall performance of the WSN.

The contributions of this paper are as follows:

1.	 We have implemented the energy-efficient active/sleep 
scheduling of the sensor nodes using the GA with Dither 
Creeping mutation algorithm with a crossover as well as 
without crossover.
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2.	 In 2013, Angus Simpson and his team have developed 
and analysed, the Non-crossover dither creeping muta-
tion-based GA for the optimization of pipe networks in 
civil engineering where they have represented chromo-
somes in integer numbers. But in our work, first time we 
have used GA with dither creeping mutation for WSN 
and we have represented the chromosomes in binary.

3.	 The schedule for active/sleep modes of the sensor nodes 
is done with the following fitness function with four 
objectives:

i	 Select the fewest active nodes from all deployed 
nodes.

ii	 Complete coverage to all the targets.
iii	 All the active sensor nodes are in the communication 

range of each other along with the BS.
iv	 Residual energy.

We have simulated the proposed algorithm extensively 
with several WSN scenarios. To validate the efficiency of 
the presented algorithm, the simulation results are analysed 
with the existing algorithms.

1.2 � Organization of the paper

The paper is organized as follows: Sect. 1 begins with an 
introduction. Section 2 is of the literature review. Section 3 
briefed about the system model, problem statement, and ter-
minology used. Section 4 concisely describes the GA. The 
proposed work describes in Sect. 5, the detailed experimen-
tal setup discussion and simulation findings are described in 
Sect. 6, and finally, there is a conclusion of the paper.

2 � Literature survey

The energy-efficient active/sleep scheduling of the sensor 
nodes in target-based WSN is one of the prominent research 
areas in WSN. Many researchers are using multi-objective 
optimization techniques for node deployment and active/
sleep scheduling of the sensor nodes in an energy-efficient 
way for improving network lifetime and reducing energy 
consumption.

Harizan and Kuila (2019) presented an energy-efficient 
algorithm for the sensor nodes scheduling based on the 
improved genetic approach which is aware of coverage to 
targets and connectivity in target-based WSN. In this paper, 
the authors presented the novel mutation for quicker con-
vergence and improved performance. The cost function is 
derived from the fewest active node count, full coverage, 
connectivity among the active nodes, and residual energy. 
Kaur and Kautish (2016) presented a strategy to resolve 
the issue of coverage based on the VORONOI_PSO. The 

coverage issue is addressed by determining the optimal cov-
erage based on the best node location. Liu and He (2014) 
have presented a greedy-based approach using an ant colony 
optimization, which aims to cover the pols with fewer sen-
sor nodes while maintaining connectivity. In this approach, 
the authors considered grid-based coverage with minimum 
cost and assured connectivity. The experimental results dem-
onstrated that the presented approach reduces the deploy-
ment cost and also balances the energy consumption and 
maximizes the network lifetime. Xiang et al. (2019) sug-
gested a cuckoo search-based hybrid WSN node placement 
algorithm. Here the authors mainly designed the algorithm 
to increase the regional coverage and decrease the energy 
loss. The regional coverage of WSN is improved with the 
CS algorithm and target location optimization is used to 
decrease the energy loss during the node movement. El 
Khamlichi et al. (2017) introduced the optimization model 
that can handle barrier coverage as well as the area cover-
age problems. To tackle the node placement problem with 
the fewest active sensor nodes, the authors suggested a node 
deployment methodology which is the combination of the 
simulated annealing algorithm and gradient approach. The 
proposed model outperforms the extent algorithm in terms 
of full coverage to the targets with the fewer sensor nodes, 
according to simulation findings. Mini et al. (2012) tackled 
the M-connected target points coverage issue in WSN where 
the connectivity and coverage level is high or low as per the 
requirement. The authors presented a method in which the 
connectivity and coverage requirements are fulfilled using 
fewer sensor nodes. Yoon and Kim (2013) investigated the 
coverage deployment challenges in WSN and also examined 
problem properties and its solution space. They proposed the 
GA using the normalization method. The evaluation func-
tion is designed with the Monte Carlo method. According 
to simulation findings, it is observed that the GA is not only 
twice faster but also showed an improvement in performance 
quality. Liu et al. (2010) aimed to improve the network life-
time with redundant sensor node coverage and connectivity. 
They have proposed two algorithms Heuristic Algorithm and 
Network Flow Algorithm for attaining energy conservation 
along with connectivity and coverage. Rebai et al. (2015) 
introduced a GA-based algorithm to search the various posi-
tions for the placement of an optimum count of sensor nodes 
which provides guaranteed full coverage and connectivity 
between the active nodes. The cost function is derived from 
the less number of active sensor nodes needed to furnish 
the necessary coverage and connectivity. Singh et al. (2016) 
presented the analytical method for prolonging the network 
lifetime by keeping the disjoint groups of sensors. At a time 
only one group is active and renders guaranteed coverage. 
The analytical and experimental results show that the net-
work lifetime increased two times than the original lifetime. 
Gupta et al. (2016a, b) have developed a scheme based on 
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GA, that identifies the minimal number of probable positions 
for node placement to satisfy the m-connectivity and k-cov-
erage of the sensor nodes in the target-based WSN field. 
The suggested scheme based on GA performs better than 
the previous schemes based on count of selected potential 
positions. Bendigeri and Mallapur (2015) have developed an 
energy-efficient scheme for the placement of nodes. It pro-
vided uniform deployment of the sensor nodes. The authors 
have considered the random, grid, and circular patterns of 
the sensor node for the simulation. The simulation results 
show that there is less power consumption in a circular pat-
tern in comparison to the random placement of the node. 
Yang and Chin (2016) tackled the new issue of the mini-
mum energy harvesting nodes placement for energy-neutral 
connectivity and coverage. The authors aimed to find out 
the positions to place the minimum sensing and relaying 
nodes that can cover all the target points, and have connec-
tivity with the base station. Gupta et al. (2016a, b) investi-
gated a node deployment approach based on GA to render 
k-connectivity to each target. They have also presented a 
greedy approach to node deployment policy. The GA-based 
algorithm outperforms the greedy approach for node deploy-
ment. Sengupta et al. (2013) focused to determine the node 
deployment with full coverage, minimal consumption of 
energy, maximum lifetime of the network, and full connec-
tivity using the minimal active nodes. The authors proposed 
a concept of fuzzy Pareto dominance and the decomposition 
type of evolutionary algorithm. Li and Lei (2009) addressed 
the node deployment issues. To solve that problem, they pre-
sented an improved particle swarm optimization algorithm. 
The experimental results reveal that the performance factors 
like power consumption, coverage ratio, and the network 
lifetime are better than the extent algorithm. Fan et al. (2014) 
have presented a strategy for predetermined node placement 
of two tired WSN to minimize the network cost through 
the fewest active nodes, optimal cluster size, and minimum 
energy consumption. The authors build the network with the 
hexagonal cell architecture which ensures guaranteed con-
nectivity and full coverage using the minimum active nodes. 
Singh and Sharma (2015) presented algorithm based on the 
theorems, Position, and Hop-count. The algorithm ensures 
complete coverage and connectivity with minimal node 
selection. The algorithm is designed to provide three con-
nectivity in the network. The suggested method outperforms 
the extent algorithm in terms of full coverage using fewer 
nodes according to simulation findings. Kung et al. (2008) 
have implemented two novel node deployment methods 
slow-start and the square-encircled method to carry out node 
placement investigations for the deployment of the unknown 
obstacle-filled region with less overlapping rate. The authors 
proved the correctness of the methods mathematically. These 

two methods resolve guaranteed k-coverage issues using the 
divide and conquer concept.

Various meta-heuristic algorithms are used in many fields 
for the optimization problems like GA based Noncrosso-
ver dither creeping mutation for the optimization of pipe 
networks in civil engineering (Zheng et al. 2014), Fuzzy 
mathematical programming and hybrid model based on the 
Artificial Fish Swarm Algorithm for flow shop scheduling 
(Tirkolaee et al. 2020a, b), fuzzy multi-trip location-routing 
problem for medical waste management (Tirkolaee et al. 
2020b).

3 � System models

3.1 � Network model

We have considered the WSN where the sensor nodes and 
targets are spread in a two-dimensional area. Sensor nodes 
are placed randomly or in a predetermined fashion in the net-
work field. We have also considered that the deployed targets 
and sensor nodes are stationary. A sensor node can sense one 
or more target points that are within its coverage area. The 
sensor nodes that are within the communication range can 
only communicate with each other. The data aggregation is 
similar to the LEACH (Heinzelman et al. 2002) where the 
operation is performed in rounds. Sensed data from sensor 
nodes is sent directly or via multihop transmission to the 
base station in each round with sensor that are within com-
munication range.

3.2 � Problem statement

In the energy-efficient active/sleep scheduling, only a subset 
of the sensor nodes is active out of all the deployed nodes 
to monitor the targets and the remaining sensor nodes are 
in sleep mode. The subset of nodes continuously monitors 
the targets which are present within their sensing range and 
transmits the sensed data directly or by multihop transmis-
sion to the base station till the energy of one or more nodes 
is drained. Then, from the remaining set of nodes, it acti-
vates a new subset of nodes. This process is repeated until 
no more subsets can be produced to provide coverage to all 
target points as well as communication among sensor nodes 
and the BS. Thus, active and sleep mode scheduling of the 
sensor nodes leads to improvement in the network lifetime.

Here we addressed the problem as follows. For the given 
number of deployed sensor nodes and targets, only the few-
est nodes have been activated that cover all the targets and 
provide communication between sensor nodes and base sta-
tions. The target is covered by the sensor node, if it is in 
the sensing range of node. Similarly, the sensor nodes can 
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communicate with one another if they are in the communi-
cation range.

For example, a target-based network consists of 8 target 
points { T1, T2, T3…..T8 } and 12 sensors { S1, S2, S3…… S12 } 
as depicted in Fig. 1. From the figure, it is found that out of 
12 deployed sensor nodes, only six nodes are active while 
the rest are in sleep mode. Only six nodes { S3, S4, S6, S8, S9
,S10 } are monitoring the targets and transmitting the data 
sensed by these nodes to the sink. It is also seen that the 
targets covered are inside the coverage area of at least one of 
the active nodes and these six active nodes are in the com-
munication range with at least one sensor node to maintain 
the connectivity among sensor nodes and base station.

3.3 � Terminologies

For the certain set of N targets and M number of total 
deployed nodes, minimum sensor nodes with high residual 
energy are selected to be active and also fulfil the criteria of 
coverage to all targets along with the connectivity among all 
active sensors and BS.

The terminology used in the proposed algorithm is 
described as follows:

distance ( Tn,Sm ) denotes the 
distance between the sensor 
node Sm and targetTn

K = Number of active nodes
RSsens = Sensing range of the sen-

sor node
CCcom(Sm) refers to the sensor 

nodes, which are inside the com-
munication range of Sm

RCcomm = Communication range 
of sensor node

S = { S
1
, S

2
, S

3
…… SM } are the 

deployed nodes

T = {T
1
, T

2
, T

3
…..Tn } are the 

targets
Csens(Tn ) refers to the target Tn 

covered by a set of sensor 
nodes

Let the Boolean variables amn, bmn be defined as follows:

4 � Genetic algorithm

4.1 � Basics of genetic algorithm

A Genetic Algorithm is very simplest, nature-inspired, 
metaheuristic optimization techniques. GA begins its search 
with the initial population which is generated randomly, and 
it is considered as the possible solution for a given problem. 
Each solution is called the chromosome. The fitness of the 
solution is then assessed by evaluating each chromosome 
using the cost function. After this, the GA goes through 
mainly three operations selection, crossover, and mutation. 
Two random solutions are chosen as parents from the set 
of initial populations in the selection operation. These two 
selected parent chromosomes are crossover to produce the 
two new child chromosomes by exchanging their genes. 
Then both these child chromosomes have undergone the 
operation of mutation to find out an improved solution. In 
the mutation operation, the position of a gene is selected 
randomly and that gene is flipped. The muted chromosomes 
are then evaluated by the cost function. The fitness values 
generated by muted chromosomes are compared to the fit-
ness of the chromosome from the previous generation. If 
the muted child chromosomes are more fitted in terms of 
fitness values than the parent chromosome, then the parent 
chromosomes are substituted with the child chromosomes. 
This process is continuing till the iterations are over or stop-
ping criteria are met.

(1)
Csens

(
Tn
)
= {Sm|distance(Tn, Sm) ≤ RSsens, ∀m, 1 ≤ m ≤ K}

(2)

C
Ccom

(S
m
) ={S

n
|distance(S

m
, S

n
) ≤ R

Ccomm
(distance(S

n
,BS)

≥ distance(S
m
,BS)) ∀n, 1 ≤ n ≤ K,m ≠ n}

(3)amn =

{
1 if Sm covers, target Tn

0 otherwise

(4)

bmn =

{
1 if sensors Sm and Sn in communication range

0 otherwise

Fig. 1   An example of a network with full coverage and connectivity
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4.2 � Chromosome representation

The chromosomes are represented in the binary string of 
ones and zeros. The sensor nodes deployed decides the 
length of the chromosome. Suppose the gene value at the 
ith position is 1, it means the sensor node in ith position is 
active and if the value is 0 then the node in ith position is 
considered in sleep mode.

Illustration 1: Consider the network with nine targets 
T = {T1, T2, T3…..T9 } and 12 sensor nodes S = {S1, S2, S3…… 
S12 } deployed randomly as shown in Fig. 2a. The chromo-
some length is equal to the number of nodes deployed, 
that is 12.

From Fig. 2b, it is observed that the gene values at posi-
tions S1, S2,S5,S6,S8, S9 are 1 as these nodes are active and 
the gene values at the positionsS3,S4,S7,S10,S11, S12 are 0 as 
the nodes are inactive or in sleep mode.

4.3 � Fitness function derivation

Four objectives are considered for the fitness function as 
follows.

1.	 Select less number of active nodes.
	   Suppose if K is the active sensor nodes out of M 

deployed nodes. Hence, the first objective will be.

	   Objective 1: Out of the total M number of deployed 
nodes only a few nodes are active.

2.	 Coverage of all the targets
	   To provide full coverage, every target must be covered 

by at least one node. A sensor node can cover one or 
more target points.

	   Objective 2: Coverage of all targets.
	   As stated in Eq. (1) before, Csens(Tn) is the sensor node 

set that covers the target Tn inside the sensing range.
	   The coverage cost of a target Tn is written as

	   Therefore, the second objective is written as

3.	 3. Connectivity
	   To provide full connectivity, all the active sensor 

nodes must be able to communicate with each other as 
well as with the base station for transmitting the data 
acquired from targets to the base station. It means that 
every sensor node should be within the communication 
range of at least one sensor node to retain connectivity.

	   Objective 3: The active nodes and base station con-
nectivity.

	   As declared in Eq. (2) before, Ccom(Sm ) refers to the 
sensor nodes set that are inside the communication range 
of Sm.

	   Hence, the connectivity cost CcomCost

(
Sm

)
 of a sensor 

node Sm will be

4.	 Highest residual energy node selection
	   Selecting nodes with higher residual energy avoids 

the frequent formation of scheduling and which in turn 
it will avoid the network overhead.

	   Objective 4: Maximum residual energy of the mini-
mum selected active nodes is always better.

	   The weight sum technique is utilized to build the 
multi-objective fitness function. To create a single objec-

(5)Minimize F1 =
K

M

(6)CsensCost

(
Tn
)
=

{
+1 if ||Csens(Tn)

|| ≥ 1

−1 otherwise

(7)Maximize F2 =
1

N

∑N

n=1
C
sensCost

(
T
n

)

(8)CcomCost

(
Sm

)
=

{
+1, if ||Ccom(Sm)

|| ≥ 1

−1, otherwise

(9)Maximize F3 =
1

M

∑M

m=1
C
comCost

(
S
m

)

(10)Maximize F4 = {ER
(
S
n

)
∀n, 1 ≤ n ≤ K}

(a)

(b)

Fig. 2   a WSN with twelve sensor nodes and eight targets. b Chromo-
some representation
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tive function, a weight value is multiplied with every 
objective before being combined, as illustrated below.

	   Emax Is the summation of the energy of all sensor 
nodes.

	   We considered W1 + W2 + W3 + W4 = 1.
	   0 ≤ Wn ≤ 1, ∀n, 1 ≤ n ≤ 4.
	   Maximizing the Fitness value is the objective.

	   This means that maximum is the fitness function bet-
ter is than the solution. Concerning the above individual 
objective functions following are the observations.

	   Comment 1: It is observed from Eq. (11) that F1, F2, 
F3, and F4 are four individual objective functions that 
signify the active nodes count, coverage to all targets, 
connectivity among active sensor nodes, and energy 
level of nodes. Each objective functions have different 
ranges of scale values. Therefore, to bring the range of 
all the objective function values to the same scale, their 
values are adjusted in a manner such that the values are 
normalized between 0 and 1 for all the objective func-
tions in Eq. (11).

	   Comment 2: The above four objective functions 
are contradictory, which means trying to optimize one 
objective function hinders on optimization of another 
objective function. Ex. Attempting to maximize the 
objective function with fewer active nodes may impede 
objective functions F2 and F3 because with the fewer 
nodes it has become very difficult to manage the guar-
anteed full coverage and connectivity. Similarly trying 
to optimize objective function F4 by choosing sensor 
nodes with maximum residual energy may not provide 
guaranteed coverage and connectivity. Sometimes low 
energy level sensor nodes may have been selected for 
providing coverage and connectivity.

	   Comment 3: Sometimes there may be some redun-
dant nodes are activated to provide coverage or con-
nectivity. Redundant selection of nodes for coverage or 
connectivity will not affect objective functions F2 and 
F3, but it will hamper the objective function F1. Thus 
derived fitness function will not encourage the selection 
of unnecessary and redundant activation of the nodes.

(11)
Fitness =W1 × (1.0 − F1) +W2 × F2

+W3 × F3 +W4 × F4

Fitness =W1 × (1.0 −
K

M
) +W2 ×

1

N

∑N

n=1
C
sensCost

(
T
n

)

+W3 ×
1

M

∑M

n=1
C
comCost

(
S
m

)
+W4 ×

ER

Emax

(12)Objective ∶ Maximize Fitness

5 � Proposed work

In the proposed algorithm we have used GA with the 
Dither Creeping mutation rather than the traditional muta-
tion to find out the better chromosomes. Dither Creeping 
mutation (DCM) replaces the popularly used bitwise muta-
tion operator in classical GA. Rather than being a fixed 
mutation rate, the mutation rate in the DCM is generated 
randomly throughout the GA run.

In the dither creeping mutation mechanism, each mutant 
is assigned with probability Pidcm where Pidcm ∈ [Pmin, 
Pmax] is a uniform random variable. The range of 
Pidcm ∈ [0.03, 0.07] is used for the proposed algorithm.

Each gene of each chromosome is selected with the 
probability of Pidcm being mutated. The chromosome is 
selected as a probability Pd of being muted. In exploring 
the search space for the extremely constrained problem, 
Dither Creeping Mutation is more efficient than bitwise 
mutation. Dither Creeping Mutation Algorithm and flow 
chart is as follows (Fig. 3).

P: Population Individual member (chromosomes).
Rand: Any random number between 0 and 1.
Pd: Probability of being mutated.
Pidcm: Probability to be mutated.
N: length (P).

Fig. 3   Flow diagram of GA with DCM
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Algorithm 1  Dither creeping mutation.

Input: A chromosome,
Output: Mutated chromosome
1 Initialize Chromosome P
2 for i = 1 to N
3 Pidcm = Pmin + Rand(1) 

× (Pmax − Pmin)
4 Pd = 0.5
5 if Rand (1) < Pidcm
6 if Rand (1) < = Pd
7 popm (i) = Min(0, P(i))
8 else
9 popm(i) = Max(1, P(i))
10 end if
11 end if
12 end for

5.1 � Energy model

The energy model employed in the experimentation is 
similar to the energy model employed in Heinzelman et al. 
(2002). Energy from the transmitter is used to power both 
the amplifier and radio electronics. The energy from the 
receiver powers the radio electronics. The number of bits 
to be transferred over the distance determines the amount 
of energy dissipated by the sensor nodes. If the propagation 
distance d is less than the threshold distance d0, the amount 
of energy that the sensor node consumed is proportional d2 
else it is d4. The amount of energy expended by each sen-
sor node in the network to transmit n bits over a distance is 
stated using the equations below.

where, Eelect is the amount of energy used to operate the 
transmitter or receiver and reliant on different param-
eters like digital coding, filtering, signal spreading, and 
modulation.

The receiver circuit’s energy consumption for receiving 
n bits of data is represented as

6 � Experimental setup and result

The implementation of the proposed algorithm is carried 
out on a system with a 2.4 GHz CPU, an Intel i5 processor, 
4 GB RAM, Microsoft Windows 10 platform, and MATLAB 
R2013a.

To perform the extensive simulation, the experimenta-
tion is done on two distinct scenarios #WSN1 and #WSN2 
as shown in Figs. 4a, 5a. The area of the sensor network 
for both the scenarios is considered as 200 × 200 m and 
the base station is considered at (200, 100). The #WSN1 
is considered a grid-based scenario in which at each grid 
cross point a sensor node is placed and targets are placed 
randomly. Whereas in #WSN2, both sensors and targets are 
placed randomly. Table 1 lists the radio model and Network 
parameters that were used to run the simulation.

The weight factors W1, W2, W3, and W4 are tested for 
the different combinations of weight values. It is find that 
the performance of proposed algorithm substantially better 

(13)ETX(n, d) = nEelect + nEfs × d2 (d < d0)

(14)ETX(n, d) = nEelect + nEfs × d4 (d > d0)

(15)ERX(n) = n × Eelect

Fig. 4   a 100 sensor nodes placed in 10 × 10 grid and 50. b Nine active sensor nodes selected out of 100 targets are deployed randomly sensor 
nodes
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in random and grid based scenarios for W1 = 0.3, W2 = 0.2, 
W3 = 0.2 and W4 = 0.3.

For the performance comparison purpose, we have 
also implemented active/sleep scheduling of sensor nodes 
with Noncrossover dither creeping mutation-based GA 
(GANCDM), traditional GA, NSGA-II (Deb et al. 2002), 
and scheduling of sensor nodes with improved GA (Harizan 
and Kuila 2019) and compared the performance parameters 
of these algorithms with the proposed algorithm i.e. active/
sleep scheduling of sensor nodes with Crossover dither 
creeping mutation-based GA (GACDCM).

6.1 � Simulation result

6.1.1 � Experiment 1

The proposed algorithm is demonstrated in random as well 
as in grid based scenarios, where the deployed sensor nodes 
are considered 100, target points are 50, and network field 
area is considered 200 × 200 m.

In the first scenario, the 100 sensor nodes are placed in 
the grid of 10 × 10 and randomly 50 targets are deployed 
whereas, in scenario two, 100 sensor nodes and 50 targets 
are deployed randomly. In the #WSN1 and the #WSN2 sce-
narios, the proposed algorithm with GACDCM only selects 
nine active nodes out of 100 deployed nodes in the first 
round.

In the same way, the experiment is carried out in both 
scenarios for the number of nodes 200 and 300. The number 
of targets are taken 75 and 100 respectively. The network 
area is considered as 300 × 300 m and 400 × 400 m respec-
tively. The simulation results for both scenarios are shown 
in Figs. 6a, b, 7a, b.

6.1.2 � Experiment 2

In this experimentation, the deployed sensor nodes count is 
kept same and the targets are varied in both grid and random 
based scenarios. Here the nodes are considered as 300 and 
targets are varied from 40 to 100. The parameters of all the 
algorithms which are mentioned above are kept the same 
and a comparison of algorithms is done based on the param-
eter like the nodes selected with guaranteed connectivity 
and coverage. Figure 8a, b show the comparative results of 
all mentioned algorithms in both the scenarios. The sug-
gested algorithm’s performance is analysed based on the 
active nodes selected for the given targets. From the result, 

Fig. 5   a 100 sensor nodes and 50 targets. b Nine active sensor nodes selected out of 100 deployed sensor nodes randomly

Table 1   Radio model parameters and network parameters

Parameter Value

Radio model parameters
Eelect 50 nJ/bit
Efs 10 pJ/bi/m2

Emp 0.0013 pJ/bi/m4

Length of packet 4000 bits
Size of massage 500 bit
Network parameters
Simulation area 200 × 200 m, 300 × 300 m, 400 × 400 m
Base station 200 × 100 m, 300 × 150 m, 400 × 200 m
Sensor node 100–300
Sensor position Scenario 1 (#WSN1): grid based

Scenario 2 (#WSN2): random based
Targets 50–100
Range of communication 70 m
Coverage range 40 m
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it is seen that the active node count increases, as the targets 
increases. The active nodes selected to cover the 40 targets 
are 13 and 16 which are less than other algorithms. Thus as 
compared to the algorithms mentioned here, the suggested 
GACDCM algorithm selects less active sensor nodes which 
in terns minimize the energy consumption and maximize the 
lifetime of the network.

6.1.3 � Experiment 3

In this experimentation, the sensor nodes deployed are var-
ied and targets are kept the same. For experimentation, the 
number of targets are considered 75, and the total deployed 
sensor nodes are varied from 200 to 400.

Figure 9a, b show the comparative results for the active 
sensor nodes selected for given target points and differ-
ent numbers of sensors deployed. From the experimental 
results, it is noted the nodes selected from 300 deployed 
nodes are 18 and 20 in both scenarios respectively. Thus 
the proposed GACDCM selects less active sensor nodes 
than coexisting schemes.

6.1.4 � Experiment 4

The simulation has been carried out to check how many 
rounds are taken by various algorithms to die out the first 
node. It is observed from Fig. 10a, b, that the rounds taken 
to die out the first node in case of the proposed algorithm 
is higher than the NSGA-II, GANDCM, and GA algo-
rithms but it is comparable with the algorithm presented 
by Harizan and Kuila (2019). The proposed algorithm took 
more round because the algorithm selects the nodes which 
are having maximum residual energy as per the fourth 
objective of the fitness function. Therefore, nodes took 
more time to run out of energy.

The experimentation is extended to examine the energy 
consumption of the proposed GACDCM. The energy 
model used in this experiment is the same as that is used 
in LEACH (Heinzelman et al. 2002). Figure 11a shows 
the comparison of all the algorithms in terms of resid-
ual energy per round. From Fig. 11a it is observed that 
the network has full coverage and connectivity till 1742 
rounds for GA, 2087 rounds for GANCDCM, 2358 rounds 

Fig. 6   a 200 sensor nodes, targets 75, selected nodes 20. b 200 sensor nodes, targets 75, selected nodes 22

Fig. 7   a 300 sensor nodes, targets 100, selected nodes 36. b 300 sensor nodes, targets 100, selected nodes 39
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NSGA-II, 2566 for the improved GA by Harizan and Kuila 
(2019), and 2670 rounds for the proposed GACDCM. Thus 
from the results, it is clear that the lifetime of the proposed 
GACDCM is increased by 53.27% than traditional GA, 
27.93% than GANCDCM, 13.23% than NSGA-II, and 4% 
than algorithm proposed by Harizan and Kuila (2019). It is 
concluded from the result that the lifetime of the proposed 
GACDCM is more as compared to the other algorithms.

It is also observed residual energy of the proposed 
GACDCM algorithm is more than the other algorithm 
throughout all the rounds. The reason for this is as the 
offered algorithm is selecting the minimum number of 
active nodes per round, less energy per round is consumed 
that helps to enhance the network lifetime.

6.1.5 � Experiment 5

Further, the research is extended to furnish the requirement 
of k-coverage to every target point and m-connectivity 
between the sensor nodes, taking into consideration that 
sensor nodes are prostrate to failure. Because of this, if one 
of the sensor nodes failed, each target point is covered with 
minimum k-1 coverage similarly every sensor node is cov-
ered with m-1 connectivity.

(a)

(b)

Fig. 8   a Comparison of various algorithms according to the active 
nodes and targets for #WSN1 grid based scenario b Comparison 
of various algorithms according to the active nodes and targets for 
#WSN2 random scenario.

(a)

(b)

Fig. 9   a Comparison of various algorithms according to active nodes 
and nodes deployed for #WSN1 grid based scenario. b Comparison 
of various algorithms according to active nodes and nodes deployed 
for #WSN2 random scenario.

(a)

(b)

Fig. 10   a Comparison of total nodes deployed and the round at which 
the first node dies. b Comparison of total nodes deployed and the 
round at which the first node dies
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Figure 12a–d and 13a–d show the sensor network for the 
various k-coverage and m-connectivity for random as well 
as grid based scenarios.

7 � Conclusion

The two important challenges in the development of WSNs 
are the efficient utilization of the energy of the nodes and 
the network lifetime. Therefore, to reduce the consumption 

of energy and prolongation network lifetime, we have 
presented the energy-efficient active/sleep scheduling 
algorithm for the sensor nodes using a GA with Dither 
Creeping mutation. The algorithm aims to activate less 
active sensor nodes from the total sensor nodes deployed 
in the network field which ensures maximum coverage to 
all targets as well as connectivity among active nodes and 
base station. The novelty of the proposed GA with Dither 
Creeping mutation is that the mutation probability is gen-
erated randomly rather than the fixed value for each string. 
As a result, for the same generation, the various strings of 
the proposed algorithm will be subjected to various creep-
ing mutation probabilities and the same string is subjected 
to various creeping mutation probabilities at successive 

generations. The proposed GA with the Dither Creeping 
mutation approach replaces the traditional bitwise muta-
tion. For exploring the search space in case of extremely 
constrained problems, Dither Creeping Mutation is more 
efficient than bitwise mutation. The proposed algorithm 
has been thoroughly simulated under several scenarios and 
conditions such as a fixed number of sensor nodes and the 
different number of targets in the field, fixed number of tar-
gets and the different number of sensor nodes in the field, 

Fig. 11   Comparison in terms of average residual energy

Fig. 12   Sensor network for the various k-coverage and m-connectivity for random based scenario
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etc. From the experimental result, it is observed that the 
lifetime of the proposed algorithm GACDCM is increased 
by 53.27% than traditional GA, 27.93% than GANCDCM, 
13.23% than NSGA-II, and 4% than algorithm proposed by 
Harizan and Kuila (2019). The experimental results dem-
onstrated that the performance parameters of the proposed 
algorithm are better as compared to GA, GANCDCM, 
NSGA-II and scheduling algorithm by Harizan and Kuila 
(2019) under all conditions in terms of the number of less 
active node selection, less consumption of energy, and life-
time of the network.

We have extended our research to furnish the require-
ment of k-coverage to every target point and m-connectivity 
between the sensor nodes, taking into consideration that sen-
sor nodes are prostrate to failure. The result demonstrated 
that if one of the sensor nodes failed, each target point is 
covered with minimum k-1 coverage similarly every sensor 
node is covered with m-1 connectivity.
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